TARGETING THE T-CELL LYMPHOMA EPIGENOME INDUCES CELL DEATH, CANCER TESTES ANTIGENS, IMMUNE MODULATORY SIGNALING PATHWAYS

Luigi Scotto¹,², Cristina Kinahan¹,², Eugene Douglass⁴, Changchun Deng¹,², Maryam Safari³, Beatrice Casadei¹,², Enrica Marchi¹,², Jennifer K. Lue¹,², Francesca Montanari¹,², Lorenzo Falchi¹,², Changhong Qiao⁵, Nandakumar Renu⁵, Susan E. Bates³, Andrea Califano⁴ and Owen A. O’Connor⁶.

¹Center for Lymphoid Malignancies, ²Division of Experimental Therapeutics, ³Division of Hematology and Oncology, ⁴Department of Systems Biology, ⁵Biomarkers Core Laboratory, Department of Medicine, Columbia University Medical Center, New York, NY. ⁶Department of Medicine, University of Virginia, Charlottesville, VA.

Running Title: TARGETING PERIPHERAL T-CELL LYMPHOMA EPIGENOME

Corresponding Author

Owen A. O’Connor, M.D., Ph.D.
Department of Medicine
Division of Hematology and Oncology
University of Virginia Cancer Center
Department of Microbiology, Immunology and Cancer Biology
University of Virginia,
Charlottesville, VA, USA
owenaocconorr27@gmail.com

April 2, 2021,
ABSTRACT
The peripheral T-cell lymphomas (PTCL) could be considered the prototypical epigenetic disease. As a disease, they are uniquely sensitive to histone deacetylase (HDAC) and DNA methyltransferase (DNMT) inhibitors, both alone and in combination, are characterized by a host of mutations in epigenetic genes, and can develop spontaneously in genetically engineered murine models predicated on established recurring mutations in (RHOAG17V) and TET2, an epigenetic gene governing DNA methylation. Given the clinical benefit of HDAC inhibitors (HDACi) and hypomethylation agents (HMA) alone and in combination in PTCL, we sought to explore a mechanistic basis for these agents in PTCL. Herein, we reveal profound class synergy between HDAC and DNMT inhibitors in PTCL, and that the combination induces degrees of gene expression that are substantially different and more extensive than that observed for the single agents. A prominent signature of the combination relates to the transcriptional induction of cancer testis antigens (CTA) and genes involved in the immune response. Interestingly, TBX21 and STAT4, master regulators of TH1 differentiation, were among the genes upregulated by the combination, suggesting the induction of a TH1-like phenotype. Moreover, suppression of genes involved in cholesterol metabolism and the matrisome were also identified. We believe these data provide a strong rationale for clinical studies, and future combinations leveraging an immunoepigenetic platform.
INTRODUCTION

The peripheral T-cell lymphomas (PTCL) are a rare and heterogeneous group of non-Hodgkin lymphomas (NHL) associated with a poor prognosis\(^1\), as only 15-25\% of patients can expect long-term survival following conventional chemotherapy. The median progression free (PFS) and overall survival (OS) for patients in first relapse has been shown to be only 3.5 and 6 months respectively\(^2\). Emerging insights into the pathogenesis of PTCL, coupled with emerging preclinical and clinical experiences, have begun to suggest that the PTCL may be the prototypical epigenetic disease, an understanding that could create new opportunities to treat the disease.

For example, four HDAC inhibitors (vorinostat, romidepsin (Romi), belinostat, and chidamide), have received regulatory approvals for patients with relapsed or refractory (R/R) PTCL around the world\(^3\)\(^-\)\(^6\). These drugs exhibit clear class effects, producing an overall response rate of about 25\% to 30\%, and a duration of response in excess of a year across a diversity of aggressive PTCL subtypes. Similarly, preliminary data has demonstrated that injectable azacitidine (AZA) produces an overall response rate (ORR) of 52\% (9 of 12 patients with angioimmunoblastic T-cell lymphoma (AITL), and 1 of 7 with PTCL-NOS) in a highly selected patient population\(^7\). There is no other neoplastic disease for which HDAC inhibitors have demonstrated such consistent class effect, and no other cancer beyond myeloid malignancies that display this degree of vulnerability to DNMT inhibitors. Recurring mutations have been described in isocitrate dehydrogenase (\textit{IDH2}), Ten-Eleven Translocation 2 (\textit{TET2}) and DNA methyltransferase (\textit{DNMT3A}), among patients with select subtypes of PTCL\(^8\)\(^-\)\(^10\). These genes govern transcription through DNA methylation. These mutations, which appear to be more
commonly found in select subtypes like AITL and PTCL-TFH, conspire to produce presumed genome wide hypomethylation and transcriptional repression. In theory, HMAs would be the pharmacologic counter-balance to the biological consequences of these mutations.

Another compelling line of evidence comes from genetically manipulated murine models predicated on TET2 mutations. Using two distinctly different experimental approaches, Palomero et al.11 and Sakata et al.12 demonstrated that mutations in the Ras Homolog Family Member A (RHOA) small GTPase (RHOAG17V mutations) appear to cooperate with loss-of-function mutations in TET2, an epigenetic tumor suppressor gene, to produce spontaneous AITL. In similar fashion, a novel FYN-TRAF3IP2 fusion joining the N-terminal regulatory domains of FYN with TRAF3IP2, has been identified as a recurrent driver of PTCL-NOS and AITL lymphomagenesis13. Strikingly, retroviral expression of FYN-TRAF3IP2 in bone marrow progenitors cooperated with TET2 inactivation in CD4-positive cells to induce development of CD4+ PTCL-NOS lymphoma in mice. Collectively, these mouse models establish that mutations in epigenetic drivers can cooperate with other commonly found mutations in PTCL to produce spontaneous PTCL. Recently, our group has pioneered the translational development of novel epigenetic predicated drug:drug combinations in PTCL, many of which have been validated in preclinical and clinical studies14-17. A recent Phase I study of oral AZA plus Romi produced an ORR for the entire study population, the B-cell, and PTCL patients of 37%, 11% and 83% respectively, with CR occurring only among PTCL patients. Among 8 evaluable patients with AITL, the ORR was 100%18. In addition, after a median follow-
up of 15.3 months, the PFS for the T-cell patients was not reached, versus only 2.5 months for patients with B-cell lymphoma19.

Collectively, these data point to a driver role for epigenetic lesions in PTCL, and suggest an exquisite intrinsic sensitivity to epigenetic modifiers. Herein, we seek to elucidate the mechanistic basis for these epigenetic combinations in PTCL, and establish a logic for integrating complementary agents in order to reconfigure the front-line and beyond treatment for patients with PTCL.

METHODS

Cell lines and culture

Cell lines were obtained from the ATCC (Manassas, VA, USA), DSMZ (Braunschweig, Germany), Kyoto and Fukujima University (Japan). Authenticated and tested for mycoplasma and cultured in RPMI 1640 medium with heat-inactivated 10% fetal bovine serum.

Materials

All drugs were purchased from Selleckchem and dissolved in DMSO.

Cytotoxicity assays

Cells were seeded at a concentration of 5x10^4 cells/ml (H9, P12, PF382, TLOM1 and MT2), 2.5x10^4 cells/ml (C5MJ) or 1x10^5 cells/ml (HH). Cell viability was assessed using the Cell Titer Glo assay (Promega), as previously described20, 21. Synergy of the combinations was calculated using the Excess Over Bliss methodology22.
Luminescence was detected using the multimode plate reader GloMax Discover system (Promega).

Western blotting

Western blotting was performed according to standard protocols, using a chemiluminescence detection system (Thermo Scientific). The primary antibodies included: anti-TBX21, anti-STAT4, anti-PD-L1 and anti-β actin (Cell Signaling), anti-MAGE-A1, anti-PRAME, anti-MVK and anti-DHCR24 (Santa Cruz).

Methylation analysis

Genomic DNA was purified from cells using the salting out procedure and purified using the genomic DNA clean and concentrator kit (Zymo Research). The content and purity of the collected RNAfree DNA was assessed on a Nanodrop 8000 spectrophotometer (Thermo Fisher Scientific). One μg of genomic DNA was digested in a 100 μl reaction mixture at 37°C for 6 hours and filtered using ultrafree centrifugal filters (Millipore). LC analysis was performed with an Agilent 6410 LC-MS/MS system. The percentage of methylation was calculated as: methylation % = [5mdC]/[dG] according to the calibration curve. Determination of the percent of 5-methyl-2'-deoxycytidine (MdC) was performed using LC-tandem MS methods previously described. Internal standard were prepared as previously described [23]. Calibration standards were prepared spanning a range of 0.1 ng/ml to 5 μg/ml and analyzed as described for the samples.

Gene expression profiling

Total RNA was extracted using RNeasy mini kit (Qiagen) from cells collected after 96 hour incubation with or without drugs. RNA quantitation and quality was assessed by the Agilent Bioanalyzer 2100. RNA libraries prepared from poly-A pull-down enrich
mRNAs from total RNA samples (Illumina TruSeq RNA prep kit), and were sequenced at the Columbia Genome Center using Illumina HiSeq2500/HiSeq4000. DEseq software, an R package based on a negative binomial distribution that models the number reads from RNA-seq experiments and test for differential expression, was employed to test for differentially expressed genes under various conditions. For visualization, raw counts were normalized sample-wise to reads per million (RPM) and differential expression was calculated for each cell-line as a z-score centered at untreated controls. Hierarchical clustering was calculated by euclidean distance using the hclust function in the stats R package and visualized using the heatmap.2 function within the gplots R package. Unclustered heat maps were also generated with the heatmap.2 function with samples organized by cell-line and drug concentrations and genes organized by pathway annotation. Principal Component Analysis(PCA) was evaluated using prcomp function in the stats R package. In the matrix, each column represents a sample and each row represents a gene. The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus (GEO) and are accessible through GEO Series accession number GSE148069 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148069).

Quantitative reverse transcription polymerase chain reaction (RT-qPCR)

RNA samples extracted for gene expression profiling were used to proceed with RT-qPCR analysis. cDNA was made using Omisncript RT Kit (Qiagen). Taqman Fast Advanced Master Mix and FAM-MGB primers were purchased from ThermoFisher Scientific. Reactions were conducted on a StepOnePlus Real-Time PCR System (Applied Biosystem).
Conditioned-medium proliferation assay

Conditioned medium (CM) was collected from cells exposed or not exposed to Romi and sequential AZA. Isolated PBMC (1.35x10⁵) were seeded in a 120µl of growth medium composed of RPMI1640/10%FCS (control), 1/3 of RPMI1640/10%FCS and 2/3 of conditioned medium from untreated or Romi plus AZA treated cells. For activation of T-cells, Dynabeads human T-activator CD3/CD28 were used following manufacturer recommendations. Cell viability was assessed using the Cell Titer Glo assay (Promega), as previously described. PBMCs of three independent donors were used for the proliferation assay. The box and whisker plot displays the summary of data collected from no less than five determinations.

RESULTS

Romi and AZA synergize in T-cell lymphoma cell lines.

The deregulated gene expression observed during initiation and progression of cancer involves a complex interplay between the hypermethylation of CpG islands within gene promoters and the deacetylation/methylation of histone tails. While HDAC inhibitors are approved for patients with relapsed PTCL, single agent AZA has exhibited some activity in only select subtypes of the disease⁷. The combination of HDAC inhibitor and a hypomethylating agent (HMA), invoking two distinctly different epigenetic mechanisms, appear to exhibit potent class synergy in preclinical models, with compelling clinical activity in patients with relapsed and refractory (R/R) PTCL¹⁹. We validated this class synergy on cell viability across a panel of 6 T-cell lymphoma (TCL) cell lines exposed to various combinations of AZA, decitabine, Romi and belinostat (Fig.1A, B, Suppl Figs. 4-
5). Notably, the combination of AZA and Romi demonstrated potent synergy as assessed by excess over Bliss (EOB). HMAs function through their incorporation into DNA (decitabine more than AZA) and RNA (AZA). By being incorporated into the DNA, HMAs form a covalent bond with DNMTs leading to degradation of DNMT with the resultant inhibition of methylation. In order to clarify the effect of the incorporation of AZA into DNA, methylation of cytosine residues was evaluated using mass spectrometry in 6 TCL cell lines following exposure to various concentrations of AZA. The effect of AZA incorporation into DNA, evaluated as the percentage of methylated cytosine (%MdC) of hydrolyzed genomic DNA, revealed a 50-70% decrease in MdC in all six T-cell lines when compared to untreated controls (Fig.1C). Exposure to Romi alone produced no effect on DNA methylation, and in combination with AZA did not impact DNA demethylation differently from AZA alone (Suppl Fig.1). These data establish that the observed demethylation in the combination was solely due to the AZA exposure.

The combination of AZA and Romi leads to a unique genetic signature.

To determine the differential effects of AZA, Romi, and the combination on gene expression as a means to gain mechanistic insight, we exposed 4 TCL cell lines (H9, HH, TLOm1 and PF382) to a 96 hour treatment to single agent AZA (sequential daily administration x 96 hours), Romi (single pulse dose on day 1) or the combination of AZA-Romi (given as noted for the single agents). Given the short half-life of AZA in cell culture (<8 hour) and the restricted cell cycle window for DNA incorporation (S-phase), AZA was administered on a daily schedule.
Following single agent exposure to Romi and AZA, unsupervised gene expression profile (GEP) analysis revealed that 38 and 409 unique genes were modulated, respectively, whereas 1125 genes were modulated following exposure to the combination of AZA-Romi (Fig.2A, Suppl Fig.2). The vast majority (269/409 and 20/38) of the genes modulated by the single agents were similarly modulated by the combination. However, the combination induced a markedly more significant change in the transcriptome, as an additional 921 genes were uniquely altered after exposure to the AZA-Romi combination. Using supervised GEP, where modulated genes were defined by adjusted P value of 0.05, log2 fold change >0.5, exposure to AZA-Romi induced a significant increase in the number of genes modified by the combination compared to either single agent alone (Fig. 2C). Moreover, a consistent modification of gene expression mirrored the increase in AZA concentration, indicating incremental demethylation, potentially resulting in augmented chromatin and promoter accessibility of previously silenced genes.

Validation of the GEP analysis was performed by RT-qPCR using 4 selected genes (CD274, CDC42EP3, BRDT and NXPH4) in a panel of 6 TCL lines (H9, HH, PF382, TLOm1, P12 and MT-2) (Fig.2B). These genes were selected as they represent mechanisms of immune evasion (CD274 aka PD-L1), cytoskeleton regulation (CDC42EP3), cancer testis antigen expression (BRDT) and signaling molecule (NXPH4). The modulation of gene expression by the single agents and combination
was confirmed by the RT-qPCR data. The combination of AZA-Romi led to significant upregulation of the 4 probed genes compared to untreated samples. Using gene set enrichment analysis (GSEA), 2 major pathways emerged following exposure to the AZA-Romi combination: (1) matrisome related genes such as proteins of the extracellular matrix (ECM) and ECM-associated proteins; and (2) cholesterol biosynthesis regulation (Fig.3A, Suppl. Fig.3). Modulation of gene expression within the aforementioned pathways correlated with the degree of demethylation in response to AZA-Romi treatment, suggesting an increase in transcriptional activation. The expression of several ECM core (26) and ECM-associated (54) proteins that define the matrisome was positively modulated by the combination treatment. In particular, within the matrisome, the expression of genes either coding for structural proteins such as COL1A1, COL2A1, COL5A1, FN1, LAMA5, or genes involved in ECM degradation such as MMP17, ADAM11, ADAMTS14 or ADAMTS20 were upregulated uniquely by combination treatment. Furthermore, the expression of genes encoding ECM-associated proteins that are not part of the matrisome but are nonetheless important in ECM remodeling such as growth factors including EGFL6, FGF14, VEGFC, cytokines like CSF3, IL18, CCL25, and semaphorins like SEMA6B, were also modulated.

Downregulation of genes involved in cholesterol biosynthesis were observed in the single agent and combination treated samples. Interestingly, enhanced inhibition was noted in the cell lines treated with AZA-Romi (Fig.3A). Twelve genes were found to be substantially down-regulated following exposure to the combination in six TCL cell lines (Fig.3A-B). Among the down-regulated genes were those involved in cholesterol
synthesis, including HMGCR (rate limiting enzyme), FDFT1, LSS (catalyzes first step in the pathway), DHCR7 (catalyzes last step), MVD, MVK FDPS, ID11 and NSDHL. Decreased protein expression of MVK and DHCR24 was confirmed in 6 TCL lines exposed to the combination (Fig.3C). Taken together, the inhibitory impact of AZA-Romi on cholesterol biosynthesis suggests that potential cholesterol depletion can impair cell membrane integrity leading to apoptosis, which has been previously reported in diffuse large B-cell lymphoma (DLBCL)24.

Cancer testis antigens (CTA), immune and viral/interferon response genes are prominently induced after dual exposure to AZA and Romi.

There is evidence suggesting that exposure to AZA increases the expression of various cancer testis antigens (CTAs) in a variety of *in vitro* and *in vivo* tumor models25-27. While exposure to Romi did not induce the expression of any CTAs, exposure to AZA induced the expression of 21 CTA genes, albeit to a modest extent in 4 TCL cell lines (Fig.4A-B). However, the combination of AZA-Romi modulated the expression of a broader number of CTA genes (n=38), and augmented the expression of the 21 AZA induced genes by approximately a log fold (Fig.4B). Thus, dual inhibition of HDACs and DNMT not only augmented the level of expression of the 21 CTAs induced by AZA alone, but also diversified and increased the repertoire of CTA expression.

Notably, among the CTA genes whose expression was enhanced by co-exposure to AZA-Romi were MAGE-A1 and PRAME. MAGE-A1 was the first CTA identified based on its ability to induce an autologous cytotoxic T-lymphocyte response28, while PRAME
has been found to be expressed in a variety of malignant tumors and is a potential candidate for cancer immunotherapy29. The AZA-Romi combination increased MAGE-1 and PRAME at both the RNA and protein level as confirmed by GEP and western blot analysis (Fig.4A-C).

Additionally, transcriptional up-regulation of genes involved in the interferon (IFN) response to viral infection (PD-L1, IRF7, IL-18, IFI6) and innate/immune response (IL-22, IL-26 and IL1R1) was also observed across all four cell lines exposed to the combination treatment relative to control (Fig.4A). The expression of PD-L1 (CD274), a target of immune checkpoint therapy, was upregulated by exposure to Romi and enhanced by the combination treatment (Fig.4B). Intriguingly, the other INF/viral and immune related genes were only induced by the combination of AZA-Romi and not by the single agents (Fig.4B).

In concert with STAT4, TBX21 (T-bet) has been shown to play a central role in the generation of transcriptionally competent Th1 cell specific genes in CD4 positive T-cells30. The transcriptional expression of these two genes was induced after dual exposure to HDAC and DNMT inhibitors, which was confirmed by western blot analysis (Fig.4A-C). The collective effects of AZA-Romi exposure can potentially contribute to the development of a Th1 microenvironment supported by pro-inflammatory cytokines, in turn facilitating recruitment of leukocytes and stimulation of CD4 positive T-cell activation and proliferation.
To assess if the AZA-Romi combination imparted any impacts on TH1 polarization, supernatants from four cell lines (H9, HH, PF382 and TLOM1) exposed to the AZA-Romi combination were assayed for their proliferative properties on healthy donor PBMCs. As shown in Figure 5A, the activated T-lymphocytes of healthy donors grown in the presence of conditioned medium (CM) collected from TCL cells exposed to the AZA-Romi treatment provided a proliferative advantage over activated T-lymphocytes grown in the presence of CM of untreated TCL cells. Moreover, TH subset characterization indicates a preferential increase in the TH1 population when PBMC grown in CM of treated cells where compared to PBMC grown in CM of untreated cells (Fig.5B). Therefore, based on this data, it is likely that the AZA-Romi combination has an important impact on the tumor-immune microenvironment by promoting the stimulation of activated T-lymphocytes, and theoretically mitigating against a tumor evasion profile.

DISCUSSION

AZA and decitabine represent one of two classes of epigenetic based drugs used in cancer therapy\cite{31}. These DNMT inhibitors are only FDA approved for the treatment of acute myeloid leukemia and myelodysplastic syndromes (MDS)\cite{32}. While there is only a modest experience with these drugs in lymphoma, they are typically not recognized as active across the spectrum of other malignant diseases, let alone non-Hodgkin lymphoma. In contrast, HDACi carry single agent approval only in PTCL, demonstrating limited to no activity across other forms of cancer, including B-cell lymphoma and Hodgkin lymphoma\cite{3,4,6}. While there is at best scant data on the combination of these
drugs in lymphoma, several studies have and continue to explore these combinations in various solid tumor malignancies, mostly as a strategy to improve tumor immunogenicity and host immune response33. Interestingly, neither of these classes of drugs, as single agents or in combination, have been reported to demonstrate any activity in solid tumor malignancies34, 35. In PTCL, pre-clinical and clinical data have begun to firmly establish that combinations of DNMT and HDAC inhibitors are potently synergistic, especially in AITL and likely the PTCL-TFH subtypes15. While many malignant diseases carry a host of mutations in epigenetic genes, it is unclear if these genetic aberrations predispose the cell to increased vulnerability to one type of epigenetic modifiers or not. Taken together, multiple lines of data have begun to distinguish the PTCL as the one neoplastic disease which appears to exhibit a unique and marked vulnerability to epigenetic modifiers.

Similar to what was reported first by Marchi et al. and subsequently by Rozati et al.15, 36, there appears to be class synergy between DNMT and HDAC inhibitors in T-cell malignancies, seemingly at a level not previously seen for any other malignant disease. Partial insights into the mechanistic basis for this synergy can be derived from the GEP data. We demonstrate a unique alteration in the genetic signature of TCL cells exposed to the combination of AZA-Romi. Interestingly, the number of genes perturbed by the combination is substantially greater than that observed with the single agents, suggesting that the synergy is likely secondary to those distinctly perturbed genes. Moreover, these genes appear to fall into four broad categories, including those related
to the: (1) matrisome/ECM regulation; (2) cholesterol biosynthesis; (3) cancer testis antigens (CTAs); and (4) viral/INF immune related responses.

The gene expression alterations noted in the matrisome/ECM and cholesterol biosynthesis have translational implication. The ECM is a complex scaffolding structure that not only functions as an anchorage for surrounding cells, but can also influence cellular behavior, including cell proliferation, apoptosis and migration37, 38. In fact, increased ECM content has been associated with inferior prognosis and aggressive biology in colon cancer and breast cancer39, 40. Here, we demonstrated that genes involved in ECM degradation such as MMP17, ADAM11, and ADAMTS14, were up-regulated by the combination treatment. Thus, the impact on the matrisome and its ECM proteins in our experiments potentially suggests a role for re-modeling of the tumor microenvironment after exposure to AZA-Romi. The importance of the tumor microenvironment has been recently established in AITL, where differences in the microenvironment can have prognostic import. This emphasizes the need for more intensive correlative studies in future clinical trials investigating immuno-epigenetic platforms41. Similarly, impairing cellular cholesterol metabolism in DLBCL has been shown to induce apoptosis, albeit the precise mechanism remains to be defined24

Another set of genes markedly altered by the combination include those in the family of CTAs and the interferon signaling pathway. The patterns of change in the CTA reveal that Romi alone has little to no impact on the expression of these genes, save the noted increase in PD-L1. Recent data suggests that this may be mediated specifically by
HDAC3. In contrast, single agent AZA induced a broad spectrum of CTAs at a modest level, while, surprisingly, the combination of AZA-Romi increased both the spectrum and intensity of CTAs as well as genes in the interferon pathway. While these findings likely do not explain the in vitro synergy, they may have important ramifications in patients. The immunological influences of the combination are underscored by the induction of genes involved in the interferon signaling pathway, providing at the least, a theoretical capacity to elicit a cancer specific immune response. In this context, the induced expression of STAT4 and TBX21 may play an important role in the expression of secreted proteins that could induce recruitment and proliferation of activated T-cells. Intriguingly, in patients with PTCL-NOS, TBX21 expression has shown to be associated with a more favorable prognosis compared to patients with a GATA3 expression, though there has been no mechanistic rationale to explain why this is the case. Validating these observations in patients is a crucial and integral feature of our ongoing clinical studies.

In addition to the induction of apoptosis in the tumor cells proper, the induction of CTA, interferon signaling, immune response genes, expression of TH-1 driven cytokines and changes in STAT-4, point toward an immunological mediated mechanism for the AZA-Romi combination, one that will need to be interrogated more thoroughly in the clinical setting. The induced expression of PD-L1 by Romi, which is maintained and increased upon with the addition of AZA, raises the interesting prospect that checkpoint inhibitors could represent one rational drug to integrate into the doublet. In fact, we have recently launched two clinical studies (NCT03240211, NCT03161223) exploring the integration
of a PD-1 (pembroluzimab) and PD-L1 inhibitors (durvalumab) with various epigenetic based combinations in PTCL. While the marked induction of CTAs by the combination may further augment the impact of the checkpoint inhibitor, it is also raises the prospect that vaccines against these CTAs could represent yet another strategy to exploit the underlying mechanisms induced by the combined epigenetic modifiers.

Unfortunately, there are limited collections of cell lines representing the T-cell lymphomas. In fact, the 2 most common subtypes of PTCL, namely PTCL-NOS and AITL, are not represented in any collection to date. Our study has found that the distribution of mutations in genes like IDH2, TET2 and DNMT3A, are not present in most of the available T-cell lymphoma cell lines, presenting a challenge in describing any cause and effect relationship between the presence of a specific epigenetic mutation or collection of mutations, and their impact on their vulnerability to an epigenetic modifier. It is likely that our understanding regarding the import of these mutations will rely on data obtained from our ongoing T-cell lymphoma clinical trials where RNAseq is being used to appreciate the impact of the mutational landscape on drug activity. Moreover, using planned RNA-seq in these trials, we will also have the capability of validating the pre-clinical GEP findings described in this manuscript.

Albeit early, there is mounting evidence that the PTCL may be particularly vulnerable to epigenetic modifiers, especially in combination. These data suggest that the drugs may have two distinct mechanisms for producing an antitumor response. One based on the cytotoxic effects of the drugs, as supported by standard cytotoxicity data and the induction of apoptosis; and one based on an immunological mechanism of action. The
later mechanisms will require detailed interrogation in clinical studies to decipher more thoroughly. Additional studies will continue to focus on identifying the strongest rationale for integrating complementary and synergistic drugs onto a possible HDAC and DNMT inhibitor backbone. These agents may include exploring the merits of adding PI3 kinase inhibitors, checkpoint inhibitor (PD-1, PDL-1 and CTLA-4), pralatrexate, and other classes of epigenetic modifiers like EZH2 inhibitors. It is likely that targeting the basal level of epigenetic dysregulation in PTCL, and coupling it with rational agents based on the mechanistic effects, will create a plethora of new upfront and relapsed treatment regimens.

Acknowledgements

We would like to acknowledge Celgene, The Lymphoma Research Fund of Columbia University and the Leukemia & Lymphoma Society for providing research support.

Authorship:

LS, OAO devised the experiments. LS, JKL and OAO wrote the manuscript. LS, CK, ED, MS, BC, CQ, RN performed the experiments. LS, CK, JKL, EM, LF, CD, SB, AC, OAO interpreted the experimental results.

Disclosure of Conflicts of Interest

OAO received research support and honoraria for service on DATA safety Monitoring Committee from Celgene. EM received consulting for Spectrum Pharmaceuticals, Mundipharma. JKL received research support and advisory board service from Kymera Therapeutics; research support from Denovo Biopharma; advisory board service from
Astex Pharmaceuticals and Speakers’ Bureau for AstraZeneca. FM received research support from Seattle Genetics.

References

FIGURE LEGENDS

Figure 1. Synergistic activity of Romi and AZA in T-cell lymphoma lines. A) Synergistic cytotoxic activity of Romi (R) and sequential AZA combination was evaluated on a panel of six T-cell lymphoma lines, using IC10-20 of R and increased AZA concentration (50, 125, 250nM). Drug:drug interaction was evaluated at 96h from first addition. B) EOB values represent average measurements of synergy of three independent experiments. C) DNA hypomethylation measured as % MdC in the six T-cell lymphoma lines exposed to sequential AZA exposure. Error bars represent standard deviation of three or more separated experiments.

Figure 2. The Romi plus AZA combination modulates a unique set of genes. A) The Venn diagram shows the relationship among genes included in the three signatures (adjusted P value \(\leq 0.05\)). The expression of 921 genes is uniquely modulated by the combination treatment. Number of genes modulated by each treatment are also shown. B) Confirmation of GEP data by quantitative real-time PCR. The differential expression of four selected genes (CD274, BRDT, NXPH4 and CDC42EP3) was analyzed in control and treatment groups in a panel of T-cell lymphoma lines to validate GEP signatures. The qPCR results were normalized using \(\beta\)-actin. qPCR data represent the mean of three determinations and express as Log2 fold change with respect to control. Horizontal bars represent the grand mean among all cell lines. C) Supervised analysis of gene expression in TCL lines based on the expression of genes modulated by single agent and combination (adjusted P value 0.05, Log2 fold change absolute value 0.5)
Arrows indicated gene sets uniquely modulated by the two single agents (upper arrow) and combination (lower arrow).

Figure 3 Matrisome perturbation and cholesterol biosynthesis downregulation in TCL as result of exposure to Romi plus AZA. A) Gene set enrichment analysis of genes modulated by the combinational therapy in TCL lines identify affected biological pathways associated with the matrisome and cholesterol biosynthesis. Each column represents a sample and correspondent treatment, each row represents a gene. Samples are grouped based on treatment (from left to right: untreated, Romi, AZA and combination, B) Cholesterol biosynthesis pathway. Highlighted in blue the 12 genes whose expression is downregulated by exposure to the combination. C) Western blot analysis of MVK and DHCR24 expression in TCLs exposed to drug-drug combination.

Figure 4. Upregulated expression of the cancer testis antigens and immune response genes in TCL by the Romi and AZA combination. A) Supervised analysis in TCL lines based on the expression of cancer testis antigens and immune response genes modulated by the combinational therapy. B) Cancer testis antigens (CTA) and immune response genes increased mRNA levels in T-cell lymphoma lines as result of Romi and AZA treatment. C) MAGE-A1, PRAME, STAT4, TBX21 and PD-L1 protein levels in T-cell lymphoma lines exposed to single agent and combination. Romi (R), azactidine (AZA).
Figure 5. Proliferative effect of conditioned medium on PBMC and TH phenotype characterization. A) Arrows indicate samples grown in absence or presence of CD3/CD28 dynabeads. Number of viable cells was determined based on quantitation of ATP using luminescent cell viability assay. PBMCs of three independent donors were used for the proliferation assay. B) TH phenotype characterization of PBMCs. Increase percentile (treated/untreated) of TH subtypes in PBMC using CMs from PF382 and TLOM1 cell lines. The box and whisker plot displays the summary of data collected from no less than five determinations. (**) p-value ≤0.01, (***) p-value ≤0.001.
Figure 1

(A) Bar graphs showing cell viability (% of control) for different concentrations of H9 and HH cells treated with drugs. The x-axis represents the concentration (nM) and the y-axis represents viability (% of control). Error bars indicate standard deviation.

(B) Table showing the inhibition of cell viability (% of control) for different concentrations of Aza (125 nM, 250 nM, 500 nM) and Romi (1 nM, 1.25 nM, 1.5 nM) in H9, HH, P12, PF382, TLOm1, and MT-2 cells. The inhibition is color-coded from blue to red, with blue indicating no inhibition and red indicating complete inhibition.

(C) Bar graphs showing the percentage of MdC (% of control) for different concentrations of drugs in H9, HH, P12, PF382, TLOm1, and MT-2 cells. The x-axis represents the concentration (nM) and the y-axis represents the percentage of MdC.
Figure 2
Figure 4
Molecular Cancer Therapeutics

TARGETING THE T-CELL LYMPHOMA EPIGENOME INDUCES CELL DEATH, CANCER TESTES ANTIGENS, IMMUNE MODULATORY SIGNALING PATHWAYS.

Luigi Scotto, Cristina Kinahan, Eugene Douglass, et al.

Mol Cancer Ther Published OnlineFirst June 9, 2021.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: doi:10.1158/1535-7163.MCT-20-0377</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Access the most recent supplemental material at: http://mct.aacrjournals.org/content/suppl/2021/06/10/1535-7163.MCT-20-0377.DC1</td>
</tr>
<tr>
<td>Author Manuscript</td>
<td>Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.</td>
</tr>
</tbody>
</table>

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/early/2021/06/09/1535-7163.MCT-20-0377. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.