Threonine Tyrosine Kinase Inhibition Eliminates Lung Cancers by Augmenting Apoptosis and Polyploidy

Lin Zheng¹, Zibo Chen¹, Masanori Kawakami¹, Yulong Chen¹, Jason Roszik², Lisa Maria Mustachio¹, Jonathan M. Kurie¹, Pamela Villalobos⁴, Wei Lu⁴, Carmen Behrens⁴, Barbara Mino⁴, Luisa M. Solis⁴, Jennifer Silvester⁶, Kelsie L Thu⁶, David W Cescon⁶, Jaime Rodriguez-Canales⁴, Ignacio I. Wistuba⁴, Tak W. Mak⁶, Xi Liu¹, Ethan Dmitrovsky¹, Jonathan M. Kurie¹

From the Departments of ¹Thoracic/Head and Neck Medical Oncology, ²Melanoma Medical Oncology, ³Genomic Medicine, ⁴Translational Molecular Pathology, and ⁵Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030; ⁶The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9; ⁷Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201.

Note: Lin Zheng and Zibo Chen contributed equally to this manuscript.

Correspondence to: Ethan Dmitrovsky, MD, P.O. Box B, Frederick, MD, 21702-1201

Phone: 301-846-1154

Email: ethan.dmitrovsky@nih.gov

Running title: TTK Inhibition and Lung Cancer

Keywords: Threonine Tyrosine Kinase, Mps1, polyploidy, MAPK and lung cancer.

Conflict of Interest: no conflicts of interest are noted by the authors.
Abstract

The spindle assembly checkpoint (SAC) maintains genomic integrity. A key component is threonine tyrosine kinase (TTK, also known as Mps1). TTK antagonism is hypothesized to cause genomic instability and cell death. Interrogating The Cancer Genome Atlas (TCGA) revealed high TTK expression in lung adenocarcinomas and squamous cell cancers versus the normal lung ($P < 0.001$). This correlated with an unfavorable prognosis in examined lung adenocarcinoma cases ($P = 0.007$). TTK expression profiles in lung tumors were independently assessed by RNA in situ hybridization (RNA-ISH). CFI-402257 is a highly selective TTK inhibitor. Its potent antineoplastic effects are reported here against a panel of well-characterized murine and human lung cancer cell lines. Significant anti-tumorigenic activity followed independent treatments of athymic mice bearing human lung cancer xenografts (6.5 mg/kg, $P < 0.05$; 8.5 mg/kg, $P < 0.01$) and immunocompetent mice with syngeneic lung cancers ($P < 0.001$). CFI-402257 antineoplastic mechanisms were explored. CFI-402257 triggered aneuploidy and apoptotic death of lung cancer cells without changing centrosome number. Reverse phase protein arrays (RPPAs) of vehicle versus CFI-402257-treated lung cancers were examined using more than 300 critical growth-regulatory proteins. RPPA bioinformatic analyses discovered CFI-402257 enhanced mitogen-activated protein kinases (MAPK) signaling, implicating MAPK antagonism in augmenting TTK inhibitory effects. This was independently confirmed using genetic and pharmacologic repression of MAPK that promoted CFI-402257 anticancer actions. TTK antagonism exerted marked antineoplastic effects against lung cancers and MAPK inhibition cooperated. Future work should determine if CFI-402257 treatment alone or with a MAPK inhibitor is active in the lung cancer clinic.
Introduction

Altered cell cycle progression is a hallmark of cancer (1,2). Fidelity of the cell cycle is monitored by checkpoints to ensure that essential steps are properly completed before initiation of subsequent phases (3). The spindle assembly checkpoint (SAC) is a conserved pathway in eukaryotes that arrests the cell cycle in mitosis until all chromosomes form stable bipolar attachments to the mitotic spindle (4). Defects in SAC function result in chromosome missegregation by allowing mitotic exit in the presence of unattached kinetochores (5-7). It is previously reported that SAC inactivation generates lethal genomic instability in cancer cells (8-10).

Threonine tyrosine kinase (TTK, also called Msp1), is a key component of SAC; it was identified as a surveillance mechanism to ensure mitotic fidelity and genome stability (11). Cancers such as lung cancers are highly proliferative, especially those that are most lethal, and thereby have high levels of expression of cell cycle-expressed genes, including TTK (12). TTK inhibition causes premature exit from mitosis with unattached chromosomes. This confers deleterious chromosome missegregation, aneuploidy and ultimately cell death (5,8-10,13). Reduced TTK activity substantially decreases cell viability (10,14). Enhanced TTK mRNA expression was frequently found in breast cancers, including triple-negative breast cancers (14,15). Intriguingly, TTK was highlighted as an attractive antineoplastic target through comprehensive analysis that combined RNAi screening with gene expression profiles of human breast cancers (14). TTK mRNA levels were elevated in hepatocellular carcinoma, pancreatic cancer, gastric cancer, and other cancers (16-18).

This study confirmed and extended prior work by reporting TTK mRNA expression (as
assessed using The Cancer Genome Atlas (TCGA) was significantly higher in human lung adenocarcinomas (ADs) and squamous cell carcinomas (SCCs), as compared to normal lung tissues. These expression findings were independently assessed by RNA in situ hybridization (RNA-ISH) of tissue microarrays (TMAs) of human lung cancers versus normal lung tissue. The findings revealed a link existed between TTK expression and lung cancer biology.

To explore directly this relationship further, antineoplastic activity of the TTK inhibitor CFI-402257 was explored against lung cancers. This selective TTK inhibitor (Figure S1) exerts potent TTK antagonism and anticancer effects in vitro and in vivo (14,19). It is undergoing testing as part of a phase I clinical trial for treatment of advanced solid tumors (ClinicalTrials.gov ID: NCT02792465). One limitation of prior work was that antineoplastic activity was not previously studied in lung cancer, the leading cause of cancer death for men and women (20).

This study addressed this knowledge gap by systematically examining CFI-402257 antineoplastic activity in murine and human lung cancer cell lines as well as in syngeneic and athymic murine lung cancer models. Engaged TTK-inhibitor mechanisms were elucidated. Prominent increases in polyploidy were observed in these cancer cells after CFI-402257 treatment. This was associated with increased apoptotic cancer cell death. Translational relevance of this work was confirmed by analysis of TTK expression profiles in lung cancers using TCGA and by RNA-ISH analysis of lung cancer TMAs. TTK expression in lung cancers was compared to that of proliferation markers.

Aneuploidy is a hallmark of cancer (21). It is a frequent feature of human cancers and is associated with a poor prognosis (21,22). Aneuploidy can have detrimental effects on cellular homeostasis and survival by promoting apoptosis (22).
This study found that the TTK inhibitor CFI-402257 elicits marked anticancer effects in lung cancer by augmenting polyploidy and apoptosis. Reverse phase protein array (RPPA) is a useful tool to elucidate whether other pathways are engaged by TTK antagonism. Candidate pharmacologic targets that could cooperate with TTK inhibition were uncovered and included augmented MAPK pathway signaling. Antagonism of MAPK pathway was shown to increase CFI-402257 antineoplastic activity. Taken together, the findings presented here indicate that TTK antagonism holds promise for combating lung cancers, especially in concert with a MAPK inhibitor.

Material and Methods

Data Sets

Gene expression profiles and clinical data for the studied lung cancer cases along with histologically normal lung tissues were obtained from TCGA, as previously described (23,24). We used in these analyses rnaseqv2 Level 3 RSEM data downloaded from this link: http://gdac.broadinstitute.org/runs/stddata__2016_01_28/.

Chemicals and Cell Culture

CFI-402257 was obtained from Dr. Tak Mak (Princess Margaret Cancer Centre). SCH772984 was purchased (Selleck Chemicals, Houston, TX). Murine lung cancer cell lines ED1, 393P and LKR13 were derived from lung cancers of wild-type cyclin E, KrasLA1/+p53R172△G and KrasLA1/+ transgenic mice, respectively, and were authenticated as previously described (25-29). Human lung cancer cell lines A549, H1299 and H226 were authenticated by and purchased from American Type Culture Collection (ATCC, Manassas, VA). These cells were cultured, as before (27).
In Situ Hybridization

TTK ISH profiles were obtained from 259 formalin-fixed paraffin embedded (FFPE) resected non-small cell lung carcinomas (NSCLCs) with each case placed in a TMA. All cases underwent surgical resection at The University of Texas MD Anderson Cancer Center. Written informed consent was obtained from all patients under a protocol approved by the Institutional Review Board (IRB). Patient study was conducted in accordance with Declaration of Helsinki, International Ethical Guidelines for Biomedical Research Involving Human Subjects (CIOMS), Belmont Report and U.S. Common Rule.

TTK ISH was performed using an automated RNAscope assay and the Leica Bond RX autostainer (Leica Microsystems, Wetzlar, Germany) to visualize individual RNA molecules in cells as single signals in FFPE specimens. The was performed using the BOND RX system. In brief, 5µm thick tissue sections were deparaffinized and rehydrated following the Leica Bond protocol; antigen retrieval was with ER2 (BOND Epitope Retrieval Solution 2) at 95°C for 15 minutes and ACD Protease treatment at 40°C for 15 min; RNA-specific probes were hybridized to target RNA for 120 min at 42°C. Signals were amplified in multiple steps, which were followed by hybridization to horseradish peroxidase (HRP)-labeled probes. Detection was with the 3,3-diaminobenzidine (DAB) chromogenic substrate. Cells were counterstained with hematoxylin. These RNAscope probes were examined: TTK (target probe) (Hs-TTK, 445138, Advanced Cell Diagnostic, Hayward, CA), housekeeping gene PPIB (positive control) (Hs-PPIB, 313908, Advanced Cell Diagnostic, Hayward, CA) and bacterial gene DapB (negative control) (312038, Advanced Cell Diagnostic, Hayward, CA). Positive and negative controls were used.

RNA ISH slides were digitally scanned using the Aperio® ScanScope AT2 (Leica...
Microsystems, Wetzlar, Germany) with 40X objective magnification. TTK RNA expression was evaluated using an Aperio Image Toolbox™ and the RNA ISHv2 algorithm. Signals were quantified and an H-score obtained, as follows: cells expressing the target probe were scored as category levels of 0 (no staining), 1+ (1–5 dots/cell), 2+ (6–20 dots/cell), and 3+ (21 or more dots/cell). The extent of expression was reported as the percentage of cells within each scored group. The final H-score was obtained by multiplying the respective category levels and values (range, 0–300).

Small Interfering RNA (siRNA) Transfections

Human and murine TTK-targeting siRNAs were purchased (GE Healthcare, Pittsburgh, PA). Target sequences were: ON-TARGETplus non-targeting control pool (D-001810-10) that served as control siRNA, human TTK siRNA1 (J-004105-10): GCAAUACCUGGAUGAUUA; human TTK siRNA2 (J-004105-12): GAUAGUGUGAUGAAUGCUA; murine Ttk siRNA 1(J-047162-07): UCAGUUAACGGAAGAAUUU; and the murine Ttk siRNA2 (J-047162-08): GAUGGAAUGCUAAAGCUAA. Cells were transfected with siRNA at a final concentration of 100nM using DharmaFECT Duo transfection reagent (GE Healthcare). Five days (A549, H1299, and H226) or 4 days (ED1, 393P, and LKR13) after transfection, cell viabilities were measured using WST-1 reagent (Takara, Mountain View, CA), according to the manufacturer’s recommendations. Non-targeting control siRNAs were screened by genome wide microarray analyses to establish minimal off-target effects. The negligible effects of transfected control siRNAs on cell viability were used to normalize the observed experimental siRNA-mediated effects.

Proliferation Assay

Cell proliferation was assessed by the Sulforhodamine B (SRB) colorimetric assay using
previously optimized methods (30).

Apoptosis Analysis

Cells treated with vehicle, dimethyl sulfoxide (DMSO), or CFI-402257 for 3 days and were harvested, stained with Annexin V/propidium iodide, and analyzed following established methods (24).

Multipolar Anaphase Assays

Multipolar anaphase assays were conducted following established methods (31). For centrosome and mitotic analyses cells were fixed, stained with the anti-α-tubulin-specific antibody and with DAPI before mounting with Pro-Long Gold antifade reagent. Stained cells were scored for multipolar anaphase cells using an Eclipse TE 2000-E microscope (Nikon). Primary antibodies were α-tubulin (NB600-506; Novus Biologicals; 1:1,500) and γ-tubulin (T5326; Sigma Aldrich; 1:1,000). Secondary antibodies were Texas red anti-murine IgG (H + L) (TI-2000; Vector Laboratories; 1:500), Alexa fluor 594 anti-rat IgG (A21209; Invitrogen; 1:1,000), and fluorescein anti-murine IgG (FI-2000; Vector Laboratories; 1:100). Hoechst 33342 (62249; Thermo Scientific; 1:10,000) stained for DNA. Pro-Long Gold anti-fade reagent (P36934; Invitrogen) preserved immunofluorescence.

DNA Polyploidy Analysis

DNA polyploidy analyses were conducted following optimized methods (14). After 48 hours of treatment with vehicle (DMSO), CFI-402257 or other drug treatments, cells were harvested and fixed in 70% ethanol at -20°C for at least 4 hours. Cells were then stained with propidium iodide (PI)/RNase Staining Solution (Cell Signaling Technology, Danvers, MA) and analyzed by flow cytometer (BD Biosciences, San Jose, CA). DNA polyploidy was scored when observed peaks were beyond the diploid to tetraploid range.
In Vivo Experiments

All murine tumorigenicity studies were performed after the proposed studies were reviewed and approved by the MD Anderson Cancer Center Institutional Animal Care and Use Committee (IACUC). 393P murine lung cancer or H1299 human lung cancer cells were injected subcutaneously into 6 to 8-week old immunocompetent 129S2/SVPasCrl mice or immunodeficient athymic mice, respectively (Charles River Laboratories, Wilmington, MA). When the tumors reached a mean size of 100 mm3, mice were randomized into vehicle or CFI-402257 treatment groups. Mice received vehicle (90% PEG-400) or CFI-402257 treatments at the indicated dosages for 21 days by oral gavage (n = 15 mice per group). Tumor volume (V) was calculated as $V = \frac{\text{length} \times \text{width}^2}{2}$. The individual relative tumor volume (RTV) was calculated according to the formula: $\text{RTV} = \frac{V_n}{V_0}$, where V_n was tumor volume on day n and V_0 was tumor volume on the first day of treatment.

RPPA

RPPA analyses were performed using cell lysates from syngeneic 393P lung cancer cell line-derived xenografts from mice treated with vehicle or CFI-402257 for 5 days (n = 5 mice per group). Cell lysates were arrayed on nitrocellulose-coated slides and probed individually with 304 antibodies that respectively recognize specific growth-regulatory proteins, as before (24).

Immunoblot Analyses

After treatment, cells were lysed using ice-cold radioimmunoprecipitation (RIPA) buffer with protease inhibitors (Selleck Chemicals, Houston, TX) before immunoblotting was done as in prior work (24).

Statistical Analysis
Dose-response data were analyzed with nonlinear regression using GraphPad Prism. RPPA and gene expression data from RNA-sequencing of TCGA were obtained from public TCGA data repositories. Kaplan-Meier survival analyses were performed using the ‘survival’ R package. Spearman’s rank correlation coefficients were determined using the R software. When comparing two groups, two-tailed Student’s t-tests were used. Differences and correlations were considered significant when P < 0.05. Combination treatments were assessed, as before (32).

Results

TTK Expression Profiles in Human Lung Cancers

TTK mRNA expression profiles within human lung cancers were analyzed using the TCGA database. Findings revealed that TTK levels were statistically significantly higher in both ADs (P < 0.001) and SCCs (P < 0.001) as compared with those in normal lung tissues (Figure 1A). The elevated levels of TTK expression in lung ADs were associated with an unfavorable survival (P < 0.01), as displayed in Figure 1B. TTK mRNA expression levels varied within lung cancer TMAs, as in the representative photomicrographs of Figure 1C. Higher TTK RNA ISH expression had a trend to reduced survival in lung ADs, as shown in Figure 1D. In NSCLC TMAs, there was a statistically significant positive correlation (Spearman Rho = 0.259, P=0.000188) between TTK mRNA expression and Ki-67 expression, as in Figure 1E. TCGA NSCLC database confirmed that TTK mRNA positively correlated with Ki-67 expression (Spearman Rho = 0.799 for ADs, Spearman Rho = 0.511 for SCCs) and PCNA expression (Spearman Rho = 0.737 for ADs, Spearman Rho = 0.481 for SCCs). All of these correlations are highly statistically significant, as displayed in Figure 1E. Notably, TTK
mRNA ISH expression was higher in former and current smokers than in non-smokers with lung cancers (Figure S2a). These clinical associations provided a rationale for studying the antineoplastic effects of antagonizing TTK activity in lung cancer cells, as was next examined.

Antiproliferative Effects of CFI-402257

The TTK inhibitor used (CFI-402257) was designed based on a scaffold hopping strategy and was optimized as a selective agent with favorable oral bioavailability (14,19). To determine the antineoplastic activity of CFI-402257 in lung cancer, dose-dependent proliferation responses were explored using different drug concentrations in genetically-defined murine lung cancer cell lines (ED1, 393P and LKR13) and treatments over 3 days with comparisons made to vehicle controls. CFI-402257 exerted potent growth-inhibitory responses in the studied murine lung cancer cell lines that were derived from transgenic mice whose tumors were driven by KRAS and/or p53 expression. Following 3 days treatment of cells with CFI-402257 (10nM dosage), marked growth inhibition (relative to controls) was observed in each of these murine lung cancer cell lines, as shown in Figure 2A-C. The consequences of CFI-402257 treatments were examined further in these human lung cancer cells lines: A549, H1299 and H226. As displayed in Figure 2D-F, human lung cancer cells also responded markedly to CFI-402257 treatments (IC50 for A549, 7.6nM; for H1299, 6.6nM; and for H226, 92.1nM) even in cells known to express the KRAS oncoprotein and/or the mutant p53 protein, as reviewed (33). That human AD cell lines are frequently sensitive to CFI-402257 treatment was established in Figure S2b.

To confirm independently that TTK was an anti-cancer target, a genetic strategy was used to reduce TTK expression in murine and human lung cancer cells using independent siRNA-based transfections with two different TTK-targeting siRNAs versus control siRNAs. Efficient
knockdown of TTK expression was confirmed by immunoblot analysis (Figure S3). Reduction of TTK expression by use of siRNAs significantly inhibited the growth of both murine (Figure 2G-I) and human (Figure 2J-L) lung cancer cells.

Whether CFI-402257 treatment of lung cancer cell lines that harbor wild-type (ED1, H1299 and H226) or mutant (393P, LKR13 and A549) KRAS species or those that express wild-type (ED1, LKR13, A549) or mutant (393P, H226) or deficient (H1299) p53 species had different response profiles was examined. The data presented in Figure 2 confirmed that KRAS or p53 mutations alone or cells with dual KRAS/p53 mutations, respectively, did not alter the response of these lung cancer cell lines to CFI-402257 treatments.

CFI-402257 Promotes Apoptosis and Polyploidy

Centrosome deregulation is a frequent feature of human cancers (34). TTK-dependent SAC activity plays an important role in protecting against the deleterious consequences of supernumerary centrosomes by enabling bipolar spindle assembly and preventing multipolar cell division (35,36). There are reports that question whether TTK inhibitors affect centrosome duplication or multipolar cell division (37-40). However, appreciable differences were not detected in centrosome numbers or in the percentages of multipolar anaphase lung cancer cells between vehicle- and CFI-402257-treated cellular populations, as depicted in Figures 3A-B.

Inhibition of TTK activity is reported to promote chromosome missegregation, polyploidy and cell death (5,9,10,41-43). Given this, it was determined if CFI-402257 treatment augmented polyploidy. As displayed in Figure 3C, CFI-402257 treatment (at dosages of 40nM, 200nM or 1000nM) produced a statistically significant increase in the proportion of lung cancer cells that exhibited an aneuploid DNA content. Not surprisingly, CFI-402257-
induction of polyploidy was accompanied by a statistically significant promotion of apoptotic cells after this treatment, as shown in Figure 3D.

CFI-402257 Treatment and In Vivo Tumorigenicity

In vivo CFI-402257 antineoplastic effects in lung cancers were examined using two models displayed in Figure 4. The first was the 393P murine lung cancer syngeneic model and the second was the H1299 human lung cancer xenograft model in athymic mice. 393P and H1299 lung cancer cells were independently subcutaneously injected into immunocompetent syngeneic mice and immunodeficient athymic mice, respectively, as described in the Materials and Methods. The resulting tumors were subsequently allowed to reach a mean tumor volume of 100mm3 before CFI-402257 drug administration began. For these experiments, CFI-402257 was administered at different doses (6.5 or 8.5 mg/kg for 129S2/SVPasCrl mice and independently with 5.0mg/kg or 6.5mg/kg for athymic mice) by oral gavage once daily for three weeks.

As in Figure 4A, when 393P murine syngeneic mice were treated with CFI-402257 for 3 weeks, the relative tumor volumes (RTVs) of vehicle versus 6.5mg/kg or 8.5mg/kg treated groups were 11.3, 5.1, and 2.7, respectively. Thus, CFI-402257 treatment statistically significantly inhibited lung cancer growth *in vivo* (6.5 mg/kg group versus vehicle group: $P < 0.001$; 8.5 mg/kg group versus vehicle group: $P < 0.001$). There was no appreciable treatment-induced body weight loss or observed toxicities or death that followed CFI-402257 treatments during the study period. Thus, CFI-402257 treatment was well tolerated in mice at dosages that exerted statistically significant antitumorigenic effects, as in Figure 4B. Excised tumors were weighed after completion of CFI-402257 or vehicle treatments and inhibition rates (IRs) of treated groups were calculated according to average tumor weights. The IRs of
the 6.5 mg/kg and 8.5 mg/kg treatment groups were 44.9% and 75.2%, respectively, as displayed in Figure 4C and Figure S4A. Similar results were observed after treatment of athymic mice bearing H1299 xenografts. Examined CFI-402257 treatment dosages (5.0 mg/kg and 6.5 mg/kg) statistically significantly repressed lung cancer growth (for the 5.0 mg/kg group versus vehicle control group, \(P < 0.05 \), and for the 6.5 mg/kg group versus vehicle was \(P < 0.01 \)) without observed toxicities (see Figure 4D-F and Figure S4B).

Pathways that Cooperate with TTK Inhibition

To uncover downstream pathways regulated by TTK inhibition that potentially cooperate with CFI-402257-treatment and augment repression of lung cancer growth, an RPPA-based investigation was undertaken. Lung tumors were harvested after independent vehicle or 6.5 mg/kg or 8.5 mg/kg CFI-402257 5-day treatments. Expression profiles of 304 critical growth-regulatory proteins were studied by RPPA and results appear in Figure 4G and Figure S4C. Profiles of expressed proteins that were consistently associated with induced growth inhibition and apoptosis of the indicated lung cancers included mTOR and Bcl-xL that were each statistically-significantly altered across these different CFI-402257 treatment dosages. These results linked changes in protein expression to anti-neoplastic effects after TTK inhibition.

It was next sought to learn if a correlation existed between TTK mRNA expression using TCGA database and growth-regulatory protein profiles displayed in the RPPA database. Figure 5A shows those species that were significantly correlated with TTK expression in TCGA database. Intriguingly, key components of the MAPK signaling pathway were highlighted including MEK1, p44/42 MAPK (Erk1/2) and c-Raf proteins. Expression of these species were consistently affected by CFI-402257 treatment across at least one of the
examined treatment doses. Phosphorylation species of these proteins were augmented after these CFI-402257 treatments. This raised the prospect that CFI-402257 treatment was directly linked to the observed increase in MAPK activity. This hypothesis was supported by immunoblot analyses of lung cancer cells. Phosphorylation of MEK and ERK proteins each increased in examined murine (393P) and human (A549) lung cancer cells that were independently treated with 40nM, 200nM or 1000nM dosages of CFI-402257, but their total protein expression levels were not appreciably affected (Figure 5B).

The MAPK pathway acts as an oncogenic signal to promote cancer cell survival, proliferation, metastasis and drug resistance (44,45). Increased activity of MAPK pathway was hypothesized to interfere with the observed antineoplastic effects of CFI-402257 treatment. Whether combining inhibitors that targeted MAPK pathway components with the TTK antagonist CFI-402257 affected antineoplastic response was explored. As shown in Figure 5C and Figure S5B, the ERK1/2 specific inhibitor SCH772984 and CFI-4020257 had synergism at relatively low concentrations, using the Chou and Talalay assay, as described (46). Independent analysis of the relationship between clinical survival in lung cancer and expression of MAPK or TTK expression was conducted using TCGA. Notably, MAP2K1 (MEK1) or MAP2K2 (MEK2) high expression when combined with TTK high expression profiles in lung ADs indicated an unfavorable survival (Figure 5D and Figure S5A). Together, these analyses provide a strong rationale for combining a MAPK pathway inhibitor with a TTK inhibitor to combat lung cancer.

Discussion

SAC functions to prevent chromosome missegregation, ensuring precise cellular division
and cell proliferation (47). Targeting this process is an appealing antineoplastic strategy (2,4-6). SAC function depends on TTK activity, which makes it a promising anti-cancer therapy (48). This study explored the relationship between TTK expression and lung cancer biology. TTK expression was statistically significantly higher in lung cancers than in corresponding normal lung tissues, while TTK mutations were rare in lung cancers (Figure S6). This conferred an unfavorable survival in these lung cancer cases. This insight into lung cancer biology was built upon by determining whether the TTK inhibitor CFI-402257 is active against lung cancers in vitro or in vivo.

The TTK inhibitor CFI-402257 exhibited potent antineoplastic activity against both murine and human lung cancers. No single gene mutation was reported to drive either the response or resistance to TTK inhibition in the examined cancer cells (14). Consistent with this prior work, lung cancer cells were highly responsive to CFI-402257 treatment, independent of expression of the KRAS oncoprotein, which would address an unmet therapeutic need in oncology, as reviewed (33). Likewise, expression of the mutant p53 protein alone or with the KRAS oncoprotein did not appear to affect TTK inhibitor response.

Aneuploidy or chromosomal instability (CIN) occur in most human solid tumors (49). Their roles in cancer biology are complex. It is an unresolved question if they act as a consequence or driver of tumorigenesis or as an antineoplastic target (22). These processes lead to changes in mRNA and protein expression of growth-regulatory genes including oncogenes and tumor suppressors (33,49). The balance between these tumorigenic and anti-tumorigenic effects of aneuploidy or CIN determine whether cancer growth is enhanced or repressed (22). Aneuploidy and CIN can lead cancer cells to have phenotypic variation and heterogeneity. This allows cancers to survive, progress or respond to or become refractory to
antineoplastic treatments (50). Aneuploidy and CIN can trigger lethal DNA damage and genomic instability (51). This study of the TTK inhibitor CFI-402257 for treatment of lung cancers revealed that an increase in polyploid cancer cells follows this drug treatment. This increase in CIN likely reached a critical threshold that caused death of the treated cancer cells.

Drug combinations could augment therapeutic activity of a TTK inhibitor. This might even overcome resistance to a TTK antagonist. Given this, an approach was taken to uncover potential antineoplastic pathways that cooperate with TTK antagonism. Bioinformatic examination of RRPAs performed in CFI-402257-treated syngeneic murine lung cancers, coupled with interrogation of TCGA databases identified candidate cooperating targets (see Figure 5). Antineoplastic effects of CFI-402257 treatment were associated with an increase in expression of the key growth regulator, MAPK. When coupled with treatment with a TTK inhibitor, MAPK antagonism augmented TTK antineoplastic effects. Prior work found that MAPK activity increased TTK phosphorylation at the M phase of the cell cycle, but how TTK activity precisely affects MAPK signaling remains to be discerned (52). This is the subject of future work since cooperative antineoplastic effects were observed between TTK antagonism and MAPK inhibition, as shown in Figure 5.

The MAPK pathway is deregulated in diverse human cancers (44). MAPK signaling occurs through a cascade of steps that act downstream of cell surface receptors, including the epidermal growth factor receptor (EGFR) and the RAS oncoprotein (53). Activated ERKs phosphorylate substrates including growth-regulatory transcription factors (44). The MEK-ERK cascade affects cancer cell proliferation, survival and metastasis, underscoring the broad functional role played by this pathway in human cancer biology (53). Independent
analyses of TCGA and RPPA databases found that augmented expression of MAPK pathway components (MAP2K1 and MAP2K2) and TTK were linked to the biology of lung cancers. It was therefore not surprising that an ERK inhibitor augmented the antineoplastic effects of CFI-402257. It is proposed here that pharmacologic repression of these species will augment activity of a TTK inhibitor in the cancer clinic.

In summary, the TTK inhibitor CFI-402257 exerts marked antineoplastic effects against both murine and human lung cancers. This likely occurred by promoting lethal levels of polyploidy within these cancer cells. The mechanistic basis for cooperation between this TTK inhibitor and a MAPK antagonist should be pursued in the laboratory. The insights obtained would provide a rationale for exploring this cooperation in the lung cancer clinic.

Acknowledgements:

This work was supported partly by National Institutes of Health (NIH), National Cancer Institute (NCI) grants R01-CA087546 (E. Dmitrovsky), R01-CA190722 (J.M. Kurie and X. Liu), NCI contract HHSN261200800001E, a Samuel Waxman Cancer Research Foundation Award (E. Dmitrovsky), UT-STARs award (E. Dmitrovsky), and an American Cancer Society Clinical Research Professorship (E. Dmitrovsky). The authors thank Jianling Zhou, Auriole Tamegnon, and Mei Jiang in the TMP-IL Laboratory at MD Anderson Cancer Center for their help with performing ISH studies. The authors thank all members of the Mak and Dmitrovsky laboratories for their helpful consultations and Dr. Adi Gazdar at the University of Texas Southwestern for generously providing us lung cancer cell lines.

References:

53. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase

Figure Legends

Figure 1. TTK expression profiles in human lung cancers. (A) Comparison of TTK mRNA expression between normal (N) and malignant (T) lung, including adenocarcinomas (ADs) and squamous cell carcinomas (SCCs) within TCGA databases (n = 517 for T, 59 for N in AD; n = 501 for T, 51 for N in SCC). (B) Comparison of survival between TTK high versus low expressing cases in ADs within TCGA databases (the number of cases is displayed). (C) Microphotographs showing human non-small cell lung carcinomas (NSCLCs, a representative score 0 case is AD and the other displayed cases are SCCs) with different levels of TTK RNA ISH expression in malignant cells: 0 (no staining), 1+ (1–5 dots/cell), 2+ (6–20 dots/cell), and 3+ (21 or more dots/cell). Scale bars are shown. (D) Kaplan-Meier survival comparisons of TTK high versus low expression levels (using the median H-score as a cut-off) in ADs using NSCLC microarrays (the number of studied cases is shown). (E) Association between TTK RNA ISH expression and Ki67 IHC in NSCLC TMA. (F) Associations between TTK mRNA and Ki-67 expression as well as TTK mRNA and PNCA expression profiles in ADs and SCCs present within TCGA databases.

Figure 2. Antiproliferative effects of CFI-402257 treatment in the indicated murine and human lung cancer cell lines (A-F). Dose-response curves are displayed for the indicated murine (ED1, 393P and LKR13) and human (A549, H1299 and H226) lung cancer cell lines after CFI-402257 treatment for 72 hours. The indicated murine (G-I) and human (J-L) lung cancer cells were individually transfected with one of two different TTK-targeting siRNAs (at a final
concentration of 100nM). Cell viabilities were measured 5 days (for human cells) or 4 days (for murine cells) after transfection. The P values are two-tailed Student’s t-tests.

Figure 3. CFI-402257 treatment did not appreciably change centrosome number or multipolar anaphase. (A) Percentages of cells with different centrosome numbers after CFI-402257 treatment for 24 hours in murine (ED1 and 393P) and human (A549 and H1299) lung cancer cells. (B) Percentages of cells undergoing multipolar anaphase after CFI-402257 treatment for 24 hours in murine (ED1 and 393P) and human (A549 and H1299) lung cancer cells. Polyploidy and apoptosis were each augmented by CFI-402257 treatment. (C) Individual cells were treated with CFI-402257 at indicated concentrations for 48 hours before cells were harvested and fixed. The examined lung cancer cells were then stained with PI and analyzed by flow cytometry. DNA polyploidy was confirmed as the presence of peaks outside the diploid to tetraploid range. (D) The percentages of apoptotic cells after CFI-402257 treatment for 72 hours for murine (ED1, 393P and LKR13) and human (A549, H1299 and H226) lung cancer cells. The symbols indicate * $P < 0.05$, ** $P < 0.01$ and *** $P < 0.001$, respectively.

Figure 4. *In vivo* antitumorigenic effects of CFI-402257 treatment. (A) The 393P lung cancer cell line growth in 129S2/SVPasCrl mice was examined after treatment with vehicle, 6.5 mg/kg or 8.5 mg/kg of CFI-402257. Day 0 is the treatment start date. The relative tumor volumes (RTVs) are expressed as the mean ± standard deviation (SD) ($n = 15$ mice per group). (B) Body weights of mice did not significantly change during these treatments. The average body weight of each group is shown as mean ± SD ($n = 15$ mice per group). (C)
Comparisons of excised tumor weights after these treatments. Each symbol represents the tumor weight of a single mouse. (D) Comparison of H1299 lung cancer cell line growth in athymic mice treated with vehicle, 5.0mg/kg or 6.5mg/kg of CFI-402257 treatment. Day 0 is the treatment start date. The RTVs were expressed as the mean ± standard deviation (SD) (n = 8 mice per group). (E) The average body weight of each group is shown as mean ± SD (n = 8 mice per group). (F) Comparisons of excised tumor weights after these treatments are shown. Each symbol represents the tumor weight from a single mouse. (G) Protein expression was analyzed using RPPA of cell lysates from syngeneic 393P lung cancer cell line-derived tumors treated with vehicle or with CFI-402257 for 5 days. The 393P tumor-bearing mice were treated with vehicle, 6.5 mg/kg CFI-402257 orally for 5 days, after which tumors were harvested for RPPA analyses (n = 5 mice per group). When comparing 6.5mg/kg CFI-402257 to vehicle-treated controls, the proteins above the solid black line are significantly different (P < 0.05).

Figure 5. Interactions between TTK inhibition and the MAPK pathway. (A) RPPA species that significantly correlated with TTK mRNA expression are displayed from TCGA (green: negative correlation with TTK, red: positive correlation with TTK, n = 181 for adenocarcinomas (ADs) n = 192 for squamous cell carcinomas (SCCs). (B) CFI-402257 treatment increased activity of the MAPK pathway. Cells were independently treated with 40nM, 200nM or 1000nM of CFI-402257 for 72 hours, when protein extracts were immunoblotted with desired antibodies. (C) The anti-proliferation effects of CFI-402257 alone or in combination with the MAPK inhibitor SCH772984 are displayed at 72 hours. (D) The association is shown between survival, and expression of MAP2K1/MAP2K2 and TTK species (green: MAP2K low/TTK low, red: MAP2K
high/TTK high, with * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$).
Figure 1

A

TTK mRNA (TPM)

Adenocarcinoma Adjacent Normal Lung Squamous Cell Carcinoma Adjacent Normal Lung

B

Adenocarcinoma

TTK – \(p = 0.007 \)

TTK low

TTK high

Survival

Number at risk

0 20 40 60 80 100 120 140 160 180 200

Months

Adenocarcinoma

TTK – \(p = 0.193 \)

TTK low

TTK high

Survival

Number at risk

0 20 40 60 80 100 120 140

Months

C

Score 0

Score 1+

Score 2+

Score 3+

D

Adenocarcinoma

TTK – \(p = 0.193 \)

TTK low

TTK high

Survival

Number at risk

0 20 40 60 80 100 120 140

Months

E

Ki-67 Expression

Spear Rho = 0.259

\(P = 0.000188 \)

TTK ISH

F

Adenocarcinoma Squamous Cell Carcinoma

Ki-67 Expression

P < 2.2e-16

Spear Rho = 0.799

PCNA Expression

P < 2.2e-16

Spear Rho = 0.511

TTK mRNA

TTK mRNA

Downloaded from mct.aacrjournals.org on December 29, 2020. © 2019 American Association for Cancer Research.
Figure 2

A. ED1

B. 393P

C. LKR13

D. A549

E. H1299

F. H226

G. Relative cell number

H. Relative cell number

I. Relative cell number

J. Relative cell number

K. Relative cell number

L. Relative cell number

ED1: Control siRNA, TTK siRNA 1, TTK siRNA 2

393P: Control siRNA, TTK siRNA 1, TTK siRNA 2

LKR13: Control siRNA, TTK siRNA 1, TTK siRNA 2

A549: Control siRNA, TTK siRNA 1, TTK siRNA 2

H1299: Control siRNA, TTK siRNA 1, TTK siRNA 2

H226: Control siRNA, TTK siRNA 1, TTK siRNA 2

Log [Concentrations] (nM) vs. Cell Viability (%)

$\text{Log } \text{ [Concentrations] (nM)}$ vs. $\% \text{ Cell Viability}$

$p < 0.0001$ for ED1, $p = 0.0018$ for 393P, $p < 0.0001$ for LKR13, $p < 0.0001$ for A549, $p < 0.0001$ for H1299, $p < 0.0001$ for H226.
Figure 5

A

TTK mRNA

Lung squamous cell carcinoma
Lung adenocarcinoma

ACACA ACACBIACCC_pS79
ACACAACCC
AKT1 AKT2 AKT3/Akt_pS473
AKT1 AKT2 PTEN/Akt_pT308
AKT1S1PRAS40_pT246
AHR
ARIDIA1ARID1A
ASNS/ASNS
BAD/Bad_pS112
BAX/Bax
BCL2/Bcl-2
BCL2L11Bim
BID/Bid
CASP3/Caspase-3_active
CASP7/Caspase-7_cleavedD198
CAV1/Caveolin-1
CENB1/Cyclin_B1
CENP/Cyclin_E1
CENP/E2/Cyclin_E2
CHT1/Cathepin
COH1/Cathepin
COH2/Cathepin
COX1b1/Cox-1
COX2/Cox-2
COX3/Cox-3
CTNNB1/alpha-Catenin
CTNB1/beta-Catenin
DVL3/Dvl3
E2F1/E2F1
E2F2/E2F2
E2F3/E2F3
E2F4/E2F4
E2F5/E2F5
EGFR/EGFR
ER/ER-alpha
ER/ER-alpha_pS118
Esr1/ER-alpha
ESR2/ER-alpha
F11/F11bromodulin
FOXO3/FOXO3a
FOXO4/FOXO4a
GGTA3/GSK-3/GSK-3-alpha-beta
GF11HGF/IHGF-1-beta
IAP/Inhibitor
IRIS1/IRIS1
KDR/VEGFR2
KLC-KL
KRT5/CCK5
LCN2/LCN2
MAPK1/MEK1_pS217_S221
MAPK1/ MAPK3/ MAPK_pT202_Y204
MAPK9/ MAPK9_pT185
MAPK9/ MAPK9K2
MAPK14p38_pT180_Y182
MSH2/MSH2
MSH6/MSH6
MTOR/mTOR_pS2448
NAPSIN/Napsin A
PARK7/DJ-1
PCNA/PCNA
PDK1/PDK1_pS241
PEN1/PEN1
PECAM/CDC91
PGHPR
PKC/PKC-delta_pS664
PTEN/PTEN
RAF1/RAF1
RB1/Chk1
RB1_pS807_S811
REI/Ret_pY995
RPS6/RPS6
RPS26_S236
RPS6KA1/Elk1RSK_pT359_S363
RPS6KB1/70S6KB
RPS6KB1/70S6K
SERCING1TPAI-1
SCN1A_Scc_pT171
SMAD3/Smad4
SRC/Src_pY527
STAT3/STAT3_pY705
STAT5A/STAT5a-alpha
STK11/RB1
STMSNN1/Stathmin
SYK/Syk
SYN/Synaptophysin
TFIIIF1/TFF1
TGM2/Transglutaminase
TP53/p53
TP53BP1/53BP1
TP63/p63
TFT1/TFT1
TMY3/Thymidylate-Synthase
WAC/WAC1
YAP1/YAP-pS127
YBX1/YB-1_pS102
YWHAE14-3-3 epsilon

B

Survival Rate

Survival Rate

C

Concentration pairs

Concentration pairs

D

MAP2K1-TTK (p = 0.003)

MAP2K2-TTK (p = 0.001)
Molecular Cancer Therapeutics

Threonine Tyrosine Kinase Inhibition Eliminates Lung Cancers by Augmenting Apoptosis and Polyploidy

Mol Cancer Ther Published OnlineFirst July 29, 2019.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-18-0864

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2019/07/27/1535-7163.MCT-18-0864.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/early/2019/07/27/1535-7163.MCT-18-0864. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.