Phase 1 open-label study evaluating the safety, pharmacokinetics, and preliminary efficacy of dilpacimab in patients with advanced solid tumors

Michael S. Gordon1, John Nemunaitis2,3, Minal Barve4, Zev A. Wainberg5, Erika P. Hamilton6, Ramesh K. Ramanathan1, George W. Sledge Jr7, Huibin Yue8, Susan E. Morgan-Lappe9, Martha Blaney8, Sreeneeranj Kasichayanula8, Monica Motwani9, Lan Wang8, Louie Naumovski8, John H. Strickler10

1HonorHealth Research Institute, Scottsdale, AZ, USA; 2Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA; 3ProMedica Health System, Toledo, OH, USA; 4Hematology/Oncology, Mary Crowley Cancer Research Center, Dallas, TX, USA; 5Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA; 6Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA; 7Department of Medicine, Stanford Cancer Center, Palo Alto, California; 8Oncology Early Development, AbbVie Inc., Redwood City, CA, USA; 9Translational Oncology, AbbVie Inc., North Chicago, IL, USA; 10Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA.

Running title: Dilpacimab in patients with advanced solid tumors [43 characters; 60 characters max.]

Keywords: dilpacimab, DLL4, VEGF, solid tumors, phase 1

Financial support: This study was funded by AbbVie Inc., Chicago, IL

Corresponding author:
Michael S. Gordon, MD
Author Disclosures

Zev A. Wainberg and Ramesh Ramanathan: Research funding from AbbVie.

Michael Gordon: Research funding from AbbVie, MedImmune, Merck, Bristol Myers Squibb, Amgen, Tesaro, BeiGene, Aeglea, Agenus, Arcus, Astex, Blueprint, Calithera, Celldex, Corcept, Clovis, Eli Lilly, Endocyte, Five Prime, Genocea, Neon, Plexxikon, Daiichi, Revolution Medicines, Seattle Genetics, Serono, SynDevRx, Tolero, Tracon, Deciphera, Salarius, ImaginAb. Consulting from Agenus, Daiichi, Salarius, Deciphera, Imaging Endpoints

Erika Hamilton: Consulting fees paid to institution only (no personal fees) from: Lilly, Pfizer, Genentech/Roche, Daiichi, AstraZeneca, Mersana Therapeutics, Novartis, Silverback Therapeutics, Black Diamond; consulting fees from: Flatiron; research/clinical trial support paid to institution only (no personal fees) from: Lilly, Pfizer, Hutchison MediPharma, OncoMed, MedImmune, Stemcentrx, AbbVie, Curis, Verastem, Zymeworks, Syndax, Lycera, Rgenix, Novartis, Mersana, TapImmune, BerGenBio, Tesaro, Medivation, Kadmon, Boehringer Ingelheim, Eisai, H3 Biomedicine, Radius Health, Acerta, Takeda, MacroGenics, Immunomedics, FujiFilm, eFFECTOR, Syros, Unum, Sutro, Aravive, Deciphera, Clovis, Sermonix, Zenith, Arvinas, ArQule, Torque, Harpoon, Fochon, Black Diamond, Orinove, Molecular Templates, Silverback Therapeutics, and Black Diamond.
John Strickler: Research grant funding: OncoMed, Seattle Genetics, Exelixis, Amgen, AbbVie, Genentech/Roche, Gilead Sciences, MacroGenics, Sanofi, Nektar, Leap Therapeutics, Curegenix.
Consulting or honoraria: AbbVie, Amgen, AstraZeneca, Bayer, Chengdu Kanghong Biotechnology, Genentech/Roche, OncoMed, Pfizer, Proteus Digital Health, Seattle Genetics.

Minal Barve and George Sledge Jr: The authors declare no potential conflicts of interest.

John Nemunaitis: Employed by Gradalis (founder) and owns stock; leadership role for Gradalis, Symvivo; honoraria received from Amgen, AstraZeneca; consultant for Amgen, AstraZeneca, Symvivo; speaker for Amgen, AstraZeneca; research funding from Gradalis; patents, royalties, other intellectual property from Gradalis; expert testimony for Foundation Medicine; travel, accommodation, expenses received from Amgen, AstraZeneca, Gradalis, Symvivo.

Lan Wang, Huibin Yue, Susan Morgan-Lappe, Monica Motwani, Martha Blaney, and Louie Naumovski: AbbVie employees and may own stock.

Sreeneeranj Kasichayanula: Former AbbVie employee and may own stock.

Target journal: Molecular Cancer Therapeutics

Statement on originality of the work: The manuscript represents original work and has not been submitted for publication elsewhere nor previously published.

Statement of prior presentation: Results of this trial have partially been presented at the American Society of Clinical Oncology 2016 Annual Meeting.
Disclaimers

AbbVie provided financial support for this study (NCT01946074) and participated in the study design, research, analysis, data collection, interpretation of data, and reviewing and approval of the manuscript. All authors had access to relevant data and participated in the drafting, review, and approval of this manuscript. No honoraria or payments were made for authorship.

Data sharing statement

AbbVie is committed to responsible data sharing regarding the clinical trials we sponsor. This includes access to anonymized, individual and trial-level data (analysis data sets), as well as other information (e.g., protocols and Clinical Study Reports), as long as the trials are not part of an ongoing or planned regulatory submission. This includes requests for clinical trial data for unlicensed products and indications.

These clinical trial data can be requested by any qualified researchers who engage in rigorous, independent scientific research, and will be provided following review and approval of a research proposal and Statistical Analysis Plan (SAP) and execution of a Data Sharing Agreement (DSA). Data requests can be submitted at any time and the data will be accessible for 12 months, with possible extensions considered. For more information on the process, or to submit a request, visit the following link: https://www.abbvie.com/our-science/clinical-trials/clinical-trials-data-and-information-sharing/data-and-information-sharing-with-qualified-researchers.html.

Abstract word count: 244; maximum 250 words

Word count (excluding abstract, references, figures and tables): 3177; maximum 5000 words

Tables/figures: 6 of maximum 6 tables and figures

References: 24
Dilpacimab (formerly ABT-165), a novel dual-variable domain immunoglobulin, targets both delta-like ligand 4 (DLL4) and VEGF pathways. Here, we present safety, pharmacokinetic (PK), pharmacodynamic (PD), and preliminary efficacy data from a phase 1 study (trial registration ID: NCT01946074) of dilpacimab in patients with advanced solid tumors. Eligible patients (≥18 years) received dilpacimab intravenously on days 1 and 15 in 28-day cycles at escalating dose levels (range, 1.25–7.5 mg/kg) until progressive disease or unacceptable toxicity. As of August 2018, 55 patients with solid tumors were enrolled in the dilpacimab monotherapy dose-escalation and dose-expansion cohorts. The most common treatment-related adverse events (TRAEs) included hypertension (60.0%), headache (30.9%), and fatigue (21.8%). A TRAE of special interest was gastrointestinal perforation, occurring in two patients (3.6%; one with ovarian and one with prostate cancer), and resulting in one death. The PK of dilpacimab showed a half-life ranging from 4.9–9.5 days, and biomarker analysis demonstrated that the drug bound to both VEGF and DLL4 targets. The recommended phase 2 dose for dilpacimab monotherapy was established as 3.75 mg/kg, primarily on the basis of tolerability through multiple cycles. A partial response was achieved in 10.9% of patients (including four of 16 patients with ovarian cancer). The remaining patients had either stable disease (52.7%), progressive disease (23.6%), or were deemed unevaluable (12.7%). These results demonstrate that dilpacimab monotherapy has an acceptable safety profile, with clinical activity observed in patients with advanced solid tumors.
INTRODUCTION

Tumor angiogenesis, a multifaceted process associated with increased aggressiveness of disease, is based on outcomes from the interaction between endothelial and tumor cells, and various cellular signaling pathways. Tumor angiogenesis has been highlighted as one of the integral hallmarks of cancer (1). Two of the most relevant pathways that have a central role in tumor angiogenesis are the VEGF-VEGF receptor and the delta-like ligand 4 (DLL4)–Notch signaling pathways (2–4).

Clinical benefits have been demonstrated with anti-VEGF therapies (5–8); however, intrinsic and acquired resistance to such therapies occurs and highlights the need for more-effective treatments capable of targeting both VEGF-dependent and -independent pathways crucial for tumor growth.

DLL4 is a cell-surface ligand that activates the Notch-1 receptor pathway involved in cell proliferation and cell fate determination (9, 10), and was discovered as another pivotal signaling node in regulating tumor angiogenesis (11, 12). Of note, both DLL4 and VEGF activity are critically required for proper vascular function (13, 14). Several studies reported that DLL4 is upregulated on tumor vasculature relative to the endothelium of adjacent normal tissues (15–17), and endothelial expression levels were found to be inversely correlated with survival of some cancer patients treated with anti-VEGF therapy (18, 19). This indicates a critical role in tumor angiogenesis that is VEGF independent. Blockade of DLL4 was shown to inhibit tumor growth across multiple tumor types, including those tumors that are resistant to VEGF inhibition (11, 12). Collectively, these observations indicate that targeting both the DLL4 and the VEGF pathways may improve outcomes of current anticancer therapies.

Dilpamcimab, formerly called ABT-165, is a novel immunoglobulin (Ig)G-like DLL4/VEGF bispecific molecule that uses a proprietary dual-variable domain-Ig platform (20). In preclinical studies, dilpacimab potently inhibited both DLL4 and VEGF pathways, resulting in significantly greater tumor growth inhibition relative to blocking either axis alone (21). Importantly, in combination with chemotherapy agents in
preclinical xenograft models, dilpacimab induced greater antitumor response and outperformed anti-VEGF treatment (21).

The present study describes the safety/tolerability, pharmacokinetic (PK) profile, and preliminary efficacy results of dilpacimab in patients with advanced solid tumors. Pharmacodynamic and predictive biomarkers for association with safety and efficacy are also discussed.
PATIENTS AND METHODS

Patient eligibility

Patients (≥18 years of age) with advanced solid tumors not amenable to surgical resection or other approved therapeutic options with demonstrated clinical benefit were enrolled and treated. Patients were required to have Eastern Cooperative Oncology Group performance status 0–2; measurable disease per Response Evaluation Criteria In Solid Tumors version 1.1 or evaluable disease by assessment of peripheral blood tumor antigen markers; adequate bone marrow function (absolute neutrophil count ≥1,000 cells/mm³, platelets ≥100,000/mm³, hemoglobin ≥9.0 g/dL), renal function (serum creatinine ≤1.5× upper limit of normal [ULN] or creatinine clearance ≥50 mL/min), hepatic function (bilirubin ≤1.5× ULN, and aspartate aminotransferase and alanine aminotransferase ≤2.5× ULN or ≤5× ULN for patients with liver metastases), and coagulation function (activated partial thromboplastin time ≤1.5× ULN within 7 days prior to cycle 1 day 1). Exclusion criteria included: prior anticancer therapy (eg, chemotherapy, immunotherapy, radiotherapy, biologic therapy, or any investigational therapy) within 21 days or anticancer herbal therapy within 7 days prior to study drug administration; clinically significant condition(s) that might put the patient at higher risk for (or history of intolerability to prior) antiangiogenic therapy; uncontrolled metastases to the central nervous system; unresolved clinically significant toxicities from prior anticancer therapies; prior history of clinically significant pulmonary hypertension and cardiovascular disease.

The trial was registered with ClinicalTrials.gov (trial registration ID: NCT01946074) and was approved by institutional review boards prior to initiation. The study was performed in accordance with the International Conference on Harmonisation Good Clinical Practice guidelines and the 1964 Declaration of Helsinki, with written informed consent obtained from all patients before study enrollment.

Study design
This phase 1 open-label, multicenter, dose-escalation and safety-expansion study evaluated dilpacimab dosed every 14 days in 28-day cycles (Supplementary Figure S1). Arms that enrolled dilpacimab plus other agents (chemotherapy and immune checkpoint inhibitor) will be reported elsewhere after data analysis. The primary objectives of this study were to evaluate the safety/tolerability and PK profile of dilpacimab monotherapy and to determine the recommended phase 2 dose (RP2D). The secondary objective was to assess the preliminary antitumor activity of dilpacimab. An exploratory objective was to evaluate pharmacodynamic and predictive biomarkers for associations with efficacy.

Dilpacimab was administered via 60-minute intravenous infusion on days 1 and 15 in 28-day cycles at escalating dose levels ranging between 1.25–7.5 mg/kg to determine the maximum tolerated dose (MTD). A minimum of six (up to nine) patients were enrolled at each dose level (Supplementary Figure S1) and MTD was defined as the highest dose level at which fewer than two of six (<33%) patients experience a dose-limiting toxicity (DLT). Patients with clinical benefit (complete response [CR], partial response [PR], or stable disease) could continue dilpacimab at investigator’s discretion until progressive disease (PD) or unacceptable toxicity.

Dose escalation

The initial dose-escalation enrolled patients at 2.5 (n = 9; one patient with a dose-limiting toxicity [DLT] of headache), 5 (n = 6), and 7.5 (n = 3) mg/kg. Due to hypertension not easily controlled by antihypertensives that occurred outside the 28-day DLT window in patients treated at 5 and 7.5 mg/kg, a second dose-escalation enrolled at least six patients per cohort at dose levels of 1.25 (n = 8), 2.5 (n = 9; one patient with DLT hypertension, one patient with DLTs [grade 3 elevated aspartate amino transferase and alanine aminotransferase]), 3.75 (n = 9), and 5 mg/kg (n = 2) so that safety observations could be made outside of the DLT window on patients who were able to continue therapy.

Dose expansion
The dose expansion was intended to enroll up to 24 patients, with expansion at or below the MTD to be performed to evaluate the safety, tolerability, and pharmacokinetics of dilpacimab. The dose expansion was terminated after nine patients were enrolled, due to sponsor’s decision to terminate further monotherapy development.

Safety

Treatment-emergent adverse events (AEs) were assessed in the safety population (included all patients who received any study drug) from the time of study drug administration until 60 days following discontinuation of study drug and graded per the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03. Treatment-related AEs (TRAEs) were those considered by investigator or sponsor to be related to dilpacimab.

Blood pressure and cardiac monitoring

The initial dose escalation did not have strict guidance for dosing based on blood pressure and after several patients had blood pressure that was difficult to control, a second dose escalation was started with stricter blood pressure monitoring and dosing criteria. In the second dose escalation (and expansion) enrolled patients recorded daily at-home blood pressure readings starting after dosing on cycle 1 day 1 and lasting through the end of cycle 1. Enrolled patients could receive up to four antihypertensive medications at any one time, and reduced monitoring was allowed if hypertension was well controlled at the start of cycle 2. Additionally, blood pressure was measured in triplicate at every study visit. If either an in-clinic or at-home reading showed systolic ≥140, diastolic ≥90 mmHg, or if a patient required the addition of a fifth antihypertensive agent, study drug was withheld. If systolic was ≥180 or diastolic ≥110 mmHg, patient was discontinued from study drug. Cardiac evaluations (including electrocardiogram [ECG] and echocardiogram) were performed every two cycles prior to dosing of dilpacimab, or upon the occurrence of any cardiac symptoms (including B-type natriuretic peptide...
greater than twice the institutional normal range, measured at the start of each cycle). Additionally, triplicate ECGs were collected before and within 30 minutes after dosing on cycle 1 day 1 and cycle 2 day 15, as well as within 45 days of the final study visit.

PK
The PK population included all patients who received at least one dose of dilpacimab and from whom adequate drug concentration measurements were obtainable during the study. Blood samples for dilpacimab PK analyses were collected on day 1 (preinfusion and 30 minutes postinfusion), day 3 or 4, day 8, and day 15 (preinfusion and 30 minutes postinfusion) in cycle 1. In addition, blood samples were collected preinfusion and 30 minutes postinfusion on days 1 and 15 in cycle 2 and day 1 of each cycle thereafter, and at final visit. Serum concentrations of dilpacimab were determined using a validated method. PK parameters, including area under the serum concentration-time curve (AUC), maximum observed serum concentration (C_{max}), time to C_{max} (T_{max}), and terminal phase elimination half-life ($T_{1/2}$), were estimated using noncompartmental analysis (Phoenix WinNonlin 8.0 [QC 17320]).

Efficacy and biomarker assessments
The efficacy population included all patients who received at least one dose of dilpacimab. All efficacy analyses were exploratory in nature, and their endpoints included objective response rate (ORR; CR or PR) and progression-free survival (PFS). Baseline radiographic tumor assessment (computed tomography or MRI) was performed within 28 days prior to day 1 of cycle 1 and repeated every two cycles (56 days; assessments could occur up to 7 days prior to end of cycle). Objective response rate included confirmed complete response and partial response and was assessed by Response Evaluation Criteria In Solid Tumors version 1.1. Progression-free survival was defined as the time from first dose date of dilpacimab to either disease progression or death, whichever occurred first. If a patient was still responding, the patient’s data were censored at the date of the last tumor assessment. If a patient received a new line
of anticancer therapy, data were censored at the date of the last tumor assessment prior to initiating the new therapy.

Plasma, whole blood, serum, and tumor tissue (archival or fresh biopsy) samples were collected and stored at −70°C or below until quantitative biomarker assessment. Serum and plasma biomarker samples were collected predose on days 1 and 15 of cycle 1; day 1 of cycles 2 and 3; and at the final visit. Plasma was also collected 2 hours postdose on day 1 of cycle 1. Tumor tissue had to be confirmed available prior to enrollment.

Biomarker analysis

Blood sample collections for plasma VEGF/DLL4 measurements: Venous blood was drawn in EDTA tubes at day 1 (baseline), and 2 hours and 3 or 4 days post-dilpacimab dosing in cycle 1. Additional samples were also collected immediately before dosing on cycle 1 day 15, and then at the start of each new cycle. Plasma was extracted within 30 minutes of blood draw, aliquoted, and kept frozen until the analysis.

Circulating soluble DLL4: An electrochemiluminescent assay by Meso Scale Discovery (MSD) technology (Meso Scale Discovery, MD, USA; catalog no. 1506-D4/CF) was used to determine the concentration of soluble DLL4 in human plasma. Two DLL4 antibodies (E9-2B and h38H12.11, produced by AbbVie) that do not compete with dilpacimab for DLL4 binding were ruthenylated and biotinylated, respectively, and mixed with study samples. The homogeneous solutions were then pipetted into streptavidin-coated MSD plates. Following an incubation and wash step, assay plates were read on an MSD instrument.

Circulating VEGF: VEGF plasma levels were measured by Quantikine (R&D Systems, catalog no. DVE00) assay. In an additional step, dilpacimab was removed from post–dilpacimab-dosed samples...
using Protein A Spin Columns (Thermo Scientific; catalog no. 89952 or 89948), to decrease interferences in detecting free VEGF. The intensity of color was measured at 450 and 570 nm using SpectraMax by Molecular Devices (catalog no. ABS).

Statistical analyses

Data were summarized by dose level and for all patients pooled in the dose-escalation and -expansion phase. Categoric data were summarized by frequency counts and percentages, and continuous data were summarized by descriptive statistics. All safety summaries were descriptive, and no statistical inference was performed on the safety data. The two-sided 95% confidence intervals (CIs) for the ORR, as well as complete response and PR rates, were provided using the Clopper-Pearson exact method. PFS was estimated using the Kaplan-Meier method; median time and associated two-sided 95% CIs, and the 25th and 75th percentiles of the time were provided.
RESULTS

Patient demographics and baseline characteristics

As of August 2, 2018, 55 patients with solid tumors were enrolled in two sequential dose-escalation cohorts (46 patients) and a dose-expansion cohort (nine patients). Key patient demographics and clinical characteristics are summarized in Table 1. The median age was 60 years (range, 40–75) and the most common primary tumor was ovarian (n = 17 [30.9%]). The sponsor chose to enrich for ovarian tumors, since VEGF inhibitors have monotherapy activity in ovarian cancer. Prior systemic therapies received by patients with ovarian cancer are listed in Supplementary Table S1 and S2.

Safety profile

In the initial dose-escalation using a 3+3 design, the first patient treated with 2.5 mg/kg dipacimab had a DLT of grade 3 headache, and although no other DLTs were observed in that or subsequent cohorts, patients receiving multiple doses at 5 and 7.5 mg/kg showed evidence of hypertension that was not easily controlled with antihypertensive agents, beyond the 28-day DLT window. Therefore, the initial dose-escalation was suspended, and after evaluation of the safety data, dose escalation was resumed starting at 1.25 mg/kg with revised treatment criteria requiring systolic blood pressure <140 mmHg and diastolic blood pressure <90 mmHg prior to any treatment with dipacimab. The RP2D for dipacimab monotherapy was determined to be 3.75 mg/kg (a total of 15 patients were treated at this dose level: nine in dose escalation and six in dose expansion), on the basis of the safety and lack of tolerability of higher doses due to hypertension that occurred outside the DLT window. Further details of the dose-escalations are provided in the Patients and Methods section.

Treatment-emergent AEs regardless of attribution were reported in all patients (N = 55 [100%]). Any-grade and grade ≥3 treatment-emergent AEs are summarized in Table 2. The most common treatment-
emergent AEs (>40%) of any grade reported with dilpacimab monotherapy were hypertension (63.6%), fatigue (49.1%), headache (43.6%), and nausea (41.8%). Any-grade TRAEs were reported in 48 (87.3%) patients (Table 2). Most common TRAEs (>20%) of any grade were hypertension (n = 33 [60.0%]), headache (n = 17 [30.9%]), and fatigue (n = 12 [21.8%]). The most common grade ≥3 TRAE was hypertension (n = 21 [38.2%]). Less frequent TRAEs of special interest were gastrointestinal perforation (GIP; n = 2 [3.6%]) and pulmonary hypertension (any grade) detected by echocardiogram (n = 8 [14.5%]); one patient died as a result of GIP.

All patients discontinued study drug except one patient with pancreatic adenocarcinoma. Reasons for treatment discontinuation included AEs (n = 9), clinical PD (n = 8), radiographic PD (n = 20), sponsor discontinued dosing (n = 2), patient withdrew consent (n = 2), and other reasons (n = 4).

PK

PK parameters for dilpacimab are presented in Table 3. The $T_{1/2}$ for dilpacimab ranged from 5.0–7.2 days in the dose range tested (1.25–7.5 mg/kg). The exposure (C_{max} and AUC) of dilpacimab appeared to be dose proportional between 1.25- to 5-mg/kg dose groups, and slightly greater than dose proportional at 7.5 mg/kg. Body weight did not appear to be a significant covariate for dilpacimab exposure.

Preliminary efficacy

The best percentage change from baseline in tumor size is shown in Figure 1A. ORRs for all treated patients with available data are presented in Table 4. The ORR was 10.9% (six of 55); six patients achieved PR; median PFS was 3.7 months (95% CI, 2.7–3.9). The remaining patients either had stable disease (n = 29), PD (n = 13), or were not evaluable (n = 7). As expected for an antiangiogenic agent, the antitumor activity was concentrated in patients with ovarian cancer, with 25.0% (four of 16) achieving...
PR (Table 4, Figure 1B). Change in tumor target lesions sum of longest diameter over time for patients with ovarian cancer treated with dilpacimab at all dose levels is shown in Figure 1C. The median time on treatment for patients with ovarian cancer was 10.1 weeks (range, 0.1–96.3); two patients with PR were on treatment for >50 weeks (55.1 and 96.3). One patient with pancreatic adenocarcinoma continues on study, with sustained PR for ~5 years. The original dosing regimen was dilpacimab 3.75 mg/kg every 14 days; the patient is currently receiving dilpacimab 2.5 mg/kg every 28 days. Dose and schedule were modified due to treatment-emergent pulmonary hypertension which resolved.

Correlative biomarkers

To evaluate target binding, circulating levels of free VEGF and total serum (s)DLL4 levels were measured in the dose-escalation cohort. The baseline levels of VEGF (N = 53 available samples) varied from 15–867 pg/mL (Figure 2A). Within 2 hours of dilpacimab dosing, a significant decrease was observed in free VEGF levels, suggesting saturation of VEGF by dilpacimab. The decrease in VEGF levels compared with predose was statistically significant for all dose levels and time points tested ($P <0.001$) but was not dose dependent. A dose-dependent desaturation of VEGF binding by dilpacimab was also observed.

The baseline levels of sDLL4 (N = 53) varied from 106–671 pg/mL (Figure 2B). The immunoassay measured the total (dilpacimab-bound and free) sDLL4. The levels of total sDLL4 increased after 3–4 days of dosing for all dose cohorts ($P <0.01$). The increase in sDLL4 levels compared with predose was statistically significant for all dose levels at all time points except 2 hours after first dose. A trend for increased fold-change in sDLL4 levels with dose was also observed.
DISCUSSION

This study represents the first-in-human phase 1 clinical trial of dilpacimab, a novel IgG-like DLL4/VEGF bispecific molecule. The results demonstrate that dilpacimab is clinically active and has a manageable tolerability and safety profile. The most common TRAEs were hypertension, headache, and fatigue. As expected, dilpacimab displayed anti-VEGF–like toxicity including hypertension, which is one of the most frequently described on-target treatment-related side effects associated with several anti-VEGF–targeted therapies (22) as well as with anti-DLL4 therapy (23). The RP2D of dilpacimab monotherapy was established as 3.75 mg/kg.

Regarding safety, two of 55 (3.6%) patients treated with monotherapy had GIP considered related to dilpacimab. The GIP occurred at the site of a diverticulum (prostate cancer) or diverticulum involved with tumor (ovarian cancer). It is currently unclear if diverticuli or metastatic or primary tumor invading bowel represent increased risk for dilpacimab-associated GIP. Pulmonary hypertension, generally asymptomatic, was detected in dilpacimab-treated patients by echocardiogram, usually after multiple cycles of drug therapy, and managed by dose delays or discontinuation. Although follow-up was not long enough to ensure complete reversal, decrease in pulmonary hypertension after drug cessation was noted, suggesting that the finding was reversible. One patient had a hypertensive emergency after presenting with a minor stroke and retinal vein occlusion. Certain other potential side effects of anti-VEGF therapy such as myocardial infarction, ischemic limbs, nephrotic syndrome, or delayed wound healing were not observed, possibly due to the low number of patients treated.

This phase 1 study also explored the PK and pharmacodynamic effects of dilpacimab. The exposure of dilpacimab appeared to be dose proportional between the 1.25- to 5-mg/kg dose groups, and slightly greater than dose proportional at 7.5 mg/kg. As expected, dilpacimab treatment resulted in significant decrease in free VEGF within 2 hours of even the lowest dose, suggesting binding of dilpacimab to
circulating VEGF. This finding is consistent with prior observations with bevacizumab. We observed a
dose-dependent desaturation of VEGF binding by dilpacimab, and increase in VEGF levels was
observed predose for the second infusion on cycle 1 day 15. At higher doses, free VEGF was
constantly suppressed.

We also observed significant increase in total sDLL4 over time, suggestive of binding of dilpacimab to
sDLL4 ligand with stabilization of the complex in circulation. The increase in total sDLL4 was also dose
dependent. The pattern of modulation of two ligands, VEGF and sDLL4, after dilpacimab dosing was
different. Decrease in free VEGF peaked 3–4 days after dosing, then plateaued. The total sDLL4
receptor levels, however, did not plateau, and continued to rise until the loss of exposure after
dilpacimab therapy was discontinued.

Dilpacimab has demonstrated robust preclinical efficacy in a wide range of tumor types (21). In our
study, dilpacimab monotherapy showed promising clinical antitumor activity, particularly in patients
with ovarian cancer, with four of 16 patients achieving a PR (25%). Three of the four (75%) ovarian
cancer patients with PR had previously received and progressed on bevacizumab in earlier lines of
therapy. PRs were also noted in two other patients, each of whom had received two prior lines of
systemic chemotherapy: one patient with cervical cancer and one with pancreatic cancer (the latter
remaining on study with PR for >60 months).

In the first-in-human, phase 1 study of the anti-DLL4 monoclonal antibody enoticumab (REGN421) in
patients with advanced solid tumors, modest antitumor activity was demonstrated, with two of 44 (5%)
evaluable patients achieving PR. One of the two patients who achieved PR had ovarian cancer, from a
total of seven evaluable patients with ovarian cancer. In the first-in-human phase 1a study of the
bispecific anti-DLL4/anti-VEGF antibody navicixizumab (OMP-305B83) in patients with previously treated
solid tumors, four of 66 (6.1%) patients achieved PR; three of the four patients with PR had ovarian
cancer (out of 12 patients with ovarian cancer in total [25%]), comparable with our study. These results suggest the antitumor activity of dilpacimab seen in ovarian cancer may be, at least in part, attributed to the inhibition of DLL4, since some patients were previously treated with bevacizumab. However, no definitive conclusions can be drawn, due to the low number of patients and unknown response rate to bevacizumab rechallenge. Similarly, no conclusive correlation could be drawn between response and angiogenesis gene expression signatures in the ovarian cancer patients due to the small number of patients.

Further clinical studies are warranted to ascertain whether dilpacimab, through inhibition of both VEGF and DLL4, represents a potential improvement beyond VEGF inhibition alone. A phase 2 study evaluating the efficacy and tolerability of dilpacimab plus folinic acid, fluorouracil, irinotecan (FOLFIRI) vs bevacizumab plus FOLFIRI in patients with previously treated metastatic colorectal cancer (NCT03368859) (24) was discontinued after interim analysis showed lack of improved efficacy beyond bevacizumab.
ACKNOWLEDGMENTS

AbbVie and the authors thank the patients participating in this clinical trial and all study investigators for their contributions. Medical writing support was provided by Mary Smith, PhD, CMPP, of Aptitude Health, Atlanta, GA, funded by AbbVie.
REFERENCES

Table 1. Baseline demographics and clinical characteristics.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Dilpacimab N = 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, years (range)</td>
<td>60 (40–75)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>15 (27.3)</td>
</tr>
<tr>
<td>Female</td>
<td>40 (72.7)</td>
</tr>
<tr>
<td>Median number of prior therapies (range)</td>
<td>4 (1–10)</td>
</tr>
<tr>
<td>Primary tumor, n (%)</td>
<td></td>
</tr>
<tr>
<td>Ovarian</td>
<td>17 (30.9)</td>
</tr>
<tr>
<td>Breast</td>
<td>6 (10.9)</td>
</tr>
<tr>
<td>Colon</td>
<td>4 (7.3)</td>
</tr>
<tr>
<td>Renal</td>
<td>4 (7.3)</td>
</tr>
<tr>
<td>Esophageal</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Other types<sup>a</sup></td>
<td>21 (38.2)</td>
</tr>
</tbody>
</table>

^aTumor types with <5% were combined.
Table 2. Summary of treatment-emergent AEs occurring in ≥10% of patients, or treatment-emergent AEs considered to be related to dilpacimab occurring in ≥5% of patients.

<table>
<thead>
<tr>
<th>Treatment-emergent AE</th>
<th>Related or unrelated to dilpacimab</th>
<th>Related to dilpacimab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any grade</td>
<td>Grade ≥3</td>
</tr>
<tr>
<td></td>
<td>Dilpacimab N = 55</td>
<td>Dilpacimab N = 55</td>
</tr>
<tr>
<td>Any AE</td>
<td>55 (100)</td>
<td>47 (85.5)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>35 (63.6)</td>
<td>22 (40.0)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>27 (49.1)</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td>Headache</td>
<td>24 (43.6)</td>
<td>1 (1.8)</td>
</tr>
<tr>
<td>Nausea</td>
<td>23 (41.8)</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td>Abdominal pain³</td>
<td>22 (40.0)</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>20 (36.4)</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>19 (34.5)</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>13 (23.6)</td>
<td>1 (1.8)</td>
</tr>
<tr>
<td>Anemia</td>
<td>12 (21.8)</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>12 (21.8)</td>
<td>0</td>
</tr>
<tr>
<td>Cough</td>
<td>12 (21.8)</td>
<td>0</td>
</tr>
<tr>
<td>Dizziness</td>
<td>11 (20.0)</td>
<td>0</td>
</tr>
<tr>
<td>Anxiety</td>
<td>10 (18.2)</td>
<td>0</td>
</tr>
<tr>
<td>Constipation</td>
<td>10 (18.2)</td>
<td>0</td>
</tr>
<tr>
<td>Depression</td>
<td>10 (18.2)</td>
<td>0</td>
</tr>
<tr>
<td>Back pain</td>
<td>9 (16.4)</td>
<td>1 (1.8)</td>
</tr>
<tr>
<td>Dehydration</td>
<td>9 (16.4)</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>9 (16.4)</td>
<td>0</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>9 (16.4)</td>
<td>6 (10.9)</td>
</tr>
<tr>
<td>Malignant neoplasm progression</td>
<td>9 (16.4)</td>
<td>9 (16.4)</td>
</tr>
<tr>
<td>Pulmonary hypertension</td>
<td>9 (16.4)</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>9 (16.4)</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td>Insomnia</td>
<td>8 (14.5)</td>
<td>0</td>
</tr>
<tr>
<td>Myalgia</td>
<td>8 (14.5)</td>
<td>0</td>
</tr>
<tr>
<td>Condition</td>
<td>Resubmission-2</td>
<td>July 7, 2021</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Decreased weight</td>
<td>8 (14.5)</td>
<td>0</td>
</tr>
<tr>
<td>Hypomagnesemia</td>
<td>7 (12.7)</td>
<td>0</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>7 (12.7)</td>
<td>0</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>7 (12.7)</td>
<td>1 (1.8)</td>
</tr>
<tr>
<td>Pain in extremity</td>
<td>6 (10.9)</td>
<td>0</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>6 (10.9)</td>
<td>0</td>
</tr>
<tr>
<td>Muscular weakness</td>
<td>5 (9.1)</td>
<td>0</td>
</tr>
<tr>
<td>Stomatitis</td>
<td>5 (9.1)</td>
<td>0</td>
</tr>
<tr>
<td>Confusional state</td>
<td>4 (7.3)</td>
<td>1 (1.8)</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>4 (7.3)</td>
<td>1 (1.8)</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>4 (7.3)</td>
<td>0</td>
</tr>
<tr>
<td>Increased blood ALP</td>
<td>4 (7.3)</td>
<td>1 (1.8)</td>
</tr>
<tr>
<td>Aphasia</td>
<td>3 (5.5)</td>
<td>0</td>
</tr>
</tbody>
</table>

*Includes upper abdominal pain.

ALP, alkaline phosphatase.
Table 3. Pharmacokinetic parameters of dilpacimab for N = 55 available samples.

<table>
<thead>
<tr>
<th>Pharmacokinetic parameters (units)</th>
<th>1.25 mg/kg (N = 9)</th>
<th>2.5 mg/kg (N = 20)</th>
<th>3.75 mg/kg (N = 15)</th>
<th>5 mg/kg (N = 8)</th>
<th>7.5 mg/kg (N = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(_{\text{max}}), h(^{e,f})</td>
<td>1.5 (1.5, 1.5)</td>
<td>1.5 (1.5, 1.5)</td>
<td>1.5 (1.5, 49)</td>
<td>1.5 (1.5, 49)</td>
<td>1.5 (1.5, 49)</td>
</tr>
<tr>
<td>Median (min, max)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(_{\text{max}}), µg/mL Geometric mean (%CV)</td>
<td>27.6 (34)</td>
<td>60.0 (20)</td>
<td>108 (34)</td>
<td>125 (32)</td>
<td>207 (19)</td>
</tr>
<tr>
<td>AUC(_{336\text{h}}), µg·day/mL Geometric mean (%CV)</td>
<td>139 (47)</td>
<td>309 (29)</td>
<td>659 (24)</td>
<td>796 (28)</td>
<td>1421 (23)</td>
</tr>
<tr>
<td>AUC(_{\text{inf}}), µg·day/mL Geometric mean (%CV)</td>
<td>192 (40)</td>
<td>416 (38)</td>
<td>946 (26)</td>
<td>943 (30)</td>
<td>1666 (1567, 1765)</td>
</tr>
<tr>
<td>T(_{1/2}), day Harmonic mean</td>
<td>5.0</td>
<td>5.2</td>
<td>7.4</td>
<td>5.4</td>
<td>7.2 (7.9, 6.4)</td>
</tr>
<tr>
<td>CL (mL/h/kg)</td>
<td>0.27 (55) [6.5 mL/d/kg]</td>
<td>0.25 (52) [6.0 mL/d/kg]</td>
<td>0.17 (28) [4.0 mL/d/kg]</td>
<td>0.22 (28) [5.3 mL/d/kg]</td>
<td>0.19 (0.20, 0.18) [4.5 mL/d/kg]</td>
</tr>
</tbody>
</table>

\(^a\)N = 8 for T\(_{1/2}\), AUC\(_{\text{inf}}\), and CL.
\(^b\)N = 16 for T\(_{1/2}\), AUC\(_{\text{inf}}\), and CL.
\(^c\)N = 11 for T\(_{1/2}\), AUC\(_{\text{inf}}\), and CL.
\(^d\)N = 5 for T\(_{1/2}\), AUC\(_{\text{inf}}\), and CL.
\(^e\)N = 2, presented as a mean (individual values).
Time relative to start of the infusion, presented as median (min, max).
AUC\(_{336\text{h}}\), area under the serum concentration-time curve from time zero to 336 hours; AUC\(_{\text{inf}}\), area under the serum concentration-time curve from time zero to infinity; CL, clearance; C\(_{\text{max}}\), maximum observed serum concentration; T\(_{1/2}\), terminal phase elimination half-life; Tmax, time to C\(_{\text{max}}\).
Table 4. Best response for evaluable patient population.

<table>
<thead>
<tr>
<th>Best response per investigator, n (%)</th>
<th>Dilpacimab N = 55<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial response Ovarian [n = 16]</td>
<td>6 (10.9)</td>
</tr>
<tr>
<td></td>
<td>4 (25.0)</td>
</tr>
<tr>
<td>Stable disease<sup>b</sup></td>
<td>29 (52.7)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>13 (23.6)</td>
</tr>
</tbody>
</table>

^aSeven patients were not evaluable for efficacy, including one patient with ovarian cancer.

^bFirst scan performed within 7 days prior to the end of cycle 2.
Figure 1. Best percentage change in tumor lesion for A) dilpacimab at all dose levels (n = 47); B) patients with ovarian cancer treated with dilpacimab at all dose levels (n = 16); C) change in tumor lesion over time for patients with ovarian cancer treated with dilpacimab at all dose levels (n = 16). *Patients without prior bevacizumab treatment.

Figure 2. Effect of dilpacimab administration on A) levels of free VEGF and B) total sDLL4. C, cycle; D, day.
Figure 2

A) VEGF modulation following dilpacinab dosing

![Graph showing VEGF modulation following dilpacinab dosing with different dose levels.]

B) sDLL4 modulations following dilpacinab dosing

![Graph showing sDLL4 modulations following dilpacinab dosing with different dose levels.]

Downloaded from mct.aacrjournals.org on August 3, 2021. © 2021 American Association for Cancer Research.
Molecular Cancer Therapeutics

Phase 1 open-label study evaluating the safety, pharmacokinetics, and preliminary efficacy of dilpacimab in patients with advanced solid tumors

Michael S. Gordon, John Nemunaitis, Minal Barve, et al.

Mol Cancer Ther Published OnlineFirst July 26, 2021.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-20-0985

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2021/07/17/1535-7163.MCT-20-0985.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/early/2021/07/26/1535-7163.MCT-20-0985. Click on “Request Permissions” which will take you to the Copyright Clearance Center's (CCC) Rightslink site.