SAR439859, a Novel Selective Estrogen Receptor Degrader (SERD), Demonstrates Effective and Broad Antitumor Activity in Wild-Type and Mutant ER-Positive Breast Cancer Models

Maysoun Shomali1, Jane Cheng1, Fangxian Sun1, Malvika Koundinya1, Zhuyan Guo1, Andrew T. Hebert1, Jessica McManus1, Mikhail N. Levi1, Dietmar Hoffmann1, Albane Courjaud2, Rosalia Arrebola2, Hui Cao1, Jack Pollard1, Joon Sang Lee1, Laurent Besret2, Anne Caron2, Dinesh S. Bangari3, Pierre-Yves Abecassis2, Laurent Schio2, Youssef El-Ahmad2, Frank Halley2, Michel Tabart2, Victor Certal2, Fabienne Thompson2, Gary McCort2, Bruno Filoche-Rommé2, Hong Cheng1, Dinesh S. Bangari3, Michel Tabart2, Victor Certal2, Fabienne Thompson2, and Monsif Bouaboula1

ABSTRACT

Primary treatment for estrogen receptor-positive (ER+) breast cancer is endocrine therapy. However, substantial evidence indicates a continued role for ER signaling in tumor progression. Selective estrogen receptor degraders (SERD), such as fulvestrant, induce effective ER signaling inhibition, although clinical studies with fulvestrant report insufficient blockade of ER signaling, possibly due to suboptimal pharmacological properties. Furthermore, activating mutations in the ER have emerged as a resistance mechanism to current endocrine therapies. New oral SERDs with improved drug properties are under clinical investigation, but the biological profile that could translate to improved therapeutic benefit remains unclear. Here, we describe the discovery of SAR439859, a novel, orally bioavailable SERD with potent antagonist and degradation activities against both wild-type and mutant Y537S ER. Driven by its fluoropropyl pyrrolidinyl side chain, SAR439859 has demonstrated broader and superior ER antagonist and degrader activities across a large panel of ER+ cells, compared with other SERDs characterized by a cinnamic acid side chain, including improved inhibition of ER signaling and tumor cell growth. Similarly, in vivo treatment with SAR439859 demonstrated significant tumor regression in ER+ breast cancer models, including MCF7-ESR1 wild-type and mutant-Y537S mouse tumors, and HCl013, a patient-derived tamoxifen-resistant xenograft tumor. These findings indicate that SAR439859 may provide therapeutic benefit to patients with ER+ breast cancer, including those who have resistance to endocrine therapy with both wild-type and mutant ER.

Introduction

Antihormonal therapies that directly antagonize the function of the estrogen receptor alpha (ERα; such as tamoxifen) or therapies that block the production of its ligand, estrogen (such as aromatase inhibitors), are the mainstay therapy for ER-positive (ER+) breast cancer (1–4). Although these treatments markedly reduce the risk of recurrence from early-stage disease and improve outcomes in patients with advanced disease, relapse frequently occurs after prolonged treatment (1, 4–6). Recently, recurrent mutations have been identified in the ligand-binding domain of ERα in approximately 25% to 40% of patients who have relapsed after receiving one or more prior hormonal therapies (7–10). These mutations confer estrogen-independent, constitutive activity of the ERα, induction of tumor growth, reduced potency to anti-ERα therapies, and complete resistance to aromatase inhibitors (7–10).

Some ligands that target the ERα can increase levels of the ERα protein steady state due to biological feedback mechanisms such as increases in the transcriptional compensation or thermodynamic stability upon ligand binding (11). For example, tamoxifen induces stabilization of the ERα protein, which adopts a conformation that may lead to agonist signaling (12–16). It has also been suggested that some mutations in the ERα, such as those affecting the Y537S or D538G amino acids, may be involved in stabilization of the ERα (10, 16–19). Moreover, an increase in ERα stability could also result in ERα signaling leakage when continuous treatment coverage is not achieved. Altogether, there is rationale, in addition to ERα antagonism, that degradation of the ERα protein could have an impact on the ERα biology and efficacy of therapies targeting ERα.

Selective estrogen receptor degraders (SERD), such as fulvestrant, bind to the ERα to induce a conformational change that not only antagonizes ERα function, but also causes its proteasome-mediated degradation to more effectively inhibit ERα signaling. Fulvestrant is an approved SERD indicated for the treatment of ER+ metastatic breast cancer in postmenopausal women with disease progression following anti-estrogen therapy (20). Fulvestrant has demonstrated preclinical and clinical benefits after failure of other hormonal therapies (21–23). However, fulvestrant, a steroid with a neutral and lipophilic side
chain, requires unconventional long-acting intramuscular depot formulation, limiting its dose and exposure for maximal receptor engagement (24, 25).

To address the preceding pharmacologic shortcomings posed by fulvestrant, several novel SERDs have entered clinical trials including GDC-0810 (NCT 01823835), AZD9496 (NCT02248090), AZD9833 (NCT03616586), GDC-0927 (NCT02316509), and GDC-9545 (NCT03916744, NCT03332797; refs. 26–28). These novel SERDs, which are chemically distinct from fulvestrant, can be classified into two major groups based on the chemical structure of their side chain that is key in driving ERα degradation (29–31). GDC-0927 is characterized by a fluoroalkylamine side chain, whereas GDC-0810, AZD9496, and LSZ102 each have a cinnamic acid side chain (26, 27, 29, 32–34). It is not well understood whether the different side chains and/or their abilities to induce ERα degradation translate to differences in their biology and antitumor activities. Moreover, these SERDs have presented conflicting data in their relative abilities to induce ERα agonist activity or promote complete ERα degradation (26, 28, 35).

To better define the molecular features to achieve optimal clinical activity of SERDs, it is crucial to understand the relationship between the molecular structure of the drug, level of ERα degradation, and the subsequent impact on antitumor activity. Here, we describe SAR439859, a novel, nonsteroidal, orally bioavailable SERD that bears a fluoro-propyl pyrrolidinyl side chain and, unlike SERDs with a cinnamic acid side chain, SAR439859 has demonstrated strong ERα antagonist activity and potently induces its degradation, which results in improved efficacy of both in vitro and in vivo ERα breast cancer models.

Materials and Methods

Key details of the materials and methods used in this study are provided below (see Supplementary Appendix for additional information). Animal studies were conducted in accordance with the Guide for the Care and Use of Laboratory Animals, National Academy Press (2006), conforming to Massachusetts State legal and ethical practices and approved by the Institutional Animal Care and Use Committee (IACUC, Sanofi Genzyme).

Cell culture and reagents

MCF7, CAMA-1, ZR-75–1, MDAMB134VI, MDAMB361, BT474, BT473, MDAMB453, EFM19, HCC1428, HCC1500, HEK293T, MDAMB231, and SUM44PE cells were purchased from ATCC or Asterand and underwent authentication using short tandem repeat (STR) DNA profiling at Idexx. The HCC1428 LTED cell line was obtained from Carlos Arteaga. All cell lines were routinely screened for mycoplasma contamination using Lonza Mycoalert and Stratagen Mycosensor. Unless otherwise indicated, tissue culture supplements and medium were purchased from Hyclone, Corning, or Invitrogen. Mycoplasma contamination using Lonza Mycoalert and Stratagen Mycoalert and cell viability was assessed using CellTiter-Glo (Promega) according to the manufacturer’s protocol and relative luminescence units (RLU) were measured using an Envision Multilabel Reader (Perkin Elmer). The RLUs of the treated samples were normalized to that of the untreated samples and cell viability was expressed as a percentage of the value of the untreated cells.

Viability assays

Trypsinized cells were dispensed into 384-well plates in IMEM (supplemented with 5% FBS) and after overnight incubation cells were treated with compounds for the times indicated. Cell viability was assessed using CellTiter-Glo (Promega) according to the manufacturer’s protocol and relative luminescence units (RLU) were measured using an Envision Multilabel Reader (Perkin Elmer). The RLUs of the treated samples were normalized to that of the untreated samples and cell viability was expressed as a percentage of the value of the untreated cells.

Compounds

SAR439859 was synthesized as described in WO2017140669, as Example 51 (38). GDC0810 and AZD9496 were synthesized as described in WO2012037410 (Example 11; ref. 39) and WO2014191726 (Example 1; ref. 40), respectively. Both AZD-SAR and GDC-SAR were made as described in WO2018091153 (Example 255 and 256, respectively; ref. 41).

In-cell Western assay

MCF7 cells were seeded at a density of 15,000 per well into flat clear bottom tissue cultured-treated 384-well plates (Corning) in IMEM with 5% CSS FBS. After treatment with ligand at the indicated concentrations, plates were washed, fixed 10% with neutral buffered formalin, permeabilized with PBS containing 0.1% Triton X-100, and blocked with Odyssey Blocking Buffer (LI-COR). The fixed cells were incubated with rabbit anti-ERα antibody (SP-1; MA5-14501; Thermo Fisher Scientific), washed and stained with Alexa Fluor 488 goat anti-rabbit secondary antibody (Invitrogen) and Hoechst DNA stain to determine cell number. ERα levels were quantitated using the acumen eX3 imaging system. Percent residual ERα was defined as normalized ERα treated cells/normalized ERαuntreated cells × 100.

Simple Western assay

Cells and tissues were lysed with an RIPA buffer (Boston BioProducts) or with tissue protein extraction reagent with Halt protease inhibitors and EDTA (Thermo Fisher Scientific), respectively. Proteins from cell or tissue lysates were separated by capillary electrophoresis using the Simple Western assay (ProteinSimple), as described previously (29) and probed with rabbit anti-ERα antibody (Cell Signaling Technologies, 13258) and β-actin (Cell Signaling Technologies, 3700). ERα levels were quantitated using the Compass software (ProteinSimple); percent ERα was calculated by normalizing ERα values to β-actin and then expressed as a percentage of the normalized value of the untreated cells.

Mutant ERα cell line generation

ESR1 was cloned from a brain cDNA library. ERα mutant plasmids Y537S and D538G were generated using Quik Change II Mutagenesis Kit (Agilent) ESR1 wild-type and mutant complementary DNAs were subsequently cloned into a lentivirus plasmid containing an amino terminal hemagglutinin (HA) tag lentivirus plasmid (pLent1 or pLent6.i3). Lentiviral supernatants were generated by transfection of a lentivirus plasmid encoding ERα mutants Y537S and D538G in HEK293T cells using a packaging mix (Cellecta), according to the manufacturer’s protocol. After transfection, lentiviral particles were purified from the cell medium and MCF7 target cells were transduced with lentiviral supernatants with 8 μg/mL polybrene (Millipore Sigma). Stable cell lines were selected for 5 μg/mL blasticidin resistance. Cells were characterized for constitutive or doxycycline-inducible ER expression using Simple Western blot, as described previously. HA-tagged mutant
ERα was confirmed by Western blot analysis using the 6E2 mouse monoclonal anti-HA antibody (Cell Signaling Technology, 2367).

**Recombinant ER proteins**

Recombinant proteins representing amino acids 289–554 of the ligand-binding domain (LBD) of human ERα with the His6-tag at the N-terminus (His6-ERα-LBD) were synthesized by DNA 2.0 and cloned in pBHR743 vector. They were expressed in *Escherichia coli* (BL21, DE3) and purified by affinity chromatography to at least 90% purity at Sanofi (Vitry-sur-Seine).

**Evaluation of affinity and antagonistic properties of compounds with His6-ERα-LBD proteins**

Affinity was assessed by measuring the dissociation constant (Kd) using Lanthascreen TR-FRET ERα competitive binding assay; antagonistic properties were assessed by measuring the half maximal effective concentration (EC50) using Lanthascreen TR-FRET ERα competitive binding assay. The antagonistic potency of the compounds was measured using a modified Lanthascreen TR-FRET ERα coactivator binding assay. All assays were from Thermo Fisher Scientific and were performed according to the manufacturer’s instructions (see Supplementary Materials and Methods).

**Murine uterotrophic assay**

Female bi-ovariectomized ICR mice aged 6 weeks were purchased from Taconic. Animals were used at least 10 days after bi-ovariectomy and randomized into groups (n = 5) and treated once-a-day 4 days with compounds of interest at indicated doses. Animals were euthanized 24 hours post the last dose and uterus were dissected, weighed and fixed in 10% neutral buffered formalin for histologic examination. A small portion of tissue was saved prior to fixation for mRNA isolation and gene expression analysis.

Formalin-fixed uteri samples were processed for paraffin embedding, sectioned at approximately 5 μm, and stained with hematoxylin and eosin. Endometrial layer thickness was measured using whole slide images obtained from digital scans using the Aperio AT slide scanner (Leica Biosystems) at 20× magnification. Obliquely sectioned areas were avoided. For each treatment group, uterus samples from five mice were examined. For each mouse, digital measurements were taken from three separate sections. Results are displayed as the mean endometrial layer thickness ± SE.

**Transcriptional reporter assays**

The ligand binding domain of ERα (amino acids 246–595, NM_00125) or ERβ (amino acids 261–500, NM_004357) were synthesized by DNA 2.0 and fused to the DNA binding domain of GAL4 in a doxycycline inducible plasmid (pCDNA5/FRT), which was stably integrated into HEK293 cells. These cells also stably express a luciferase reporter gene under the transcriptional control of the upstream activator sequence (PGL4.15Luc2P/Hygro). These cell lines were maintained in DMEM supplemented with 10% FBS, 1 mg/mL blasticidin, 400 μg/mL Geneticin, and 50 μg/mL of Hygromycin (Thermo Fisher Scientific). A cell suspension containing 5,000 cells in phenol red free DMEM containing 5% CSS was transferred into a 384-well black-walled clear bottom tissue culture-coated plate. The microplates were incubated at 37°C and 5% CO2 overnight. The following day, 3 hours prior to compound treatment, cells were stimulated by adding 0.5 μg/mL doxycycline (Clonetech) to induce NR-LBD expression. For agonist assays, the compounds were serially diluted and compound in DMEM supplemented with 5% CSS was added to the cells. For antagonist assays, the compounds were treated in DMEM with 5% CSS and 2 nmol/L of estradiol. After overnight incubation with the compound, luciferase reagent (Promega) was added to each well and the luminescence emitted was measured using an Envision Multilabel Reader (Perkin Elmer).

**RNA isolation and qPCR**

RNA was extracted using the RNeasy Kit (Qiagen) per the manufacturers instruction, quantified by NanoDrop 8000 (Thermo Fisher Scientific) and reverse-transcribed with cDNA Archive Kit (Applied Biosystems). Target gene expression assays (Applied Biosystems) were used to quantify PGR (Hs00172183_m1), Bcas1 (Hs00952822_m1), CXCL12 (Hs03676656_mH), BLNK1 (Hs00929914_m1), IL20 (Hs00218888_m1), and the house-keeping genes PGK (Hs00391480_m1) and GAPDH (Hs99999905_m1) The relative quantities were determined using ΔΔ threshold cycle (ΔΔCt), according to the manufacturer’s instructions (Applied Biosystems).

**RNA sequencing**

RNA was extracted using the RNeasy Kit (Qiagen). The concentration of RNA samples was determined using NanoDrop 8000 (Thermo Fisher Scientific) and the integrity of RNA was determined by 4200 TapeStation (Agilent Technologies). RNA sequencing FASTQ files were processed with STAR aligner and Cufflinks to generate gene-level estimation of expression in transcripts per million (42, 43). The transcripts per million data were then quantile-normalized and log-transformed. To identify genes that are differentially expressed between SERD compound treatment and DMSO (control) treatment groups, a two-factor (treatment and dose) ANOVA model was used at respective dose and time points. The treatment factor was fixed, with seven levels: six SERD compounds and the DMSO control. The dose factor was also fixed, with two levels: low and high. All samples were treated at 24 hours. Post hoc contrast analyses were performed at each dose and time level, between each SERD compound treatment and the DMSO control. Cut-off levels of absolute fold-change ≥1.5 and FDR-adjusted P-value ≤ 0.05 were used to select differentially expressed genes (DEG), which resulted in a panel of 1022 DEGs. This analysis was performed using Array Studio (Qiagen).

The panel of 1,022 genes identified as differentially expressed in at least one compound-versus-DMSO comparison were used for hierarchical clustering of compound treatment data normalized to DMSO control at respective dose and time points. Complete-linkage clustering was performed on the basis of Pearson correlation coefficients. Expression profile similarity between compounds was assessed by Pearson correlation on the DEGs.

**Pharmacokinetic and efficacy studies**

HCl013 tumor fragments, MCF7, or MCF7 ERα-Y537S cell suspensions were implanted subcutaneously on the right flank of 6–8-week-old female athymic nude mice purchased from Envigo. HCl013 and MCF7 xenografts were supplemented subcutaneously with estradiol pellets (90-day release, 0.5 mg/pellet) to stimulate tumor growth. Tumors were measured in two dimensions twice weekly. Tumor volume was calculated by the formula: volume = length × (width [2]) / 2. When tumors reached an average size of roughly 150 to 350 mm3, animals were randomized into groups and treatment was started. SAR439859 was formulated in 20% Labrasol 5% Solutol HS15 75% of 5% Dextrose at pH 5.5. Animals were sacrificed after the final dose and tumors were excised, cut into approximately 30 mg fragments and flash frozen for RNA and protein pharmacodynamic analysis. Additional tumor fragments for IHC were placed in 10% neutral buffered formalin for 24 hours.
and transferred to 70% ethanol until processing. Sections (5 μm) were labeled for ERα (clone SP1, 790–4325 Ventana Roche) stained with Horseradish Peroxidase/3,3′-Diaminobenzidine Detection Kit (Abcam, #64261). Details of the FES/PET-CT imaging of the MCF7 xenograft tumors are provided in the Supplementary Materials and Methods.

**Results**

**Identification and validation of SAR439859 as a novel SERD**

To identify a nonsteroidal SERD with improved antitumor activity and oral bioavailability, we performed a high-throughput screening with the MCF7 breast cancer cell line using an in-cell Western immunofluorescence assay. Prospective optimization of the ER degradation and ERα antagonist structural motifs led to the identification of SAR439859 (Fig. 1A). The molecule is characterized by a fluoropropyl pyrrolidinyl side chain that is molecularly distinct from other SERD molecules. Treatment with SAR439859, like fulvestrant, leads to a strong reduction of both cytoplasmic and nuclear ERα compared with selective ERα modulators (SERM, Fig. 1B).

SAR439859 effectively induced ERα degradation in MCF7 breast cancer cells at subnanomolar concentrations (half maximal inhibitory concentration [IC50] of 0.2 nmol/L) with maximal degradation levels (Dmax) of 98% (Table 1). Addition of the proteasome inhibitor MG132 fully blocked SAR439859-induced ERα degradation, as shown with fulvestrant-induced ERα degradation (Supplementary Fig. S1A). In MCF7 cells, SAR439859 also effectively antagonized estradiol (E2)-mediated transcriptional activation of an ERα Luciferase reporter construct with nanomolar potency comparable to that of fulvestrant (Table 1). We examined the transcriptional activity of SAR439859 on other nuclear hormone receptors (NR) including ERβ, glucocorticoid receptor, androgen receptor, progesterone receptor, and mineralocorticoid receptor. SAR439859 was found to antagonize ERβ transcriptional activity (Table 1) but had no activity against other NRs at concentrations up to 5 μmol/L.

To further confirm the selective antagonistic effect of SAR439859 on ERα signaling, we evaluated the impact of SAR439859 on the expression of well-described ER target genes in MCF7 cells (26, 44–46). Both SAR439859 and fulvestrant showed similar patterns of down-modulation of gene expression of the ERα target gene panel and was differentiated from the partial agonism induced by tamoxifen (Fig. 1C).

SAR439859 potently inhibited the proliferation of MCF7 cells (Supplementary Fig. S1B) but had no effect on the growth of ER-negative cell lines even at the highest concentration tested (5 μmol/L) confirming the high selectivity of SAR439859 for ERα-dependent tumor cells. In a tamoxifen-resistant MCF7 derived model, LCC2, SAR439859 inhibited the growth with an IC50 of 16 nmol/L, indicating that the compound is not cross-resistant with tamoxifen (Fig. 1D; ref. 47).

ERα mutations with gain-of-function capabilities have been shown to be one of the resistance mechanisms against anti-ERα therapies in patients with breast cancer (10). We therefore assessed SAR439859 activity against wild-type (WT) and mutant ERα on recombinant ERα LBD proteins. Unlike the ERα WT receptor, Y337S and D538G mutations in the ERα LBD lead to spontaneous recruitment of coactivators, such as the peroxisome proliferator-activated receptor-γ coactivator and the steroid receptor coactivators, in the absence of estradiol (Fig. 1E; Supplementary Fig. S2), confirming that these mutations cause constitutive activation of ERα (17). In this activated conformation, mutant ERα receptors have increased affinity for the agonist, E2, and decreased affinity for the antagonists, including SAR439859, as illustrated by the corresponding changes in Kd values (Fig. 1F; Supplementary Fig. S3; Supplementary Table S1). Therefore, SAR439859 antagonizes mutant ERα with lower potency than WT ERα [EC50 values were determined in the presence of 10 nmol/L estradiol: 20 nmol/L (WT), 331 nmol/L (Y337S mutant), 595 nmol/L (N358G mutant); Fig. 1G; Supplementary Table S1]. To understand the effect of these mutations in the cellular context, MCF7 cells were engineered to express WT or mutant ERα under a doxycycline-inducible promoter. Interestingly, the doxycycline-induced expression of mutant but not WT ERα led to constitutive expression of the ERα target genes CXCL12, PGR, and GREB1 (Supplementary Fig. S1C).

In these engineered MCF7 cell lines, both SAR439859 and fulvestrant treatment dose-dependently inhibited CXCL12 and PGR and increased Egr1 expression in both mutants and WT ERα cells (Supplementary Fig. S4). Furthermore, SAR439859, like fulvestrant, was able to downregulate both WT and HA-tagged Y337S and D538G mutant ERα protein levels (Fig. 1H). In the absence of E2, SAR439859 inhibited growth in a dose-dependent manner in MCF7 cells over-expressing WT, Y337S, or D538G ERα with a 2–10-fold reduction in potency in ERα mutant compared with WT ERα cells (IC50 of 0.4, 10, and 1 nmol/L, respectively; Fig. 1I). This trend in reduced potency against ERα mutants was consistent for both fulvestrant (Fig. 1J) and tamoxifen (Table 1).

SAR439859 has no agonist activity in murine uterotrophic assay

Consistent with published data, oral administration of tamoxifen 30 mg/kg daily significantly increased uterine wet weight. In contrast, SAR439859 at doses of 25, 50, and 100 mg/kg daily, and fulvestrant dosed at 100 mg/kg subcutaneously every other day, had no statistically significant effect on uterine wet weight (Fig. 2A). Histologic staining of SAR439859-treated uterine tissue samples showed that both endometrial cell thickness and epithelial height were not affected compared with control samples (Fig. 2B, C, and E). In addition, ERα target gene expression of C3-complement was increased in tamoxifen treated mice but it was unchanged in mice treated with fulvestrant or SAR439859 (Fig. 2D), confirming that SAR439859 does not have agonist activity in uterine tissue.

Pharmacodynamic response and antitumor activity of SAR439859

We next assessed SAR439859 in vivo antitumor activity using MCF7 cell xenograft mouse models overexpressing either WT (ERα-WT) or mutant Y337S ERα (ERα-Y337S). The overexpression of WT ERα conferred estrogen-dependent tumor growth, whereas the doxycycline-inducible overexpression of Y337S ERα resulted in estrogen-independent tumor growth (Supplementary Figs. S5A and S5B). Pharmacokinetic analysis of the ERα-Y337S mice that were administered with SAR439859 showed a dose-proportional increase in tumor exposure with an AUC from time zero to last measurable concentration (AUClast) of 21,300 ng·h/mL and maximum concentration of 2,280 ng/mL at the 25 mg/kg dose (Fig. 3A; Supplementary Table S2), SAR439859 displayed a moderate clearance of 1.92 L/h·kg and 62.2% oral bioavailability following administration of a 25 mg/kg dose. It was noteworthy that the apparent volume of distribution at steady state was large, calculated at 6.1 L, resulting in an AUC tumor/plasma ratio of 1.2 (Supplementary Table S2).

In terms of efficacy, SAR439859 induced dose-dependent inhibition of ERα-WT and ERα-Y337S tumor growth, with tumor regression achieved at doses of 12.5 and 25 mg/kg (~5 and ~28 and ~9 and ~34 Δtumor/Acontrol, respectively; Supplementary Fig. SSC, Fig. 3B)}
Supplementary Table S3). Consistent with the observed antitumor activity, Simple Western blotting revealed a dose-dependent reduction in total ERα protein levels in the ERα-Y537S xenograft tumors following treatment with SAR439859 (Fig. 3C). SAR439859 also demonstrated a time- and dose-dependent modulation of ERα target gene expression, leading to inhibition of IL20, PGR and CXCL12 gene expression as well as an increase in Bnk and Bcas1 gene expression. (Fig. 3D–F; ref. 48).
Table 1. SAR439859 in vitro properties.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>IC50 (nmol/L)</th>
<th>IC50 (nmol/L)</th>
<th>DC50 (nmol/L)</th>
<th>IC50 (nmol/L)</th>
<th>EC50 (%)</th>
<th>IC50 (nmol/L)</th>
<th>EC50 (%)</th>
<th>IC50 (nmol/L)</th>
<th>EC50 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR439859</td>
<td>1.8</td>
<td>8.4</td>
<td>0.4</td>
<td>98</td>
<td>1.1</td>
<td>64</td>
<td>10.0</td>
<td>79.8</td>
<td>1.0</td>
</tr>
<tr>
<td>4-OH-Tamoxifen</td>
<td>0.9</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>53</td>
<td>2.9</td>
<td>76.7</td>
<td>6.5</td>
</tr>
<tr>
<td>Fulvestrant</td>
<td>0.5</td>
<td>0.9</td>
<td>0.2</td>
<td>98</td>
<td>0.3</td>
<td>65</td>
<td>2.9</td>
<td>76.7</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Abbreviation: NA, not applicable.

Figure 2.
Effect of SAR439859 on uterine tissue. A, Wet uterine weight measurements from bi-ovariectomized juvenile mice treated with specified ERα ligands for 5 days. 4-OHT and fulvestrant were treated as controls. Endometrial thickness (B) and epithelial height (C) were digitally measured using whole slide images of hematoxylin and eosin stained cross-sections of uteri. For each mouse, three cross-sections were analyzed (five mice per group). Results are displayed as the mean endometrial thickness from animals ± deviation (n = 3). D, C3-complement gene expression was assessed by RT-qPCR reach after treatment with indicated compounds. E, Photomicrographs of uterine cross-sections showing endometrium layer (double-headed arrows) and luminal epithelial cell height (single-headed arrows). * denotes significance (P < 0.001) compared with vehicle in an unpaired t test for A, B, C, and D.
In an effort to validate an additional clinically-relevant target engagement biomarker, tumor ERα occupancy was monitored by PET using 18F-fluoroestradiol (FES) uptake (49). 18F-FES-PET imaging was carried out on mice bearing ERα-Y537S xenograft tumors following SAR439859 treatment (25 mg/kg twice daily). After compound administration, the 18F-FES-PET signal was decreased by approximately 75% compared with control (Fig. 3G). IHC analysis of tumor samples confirmed downregulation in ERα protein levels that could contribute to the decrease in 18F-FES-PET signal induced by SAR439859 (Fig. 3G).

Figure 3.
Pharmacokinetic/pharmacodynamic relationship and antitumor activity of SAR439859. MCF7 ER Y537S overexpressing tumors were implanted in animals without supplemental 17β-estradiol pellets. A, Plasma (ng/mL) and tumor (ng/g) exposure of SAR439859 post-single-dose administration at indicated time. Tumors were harvested for ERα protein and ERα target gene transcription assessment. B, Mean tumor volume over time in mouse xenograft dosed with vehicle or SAR439859 2.5, 5, 12.5, or 25 mg/kg (twice daily, orally). Tumor volume was evaluated twice per week until the study endpoint. C, Simple Western analysis of ERα level in tumors from A collected after SAR439859 dose at indicated time with each lane representing an individual tumor sample. D–F, Gene expression analysis of tumors from A in mice treated with SAR439859 compared with vehicle at time indicated with each point representing individual tumor sample. D, Dose-dependent effect on IL20 expression. E, Time-dependent effect on IL20 expression after 5 or 25 mg/kg SAR439859 dosing. F, Inhibition of CXCL12 and PGR expression and induction of Bcas1 and Blnk1 expression after 8 hours; unpaired t test: *P < 0.05; **P < 0.001 versus vehicle for D–F. G, Representative 18F-FES-PET (left) and IHC images (right) of MCF7 ER Y537S tumors treated with either vehicle or SAR439859 and probed using anti–ERα antibody. 18F-FES-PET images were taken 4 hours after administration of SAR439859. H, Mean tumor volume over time in mice with the HCI013 xenograft model treated with SAR439859. H, Significance at end of study was determined by unpaired t test: *P < 0.001; **P < 0.01; ***P < 0.05 compared with vehicle, 2.5 and 5 mg/kg SAR439859. I, Gene expression in the HCI013 model treated with SAR439859. *P < 0.05 versus vehicle using unpaired t test.
We further evaluated SAR439859 antitumor activity in HCI013, a patient-derived xenograft (PDX) model that harbors the Y537S ESR1 mutation. The original tumor was obtained from a patient with ERα + metastatic breast cancer who relapsed on several lines of hormonal therapy, including tamoxifen (37, 50, 51). Mouse models bearing the HCI013 PDX and treated orally with SAR439859 (2.5–25 mg/kg twice daily) had a dose-dependent inhibition of tumor growth. Statistically significant tumor regressions were achieved at doses of 12.5 and 25 mg/kg (~31 and ~46 % tumor/control; Fig. 3H; Supplementary Table S3). Sustained tumor growth regression was observed even 3 weeks after SAR439859 treatment was discontinued (Supplementary Fig. S5D). In agreement with its antitumor activity, SAR439859 also induced dose-dependent and sustained modulation of ERα target genes. Notably, CXCL12 and IL20 expression were decreased, whereas Basal expression was significantly increased at 8 hours posttreatment (Fig. 3I).

**Fluoroalkylamine side chain of SAR439859 improves ERα degradation across breast cancer cell lines**

To delineate the relationship between ERα degradation and SERD antitumor activity, we evaluated ERα degradation in a panel of 14 ERα + breast cancer cell lines and compared the effect of SAR439859 with other SERDs including GDC-0810, AZD9496, and fulvestrant (Fig. 4A). ERα protein levels were normalized against β-actin and % residual ER abundance is reported in Supplementary Table S4, for all compounds shown in Fig. 4B. In the MCF7 cells, all SERD compounds induced ERα degradation, whereas differential ERα protein levels were observed across the other cell lines tested (Fig. 4B). Specifically, GDC-0810 or AZD9496 induced partial or weak ERα degradation, whereas SAR439859 and fulvestrant efficiently degraded the ERα in the cell lines assessed (Fig. 4B). This trend was mirrored in immunofluorescence image analyses of nuclear and cytoplasmic ERα in MDAMB134VI and SUM44PE cells (Fig. 4C).

To elucidate the role of the SERD side chains, we exchanged the cinamic acid side chain in the GDC-0810 and AZD-9496 molecules with the amine side chain from the SAR439859 molecule, which resulted in new hybrid molecules designated as GDC-SAR and AZD-SAR, respectively (WO2018091153; Fig. 4A). The ability to potently bind and inhibit the ER was preserved in these hybrid molecules (Supplementary Table S1). Strikingly, GDC-SAR and AZD-SAR demonstrated a marked increase in ER degradation compared with their respective parent compounds and showed an ERα degradation profile more comparable to that of SAR439859 or fulvestrant across the majority of ERα+ breast cancer cell-lines assessed (Fig. 4B; Supplementary Table S4).

To unmask the ER-intrinsic activity, we then evaluated gene expression after compound treatment in HCC1428-LTED cells, which is a cell line that is hormone-deprived. Changes in global mRNA expression were assessed 24 hours posttreatment. Hierarchical clustering on a selected panel of 1,022 transcripts identified two groups with differing signatures: one group included GDC-0810 and AZD9496, and the other group included fulvestrant, SAR439859, GDC-SAR, and AZD-SAR (Fig. 4D; Supplementary Excel File). Statistical correlation revealed that the SAR439859-induced expression profile is closely correlated to fulvestrant. However, GDC-0810 and AZD9496 transcript profiles only weakly correlated to that of fulvestrant. Interestingly, the profiles of the hybrid molecules GDC-SAR and AZD-SAR, are also closely correlated to those of fulvestrant and SAR439859 (Fig. 4D; Supplementary Fig. S6).

To assess the relative ER modulating activity of the compounds, an ER Signature (87 genes, Supplementary Excel File) was developed by transcriptional profiling of multiple cell lines to identify genes that were modulated by estradiol and then blocked by SERM and SERD. An ER Activity Score was then assessed using gene set variation analysis (GSVA) on the ER Signature (52). Fulvestrant and SAR439859 demonstrated a deep inhibition of ER activity, whereas GDC-0810 and AZD9496 only partially inhibited ERα activity further supporting the above observations. Interestingly, both hybrid molecules, GDC-SAR and AZD-SAR, also strongly inhibited ERα transcriptional activity (Fig. 4E). Gene expression analysis provided further confirmation of the differential response of these molecules on well-validated ERα target genes (26, 46). SAR439859, GDC-SAR, and AZD-SAR inhibited expression of CXCL12 and induced expression of Basal, whereas GDC-0810 and AZD9496 failed to elicit any significant change in the expression of these genes (Fig. 4F). Remarkably, SAR439859 and fulvestrant induced a profound modulation of ERα intrinsic activity in the absence of E2, suggesting a strong inverse agonist activity of these compounds.

**Improved ERα degradation and ERα transcriptional inhibition of SAR439859 leads to more effective in vitro and in vivo antitumor activity**

All SERDs demonstrated similar effective inhibition of MCF7 cell growth (E_max: approximately 60% growth inhibition observed after 10 days of treatment) despite varying levels of potency (IC50 range: 0.3–20 nmol/L; Fig. 5A). However, in the MDAMB134VI cell line, GDC-0810 and AZD9496 induced only a partial growth inhibition compared with SAR439859 (E_max of 20% vs. 60%; Fig. 5B). These findings were recapitulated in other breast cancer cell lines, including HCC1428-LTED, SUM44PE, HCC1500, and HCC1428 (Fig. 5C). GDC-SAR and AZD-SAR also exhibited greater growth inhibition compared with GDC-0810 or AZD9496, underlying the importance of specific structural elements in driving mechanistic and functional divergence between SERD compounds.

We wanted to confirm that HCI013 was a suitable in vivo model that would discriminate the differential effect of these molecules on tumor growth. To this end, fresh, viable HCI013 tumor tissue was dissociated and cultured ex vivo before being treated with saturating concentrations of the SERD compounds for 24 hours. Compared with GDC-0810 and AZD9496, SAR439859 and fulvestrant exhibited stronger ERα degradation and greater inhibition of CXCL12 gene expression (Fig. 5D and E).

Consequently, the antitumor activity of tamoxifen, fulvestrant, SAR439859, and GDC-0180 was examined in vivo in the HCI013 model. As expected, tamoxifen administered at 30 mg/kg every day did not inhibit tumor growth (Fig. 5F). The analysis of the pharmacodynamic effect in HCI013 tumors collected after tamoxifen treatment showed increased ER protein levels and induced the expression of PGR which is normally repressed by ER antagonist or degrader compounds (Fig. 5G), suggesting that the agonist activity of tamoxifen could account for the resistance of the HCI013 tumor model to this ligand class. Despite its strong in vitro anti proliferative activity, fulvestrant at 200 mg/kg twice weekly induced only a partial in vivo antitumor activity in the HCI013 model (Fig. 5F; Supplementary Figs. S7A–S7C) consistent with previous reports (26, 28, 35).

Interestingly, SAR439859 showed a superior antitumor activity, inducing tumor regression (~46% tumor/control of ~34%) at 100 mg/kg every day, compared with the partial antitumor activity (~tumor/
Figure 4.
Differential effect of fluoropropyl-pyrrolidinyl amine versus cinnamic acid side chains on ER degradation and gene expression. A, Structures of SAR439859, GDC-0810, AZD9496, and the hybrid molecules GDC-SAR and AZD-SAR; cinnamic acid side chains are shown in red, and fluoropropyl-pyrrolidinyl amine side chains are shown in blue. B, ERα Simple Western comparing SAR439859 with fulvestrant, GDC-0810, AZD9496, GDC-SAR, and AZD-SAR 4 hours post-300 nmol/L compound treatment in duplicate in 14 breast cancer cell lines. Residual ER (%) was normalized against β-actin and can be found in Supplementary Table S4. C, Representative images of ERα In-Cell Western immunofluorescence assay comparing SAR439859 with fulvestrant, GDC-0810, and AZD9496 in three breast cancer cell lines. D, Heatmap of 1,022 genes differentially expressed in the HCC1428 LTED breast cancer cell line in absence of exogenous estrogen at two doses (30 and 300 nmol/L). Data were log2 normalized followed by standardization and hierarchical clustering. E, ERα transcriptional activity using ER signature and expressed as ER activity score from GSVA; Wilcoxon test is used to compare the means of delineated groups with ***, P < 0.01 and ****, P < 0.001. F, RT-qPCR analysis of the effect of the different selective ER degrader molecules on the expression of ERα target genes CXCL12 and Bcas1. * Denotes significance (P < 0.01) compared with unpaired t test.
control of 27%) achieved by GDC-0810 at 100 mg/kg every day (Fig. 5F). These results are in line with the superior antiproliferative activity of SAR439859 compared with GDC-0810 observed in vitro in breast cancer cell lines. To assess the pharmacodynamic effect on the ERα pathway, ERα protein was analyzed in HCI013 tumors after treatment with the two SERD compounds. SAR439859 induced greater ERα degradation than GDC-0810 (approximately 80% vs. 30% decrease in the ERα, respectively; Fig. 5H).

Figure 5.
SERDs with fluoropropyl-pyrrolidinyl amine side chain show improved ER degradation, antiproliferative, and antitumor efficacy in vitro and in vivo. Effect of SERD molecules on cell viability in MCF7 (A) and MDAMB134VI (B) cells. Compound treatment was for 10 days. C, Comparison of the maximum percentage of ERα degradation (solid shapes) with the maximum percentage growth inhibition (open shapes) in six breast cancer cell lines. Cell viability is expressed as relative percentage compared with fulvestrant treatment. Simple Western ERα protein level (D) and RT-qPCR analysis (E) in ex vivo HCI013 breast cancer human xenograft that have been dissociated and maintained in vitro before being treated with SERD molecules for 24 hours. Error bars represent the SD from the mean from biological triplicates. F, Effect of different ERα ligands on the tumor growth of the HCI013 breast cancer human xenograft model. *, P < 0.05; **, P < 0.001 denotes significance compared with vehicle treated group at end of study using unpaired t test. G, Quantification of ERα protein levels in tumor samples of four individual mice normalized to β-actin. H, Analysis of PGR gene expression in tumors collected after last administration at 8 hours. D, E, H, *, P < 0.05 denotes significance compared with vehicle treated group at end of study using unpaired t test.
the ERα transcriptional activity in the HC1013 model using the panel of genes corresponding to the ER gene signature derived from our in vitro cell line analysis as described previously. Both SAR439859 and GDC-0810 treatments displayed suppressive activity of ERα signaling, with more marked ERα suppression achieved by SAR439859 compared with GDC-0810 (Supplementary Fig. S8B).

**Discussion**

Identification of a novel, best-in-class SERD has been a major focus of research and drug development for the treatment of ER+ breast cancer. SAR439859 is a novel SERD that has a biological profile and pharmacokinetic properties that distinguish it from other SERMs and SERDs that have entered the clinic. SAR439859 did not exhibit ERα agonistic activity when compared with tamoxifen on the uterus. At 100 mg/kg dose, which achieves tumor growth inhibition in tumor models, no increase in uterine wet weight, endometrial thickness or C3-complement gene expression was observed suggesting that SAR439859 is inducing ERα full antagonist activity (Fig. 2A–D).

These biological observations are in agreement with SAR439859 inducing conformational change in helix 12 of the ERα (53).

As mechanisms of resistance to endocrine therapy continue to emerge, it is important to understand the efficacy of these ligands on both WT and mutant ERs in breast cancer models. SAR439859 is a nonsteroidal, potent, full antagonist with high affinity for ERα and degrades the WT and mutant Y537S and D538G ER, suggesting that these mutations do not preclude SAR439859-induced ERα degradation (Fig. 1). Potent antagonist and anti-proliferative activity were observed in vitro in MCF7 driven by either WT or mutant ERα, as well as tamoxifen resistant LCC2 breast cancer cells (Fig. 1D and I; Supplementary Fig. S1B). This anti-proliferative activity on MCF7 and Y537S ER MCF7 translated to tumor regression in these in vivo xenograft models (Fig. 3B; Supplementary Fig. S3C). Furthermore, SAR439859 demonstrated antitumor activity in HC1013 PDX, which harbors the Y537S mutation and is resistant to tamoxifen treatment (Supplementary Table S3; Fig. 3H; Supplementary Fig. S4D). These results suggest that SAR439859 may be an effective therapy to combat resistance induced by tamoxifen treatment or by the development of ER LBD mutations.

In this study we show that SAR439859, with its fluoropropyl-pyrrolidinyl side chain, displays a differential biology compared with SERDs containing a cinnamic acid side chain, such as GDC-0810 and AZD9496. Indeed, SAR439859 displayed greater ERα signaling suppression and higher ERα degradation (Dmax), that was positively correlated to maximal growth inhibition (Emax) across many breast cancer cell lines.

Replacement of the cinnamic side chain in the GDC-0810 or AZD9496 molecules with fluoropropyl pyrrolidinyl side chain confirms the important role that this side chain has in SERD-mediated ERα antagonism and degradation. Indeed, both hybrid compounds, GDC-SAR and AZD-SAR, improved inhibition of ERα target gene expression as well as ERα degradation, compared with their parent compounds. In addition, the transcriptional signatures revealed that SERD molecules containing the fluoropropyl-pyrrolidinyl side chain cluster close to fulvestrant, suggesting a common mechanism of action. Furthermore, in the HC1013 PDX model, SAR439859 had improved efficacy over GDC-0810 and demonstrates antitumor activity achieving tumor regression at multiple doses (12.5 and 25 mg/kg; Supplementary Table S3; Fig. 3H). SAR439859 antitumor activity was correlated to a downregulation in ERα protein levels and an inhibition of ERα activity. Interestingly, several studies have reported that in in vivo MCF7 xenograft model, GDC-0810 at the selected dose of 100 mg/kg, like SAR439859 can drive complete ERα saturation and tumor regression (26, 35). These data are consistent with the aforementioned in vitro data and suggests that MCF7 model alone cannot discriminate between different classes of SERD compounds and therefore testing additional breast cancer models is critical to identify the SERD with optimal ERα antagonist and degrader activity.

In our study, cell lines with higher ERα protein levels such as MDA-MB-134VI, SUM44PE, and HCC1428-LTED exhibited the most functional divergence between the two classes of SERD compounds (Supplementary Fig. S9; Supplementary Table S4). In these cell lines, GDC-0810 and AZD9496 showed suboptimal antiproliferative activity, questioning the potential role of ERα protein levels in resistance to ERα-targeted therapies, such as SERDs containing cinnamic acid side chains. Consistent with our study, a recent report by Guan and colleagues also reported a functional divergence between the SERD classes defined by a fluorooalkylamine or cinnamic acid side chain, with improved ERα antagonism and degradation resulting in higher in vitro and in vivo efficacy of GDC-0927, a SERD containing a fluorooalkylamine side chain (26).

SAR439859 has a similar in vitro biological profile to fulvestrant with regards to ERα antagonism, degradation, target gene signature and inhibition on tumor cell proliferation. However, SAR439859 achieves tumor regression in HC1013 PDX model whereas fulvestrant treatment at 200 mg/kg with exposure 8×-fold higher than the human equivalent dose, results in partial antitumor activity (Fig 5F; Supplementary Figs. S7A–S7C, refs. 20, 54). Importantly, SAR439859, unlike fulvestrant, can be administered orally and is not limited by its dose and exposure.

In summary, these results highlight the importance of specific structural elements in driving full ERα antagonism and maximal ERα degradation which achieves strong suppression of the ERα signaling pathway, induces greater growth inhibition across a broad range of breast cancer cell lines, and improves in vivo efficacy. On the basis of its global preclinical profile and in vivo anti-tumor activity, SAR439859 has key mechanistic features to become a best-in-class SERD with the potential to show broader clinical benefit than fulvestrant in patients post-tamoxifen treatment. SAR439859 is currently undergoing clinical trials to assess whether these preclinical observations can be confirmed in breast cancer patients. The outcomes from ongoing clinical trials assessing SAR439859 as a single agent and in combination with palbociclib (NCT03284957) in patients with ER+/HER2— metastatic breast cancer, who have previously received hormonal therapy, are being eagerly awaited.

**Data Availability**

RNA-seq raw data, count matrix, and metadata are publicly available in the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under data repository accession no. GSE154058.

**Authors’ Disclosures**

J. Pollard reports personal fees from Sanofi during the conduct of the study, personal fees from Sanofi outside the submitted work, and a patent for SARD relationships pending. Y. El-Ahmad reports a patent for WO2017140669 issued. V. Cerrit reports a patent for WO2017140669 issued to Sanofi. B. Fîloşe-Rommè reports a patent for EP 16305174.1 issued. C. Garcia-Echeverria reports other disclosures from Sanofi outside the submitted work. M. Beauboua reports nonfinancial support from Sanofi during the conduct of the study; nonfinancial support from Sanofi outside the submitted work; and a patent for the discovery of SAR439859 issued. No disclosures were reported by the other authors.
References


Molecular Cancer Therapeutics

SAR439859, a Novel Selective Estrogen Receptor Degrader (SERD), Demonstrates Effective and Broad Antitumor Activity in Wild-Type and Mutant ER-Positive Breast Cancer Models

Maysoun Shomali, Jane Cheng, Fangxian Sun, et al.

Mol Cancer Ther Published OnlineFirst December 11, 2020.

Updated version
Access the most recent version of this article at: doi:10.1158/1535-7163.MCT-20-0390

Supplementary Material
Access the most recent supplemental material at: http://mct.aacrjournals.org/content/suppl/2021/01/09/1535-7163.MCT-20-0390.DC1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/early/2020/12/11/1535-7163.MCT-20-0390. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.