Co-Targeting Bulk Tumor and CSCs in Clinically Translatable TNBC Patient-Derived Xenografts via Combination Nanotherapy

Andrew Sulaiman,1,2,3 Sarah McGarry,1,3 Sara El-Sahli,1,3 Li Li,1 Jason Chambers,1 Alexandra Phan,1 Marceline Côté,1,2 Greg O. Cron,1,4,5 Tommy Alain,1,6 Yevgeniya Le,1,7 Seung-Hwan Lee,1 Sheng Liu,8 Daniel Figeys,1,2,3 Suresh Gadde1,* and Lisheng Wang1,2,3,9 *

1. Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
2. Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
3. China-Canada Centre of Research for Digestive Diseases, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada; Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai China, 200032.
4. Department of Radiology, Faculty of Medicine, University of Ottawa, 501 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
5. Ottawa Hospital Research Institute, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
6. Children Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.
7. Radiobiology and Health, Canadian Nuclear Laboratories, 286 Plant Rd., Bldg. 513, Rm. 216, Mail Stn. 51, Chalk River, ON, K0J 1J0, Canada.
8. Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai China, 200032
9. Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada.

^Contributed equally

Running Title: Nanotherapy inhibit TNBC PDX Bulk and CSCs
Keywords: TNBC, PDX, Nanomedicine, Wnt, YAP

Additional Information: This work is supported by operating grants from Canadian Breast Cancer Foundation-Ontario Region, Canadian Institutes of Health Research MOP-111224, and Natural Sciences and Engineering Research Council (NSERC) RGPIN-2017-05020 to LW; Alexander Graham Bell Canada Graduate Scholarship of NSERC to AS.

Full name, mailing address, phone and fax numbers, and email address of the corresponding author: Suresh Gadde and Lisheng Wang, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada, 613-562-5624 (phone), 613-562-5452 (fax), Sgadde@uottawa.ca and Lisheng.Wang@uottawa.ca

Conflict of Interest: The authors declare no potential conflicts of interest.
Abstract

Triple negative breast cancer (TNBC) accounts disproportionately for the majority of breast cancer related deaths throughout the world. This is largely attributed to lack of a specific therapy capable of targeting both bulk tumor mass and cancer stem cells (CSC) as well as appropriate animal models to accurately evaluate treatment efficacy for clinical translation. Thus, development of effective and clinically translatable targeted therapies for TNBC is an unmet medical need. We developed a hybrid nanoparticles-based co-delivery platform containing both paclitaxel and verteporfin (PV-NPs) to target TNBC patient-derived xenograft (PDX) tumor and CSCs. MRI and IVIS imaging were performed on mice containing PDX tumors to assess tumor vascularity and accumulation of NPs. NF-kB, Wnt and YAP activities were measured by reporter assays. Mice bearing TNBC PDX tumor were treated with PV-NPs and controls, and tumors progression and CSC subpopulations were analyzed. MRI imaging indicated high vascularization of PDX tumors. IVIS imaging showed accumulation of NPs in PDX tumors. In comparison to control-NPs and free-drug combination, PV-NPs significantly retarded tumor growth of TNBC PDX. PV-NPs simultaneously repressed NF-kB, Wnt and YAP that have been shown to be crucial for cancer growth, CSC development and tumorigenesis. In conclusion, NPs containing two clinically used drugs concurrently inhibited NF-kB, Wnt and YAP pathways and exhibited synergic effects on killing TNBC bulk tumor and CSCs. This combination nanotherapy evaluated with a PDX model may lead to an effective treatment of TNBC patients.
Introduction

Breast cancer remains a leading cause of death in women worldwide. Amongst the various breast cancer sub-types, triple negative breast cancer (TNBC, a highly heterogeneous disease) accounts for only one fifth of all breast cancers, but disproportionately accounts for the majority of breast cancer-related deaths. Relapse has been closely associated with cancer stem cells (CSCs) and is a major challenge in TNBC wherein approximately one third of patients will experience a distant recurrence within 2.6 years. In contrast to other breast cancer sub-types, due to lack of specific targets, conventional chemotherapy is still the clinical standard treatment for TNBC. However, chemotherapy has been shown to promote CSC enrichment after treatment.

In TNBC, CSCs have been found to coexist in two distinct but interconvertible subtypes: epithelial ALDH+ and mesenchymal CD44+/CD24- subpopulations that are closely associated with chemoresistance, tumor regrowth, and disease relapse. A recent study revealed that YAP signaling was highly activated in mesenchymal CSCs while Wnt signaling in epithelial CSCs. In addition, it has been found that NF-kB (nuclear factor-κB), an essential mediator of the inflammatory response, is a potent signaling modulator in tumor cells and tumor microenvironment. NF-kB stimulates Wnt and other signaling pathways and facilitates the survival of both bulk and CSC populations. As such, repression of NF-kB signaling has been considered as one of the most effective approaches in cancer treatment. We thus hypothesize that therapeutic strategies capable of effectively delivering drugs into tumor to co-inhibit NF-kB, Wnt and YAP signals and evaluating therapeutic efficacy with a clinically translatable model may lead to the effective treatment of TNBC.
Cancer nanomedicines overcome the intrinsic limits of drug delivery and conventional cancer therapies through their uniquely appealing features, such as improved blood circulation, increased tumor accumulation, reduced off-target toxicities, leading to a higher therapeutic index. However, in preclinical cancer research, the therapeutic efficacy of drugs and drugs formulated in NPs is assessed by using cancer cell line-based animal models that do not represent the heterogeneity and complexity of patients’ primary tumors. Even though cell lines originate from patient’s tumors, due to artificial tissue culture conditions, they have adapted for adherence/growth in a monoculture, leading to uniformity in cells and loss of heterogeneity. Most of the cancer cell lines used in preclinical research are genetically and epigenetically divergent from their starting source and real tumors. This agglomeration may culminate with artifact discoveries and clinical trial failures for the therapeutic agents including cancer nanomedicines. In contrast, PDX (Patient Derived Xenograft) tumors are obtained from patients and engrafted directly into immunocompromised mice, bypassing extensively in vitro selection. As such, PDX tumors retain the original patient’s tumor heterogeneity, three-dimensional architecture and microenvironment representing the tumors biology, and resulting in a 92% concordance with patient tumors.

In this report, we developed co-delivery NPs containing the conventional chemotherapeutic agent paclitaxel in combination with an FDA-approved porphyrin photosensitizer, verteporfin (PV-NPs). Paclitaxel is a routinely prescribed chemotherapeutic for the treatment of TNBC. It inhibits the mitotic spindle apparatus, preventing cancer cell division. However, resistance to paclitaxel is common in the clinic. Although the mechanism behind this phenomenon is still under investigation, paclitaxel-induced CSC enrichment has been demonstrated to be one of the key players mediating drug resistance and disease relapse.
Verteporfin is a FDA-approved photosensitizer for photodynamic therapy to eliminate the abnormal blood vessels in the eye such as macular degeneration \(^{18}\). Verteporfin has been reported to possess potent anti-cancerous activity in pancreatic and breast cancer patients \(^{19, 20}\) and is currently in a clinical trial for the treatment of breast cancer (NCT02939274). However, paclitaxel resistance, CSC enrichment, and drug delivery to tumors remain challenges in cancer treatment. Here, we provided the first demonstration that PV-NPs accumulate within TNBC PDX tumors and potently inhibit both bulk tumor mass and CSC populations. Furthermore, we showed that PV-NPs suppressed NF-kB, Wnt and YAP pathways that are crucial for cancer growth, CSC development and tumorigenesis. These findings suggest that the development of nanoparticle platforms encapsulated with specific drugs to promote synergetic inhibition of bulk tumor and CSCs is an effective and translatable approach for TNBC treatment.

Materials and Methods

Cell culture and reagents

MDA-MB-231 breast cancer cells were purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA) and maintained in DMEM-F12 media supplemented with 10% Fetal bovine serum (FBS, HyClone, Logan, UT, USA) and 1% penicillin/streptomycin. Cells were cultured at 37°C in a 5% CO\(_2\) incubator. Verteporfin was purchased from CalBiotech (El Cajon, CA, USA), and paclitaxel from Cedarlane (Burlington, ON, Canada). PLGA was purchased from LACTEL polymers, Lecithin from Alfa Aesar, and DSPE-PEG\(_{2K}\) from Avanti Lipids. Alexa Fluor 750 and Qdot800 were purchased from Thermo Fisher. ACN, dry DMF, and acetone were purchased from Fisher Chemicals.
Synthesis and Characterization of NPs

Lipid-polymer hybrid NPs were synthesized via previously reported nanoprecipitation method. Briefly, lecithin and DSPE-PEG₂K in molar ratio of 6.5:1 were dissolved in 4% ethanol aqueous solution (0.02% w/v) and heated for 2-4 mins at 68 °C under gentle stirring. After heating, PLGA (poly lactic co-glycolic acid) and appropriate drugs (10:1 w/w ratio) in either acetonitrile (ACN) or acetone (1-2 mg/ml) were added dropwise at 0.6ml/min rate and stirred at room temp to form self-assembly of hybrid NPs. NPs were concentrated, and purified by centrifugal filters and analyzed by ZetaView, Malvern Zetasizer (DLS) and TEM. Stability of NPs in biologically relevant conditions were tested according to literature procedure. The amount of paclitaxel encapsulated in NPs was analyzed using HPLC at 204 nm, with H₂O:ACN mobile phase with 5-90% ACN gradient. The amount of verteporfin encapsulated in NPs was quantified by Nanodrop at 430nm absorbance. Drug release profiles were performed using published procedures.

PLGA-Qdot800 conjugate was synthesized according to previously reported literature procedure. PLGA-Alexa750 conjugate was synthesized via ester coupling by reacting amine end group of PLGA with Alexa Fluor 750 NHS ester.

DAPI staining and fluorescence microscopy

MDA-MB-231 cells cultured on glass coverslips were treated with nanoparticle-Bodipy FL for 3 hours. After being fixed with 4% paraformaldehyde and stained with 100 ng/ml of DNA-specific fluorophore DAPI for one hour at room temperature, the coverslips were mounted on a glass slide for fluorescence microscopy. Fluorescence images were obtained by using a Leica AF6000 deconvolution microscope system equipped with a fully automated microscope.
DMI6000B) and a DFC350 FX digital camera (Leica Microsystems, Heidelberg, Germany). Fluorescence images were acquired under the identical exposure time and instrument settings among different groups, and analyzed using Leica LAS AF6000 software.

Flow cytometry analysis

Cancer cells or PDX tumor cells were dissociated and filtered through a 40 µm strainer and suspended in PBS supplemented with 2% FBS and 2mM EDTA. 1µL of mouse IgG (1mg/mL) was then added and incubated at 4 °C for 10 minutes. Afterwards, the cells were resuspended in 1× binding buffer (eBioscience, San Diego, CA, USA) and cell apoptosis was determined using Annexin-V-V450 Apoptosis Detection Kit (BD Bioscience). Afterwards, cells were incubated with the different reagents as described below at 4 °C for 30 minutes in ALDEFLUOR™ Assay Buffer. Anti-CD44 (APC) and anti-CD24 (PE) (BD Pharmingen) antibodies were added according to the manufacturer’s instructions as previously described. ALDH activity was determined using ALDEFLUOR (Stem-cell Technologies, Vancouver) with a DEAB control according to the manufacturer’s instructions. Lastly, cells were washed twice and 7-aminoactinomycin D (7-AAD, eBioscience, San Diego, CA) was added to exclude dead cells. Flow cytometry was performed on the BD LSRFortessa. Data was analyzed with FlowJo software (Ashland, OR, USA). To analyze cell uptake of nanoparticle in different organs versus TNBC PDX tumors, mice were injected Qdot800 conjugated lipid-hybrid nanoparticles 3 hours before euthanization. Different organs and TNBC PDX tumors were harvested, dissociated into single cell suspensions, and washed three times with PBS before analysis with the BD LSRFortessa. FlowJo software was used for data analysis.
Cell viability assays

Cells were seeded into 12 well plates (1.5×10^4 cells/well). After 120 hours of treatment, viability analysis was performed by incubation with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, 1 mg/ml) for 4 hours. Absorbance was measured at 570nm.

HCl-002 PDX TNBC tumor fragments were incubated in 24 well plates (i.e. organotypic slice culture). After 120 hours of treatment, alamar blue viability assay was performed via incubation with 10% alamar blue solution (Thermo Fisher Scientific) for 4 hours, followed by measurement of fluorescence at 560nm excitation and 590nm emission as previously performed 24.

Luciferase Assay

MDA-MB-231 TNBC cells were seeded into 12-well plates and transfected with 1000 ng of a NF-kB reporter p1242 3x-KB-L (Addgene Plasmid #26699, a gift from Dr. Bill Sugden) 25, or YAP reporter 8xGTIIC-luciferase (Addgene Plasmid #34615, a gift from Dr. Stefano Piccolo) 26 or Wnt reporter M50 Super 8x TOPFlash (Addgene Plasmid #12456, a gift from Dr. Randall Moon) 27 constructs in conjunction with 1000 ng Renilla pRL-SV40P (Addgene Plasmid #27163, a gift from Dr. Ron Prywes) 28 construct using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. After 18 hours, cells were treated with either empty (vehicle) lipid-hybrid nanoparticles or lipid hybrid nanoparticles with paclitaxel (10nM), verteporfin (500nM) or both for 24 hours, after which cells were lysed and both Firefly and Renilla luciferase activity was quantified using a Dual-Luciferase® Reporter Assay System (Promega) following the manufacturer's instructions.
Xenograft tumor growth

All protocols described throughout this manuscript regarding animal studies were performed in strict pathogen free conditions and in accordance with ethical guidelines as approved by The Ottawa Hospital Research Ethics Board (Protocol# 20120559-01H). TNBC PDX HCI-002 tumor chunks (2mm × 4 mm) were transplanted into the mammary fat pad of athymic nude mice (purchased from Charles River). After the tumors reached a mean diameter of 3 mm, drug treatment was initiated. Mice were randomly divided into three groups and treated with either vehicle (empty) lipid-polymer hybrid nanoparticles, free drugs (1mg/kg of paclitaxel and 9 mg/kg of verteporfin), or PV-NPs loaded with 0.5mg/kg of paclitaxel and 3.2mg/kg of verteporfin every other day for 20 days (n=5 mice for each group). Tumor growth was monitored every other day using a caliper and tumor volume was determined using the formula: \[V = \frac{1}{2} \times (\text{Tumor Length} \times \text{Tumor Width}^2) \]. After the completion of the treatment, mice were humanly euthanized and tumors were weighed and photographed. For flow cytometry analysis, tumors were mechanically minced and then enzymatically digested into single cell suspension using 1x Collagenase/Hyaluronidase in DMEM (Stemcell Technologies).

IVIS Analysis

Athymic mice were injected via tail vein with lipid-polymer hybrid nanoparticles conjugated with Alexa fluor750. The fluorescence of Alexa fluor750 was measured at 3, 6 and 24 hours using the Perkin Elmer IVIS Spectrum In Vivo Imaging System.

MRI Analysis

To determine TNBC PDX vascularity for potential nanoparticle delivery, whole body T1-
weighted MRI was conducted using a small-animal MRI machine (7T GE/Agilent MR901). After the first scanning, athymic mice were retrieved and injected with Gadovist via tail vein at a concentration of 0.1 mmol/kg (Bayer). Immediately after injection, the mice were re-scanned using the 7T GE/Agilent MR901.

Results

Dual-drug delivery PV-NP platforms

In TNBC therapy, conventional paclitaxel treatment has been shown to upregulate NF-kB, YAP and Wnt pathways, thereby enriching CSCs that are detrimental for long-term disease-free prognosis in patients\(^{17,29,30,31}\). We sought to define an agent capable of co-inhibiting these pathways to prevent subsequent CSC enrichment. After performing some initial in vitro experiments, we found that verteporfin inhibits Wnt, YAP and NF-kB signaling, thus we theorized that it may be a suitable agent to abolish paclitaxel-induced CSC enrichment as illustrated in the schematic (Fig 1), and developed a co-delivery nanoplatform for its delivery. Co-delivered paclitaxel and verteporfin loaded PV-NPs (1:7.5 molar ratios), paclitaxel loaded P-NPs, and verteporfin encapsulated V-NPs were synthesized via self-assembly using a modified nanoprecipitation method. All NPs had slightly negative surface charge without significant difference (~2-3 mV, Fig 2A). As expected, there was a small increase in hydrodynamic size of dual-drug containing PV-NPs in comparison to single drug loaded P-NPs and V-NPs, due to the accommodation of both drugs in single NP (Fig 2A, SI Fig1)\(^{32}\). Transmission electron microscopy (TEM) imaging showed the spherical structures for all NPs (Fig. 2B), and size range of 80-100 nm (Fig. 2C, SI Fig 1-2) that was matched with hydrodynamic radius measured with DLS and Zetaview (Figure 2A). Drug encapsulation and loading efficiencies for single and dual
drug loaded NPs were within acceptable range. Encapsulation efficiency of verteporfin from V-NPs to PV-NPs decreased from ~73% to 67%, whereas paclitaxel encapsulation improved from P-NPs to PV-NPs (60% to 75% EE). This might be due to the presence of verteporfin inside the NPs increased overall hydrophobicity of NP core or π−π interactions between phenyl groups of paclitaxel and π conjugate system in verteporfin. Drug loading efficiencies for paclitaxel in P-NP and PV-NPs were 2.8% and 0.56% whereas for verteporfin loading efficiencies in V-NPs and PV-NPs drug were 4% and 3.4% respectively. In vitro serum stability studies for all NPs showed no significant changes in hydrodynamic size and poly dispersity, highlighting the excellent stability of NPs under biologically relevant conditions (SI Fig 1). Drug release profiles of PV-NPs have typical initial burst release followed by slow release for both drugs (SI Fig. 3). Additionally, in vitro microscopy studies showed efficient up-take of NPs by MDA-MB-231 TNBC cells after 3 hours of incubation (Fig 2D).

PV-NPs are capable of simultaneously inhibiting NF-kB, YAP and Wnt signaling activities and concurrently suppressing both mesenchymal and epithelial CSCs in TNBC

Next, we sought to elucidate the effects of P-NPs, V-NPs and PV-NPs on NF-kB, YAP and Wnt pathways which have been shown to be essential for tumor regrowth and CSC development. We transfected MDA-MB-231 cells with pRL-CMV together with the p1242 3x-KB-L luciferase NF-kB reporter, the M50 Super 8x TOPFlash-luciferase Wnt reporter, or the 8xGTIIC-luciferase YAP reporter25, 26, 27. After 24 hours, the cells were exposed to P-NPs, V-NPs or combinations of both for an additional 24 hours and luciferase activity was determined using the Dual-Glo® Luciferase Assay System. It was found that V-NPs simultaneously inhibited NF-kB, Wnt and YAP, and abrogated P-NPs-induced upregulations of NF-kB, Wnt and
YAP signaling (Fig. 3A-C). Additionally, combination treatment with P-NPs and V-NPs elicited a reduction in TNBC cell viability (Fig. 3D, SI Fig. 4). For effective drug delivery in vivo, we co-encapsulated both P and V in single lipid-hybrid nanoparticles (PV-NPs), which exhibited the same efficacy as combination treatment with individually encapsulated P-NPs plus V-NPs in killing TNBC cells (SI Fig. 4). Significantly, CD44+/CD24- mesenchymal CSCs and ALDH+ epithelial CSCs were enriched after exposure to P-NPs but were diminished after exposure to PV-NPs (Fig. 3E).

Organotypic slice culture of PDX has been shown to faithfully represent PDX tumors and primary patient tumors in drug screening experiments. We plated PDX organotypic slices and treated them over 120 hours with PV-NPs and free drugs. We observed similar results to those of TNBC cell line. In comparison to other treatment groups, P-NPs + V-NPs and PV-NPs effectively decreased viability (SI Fig. 5) and paclitaxel-induced CSC enrichment (SI Fig. 6) while promoting apoptosis (SI Fig. 7) in cultured PDX organotypic slices. Together, these data indicate that the encapsulation of drugs within PV-NPs maintains drug function in vitro efficacy, is capable of co-inhibiting both subtypes of CSCs, and concurrently suppresses NF-kB, Wnt, and YAP signaling crucial for CSC development. In addition, while verteporfin is frequently used as a photosensitizer, it showed no photochemical effects on cellular functions at our experimental conditions.

TNBC PDX vasculature is EPR-active and PDX tumors accumulate NPs.

Following in vitro studies, we explored if our results would be translated in the highly clinically relevant TNBC PDX animal model. A simplified interpretation of EPR effect is based on an assumption that macromolecules such as NPs accumulate more in solid tumors due to
leaky vasculature and poor lymphatic drainage. EPR driven NP accumulation in tumors is a complex multistep biological process influenced by several factors including angiogenesis, vascular permeability, heterogeneities in genetic profile and tumor microenvironments, tumor tissue penetration, tumor cell internalization, and NPs physicochemical properties.

Unlike tumors generated from cancer cell lines, PDX tumors retain original the patient’s tumor heterogeneity, microenvironment, intratumoral vasculature and three-dimensional architecture. Currently, EPR driven nanomedicines accumulation within PDX tumor models has not been fully described. In order to determine if PDX tumors are EPR active, we first preformed MRI and IVIS experiments to study vascularity and NPs accumulation in the tumors. To this end, we surgically engrafted athymic mice with the TNBC PDX tumor fragments within the mammary fat pad. To allow blood vessel growth to detectable size, we waited until tumors reached 100 mm³. We then performed T1-weighted MRI before and 8 minutes after tail-vein injection of Gadovist (0.1mM/kg, a clinically used contrast agent in angiography). MRI showed marked contrast enhancement, indicating abundant vascularity within PDX tumors (Fig. 4A). To confirm if this tumor vasculature exhibits EPR effects, fluorescently labeled NPs (Alexa 750) were administrated via tail vein and IVIS imaging was performed at 0, 3, 6 and 24 hours to determine NP accumulation inside the tumors. IVIS analysis showed high levels of NP accumulation within the PDX tumor area and the upper abdomen area for 6 hours (Fig. 4B).

To accurately quantify NP uptake by tumor cells in comparison with other organ cells, we injected the mice with Qdot 800-labeled NPs. Three hours post-injection, we euthanized the mice, harvested organs and tumors, dissociated them into a single cell suspension and analyzed them using flow cytometry. As shown in Fig 4C, our data support a note that NPs were preferentially located within PDX TNBC tumors in comparison to heart, liver and kidney.
although NPs were also highly accumulated in non-vital spleen (Fig. 4C). Taken together, our data suggest that TNBC PDX vasculature is EPR-active, and NPs accumulate within PDX tumors.

PV-NPs retard TNBC PDX tumor growth and suppress CSC populations

Finally, we determined whether co-encapsulated PV-NPs could inhibit the growth of TNBC tumors and abrogate the enrichment of CSCs in a highly clinically relevant PDX mouse model. We again surgically engrafted TNBC PDX tumors into athymic mice. When the tumors reached a mean diameter of 3 mm, mice were randomized and treated with vehicle-NPs (empty NPs), free drug combination (1 mg/kg of paclitaxel and 9 mg/kg verteporfin), or PV-NPs (NPs containing 0.5 mg/kg of paclitaxel and 3.2 mg/kg verteporfin) every other day for 20 days via tail-vein injection (n = 5 for each group). Based on our *in vitro* results using TNBC PDX organotypic slice culture, we did not include P-NPs, V-NPs, and P-NPs+V-NPs treatments in our *in vivo* study.

Given the heterogeneity, composition and variability in each engrafted PDX tumor fragment, it is expected to see differential growth rate for PDX tumors. Indeed, we observed variable tumor growth rate in Vehicle-NPs and free-drug treated groups. However, despite this variability, PV-NPs treatment (even containing lower dose of drugs than free-drug control, only 50% paclitaxel and 32% verteporfin) significantly retarded PDX tumor growth in comparison to the free drug and vehicle-NP control groups (Fig. 5A), highlighting the efficacy of PV-NPs treatment. Consistently, mice treated with PV-NPs showed significantly reduced tumor size and tumor weight (Fig. 5B). While PV-NPs treatment effectively diminished TNBC PDX tumor growth, mice body weight remained constant throughout treatment (SI Fig. 8), suggesting the
specificity and tolerability of the PV-NP treatment. In contrast to PV-NPs, free-drug did not show statistical difference in comparison to Vehicle-NP control. This is likely due to inadequate tumor accumulation and/or retention of free-drug, highlighting the necessity for NPs-induced overlap in pharmacological profiles of dual drugs and NP delivery and accumulation in tumors. Furthermore, in agreement with in vitro cell line results, PV-NPs reduced both mesenchymal CD44+/CD24- CSCs and epithelial ALDH+ CSCs in PDX tumors after treatment while the free-drug combination was unable to significantly suppress CD44+/CD24- CSC subpopulation when compared to Vehicle-NP control (Fig. 5C-D, SI Fig. 9).

Discussion:

There is limited data showing EPR effects in patients due to several limitations. One of the main challenges is to achieve meaningful biodistribution data in patients. An indirect method to analyze EPR effects in treatments is to compare treatment responses within patient groups. However, patients’ tumors are heterogenous and their tumor’s biology, microenvironment, vasculature, drug efflux and drug response rates vary significantly. Additionally, tumor heterogeneity leads to dissimilar NP accumulation within tumors and dissimilar treatment responses. This might be one of the reasons for the poor outcomes in Phase II clinical trials of BIND014 and CAALA01. Recent studies have used companion imaging NPs to quantify the EPR effect to identify patients for better nanomedicine therapeutic response.

Of note, the majority of preclinical experiments studying NP uptake via EPR have employed syngeneic mouse or human cell line xenograft tumors, which develop over days, are comprised of a homogeneous cellular population, and possess immature vasculature in addition to a malformed tumor microenvironment. In contrast, PDX tumors develop over longer...
periods of time, are comprised of multiple cellular populations, primary tumor microenvironment, architecture and vasculature, similar to primary patient tumors. These similarities translate into the success of PDX emulation of patient tumor response upon exposure to chemotherapies. Hence, increasing numbers of mouse-clinical trials are using PDX tumors for drug development, identification and clinical translation.

In this study, we have developed a NP platform for the delivery of our combination therapy to TNBC PDX tumors. TNBC PDX tumors were highly vascularized as indicated by the MRI imaging with Gadovist and showed EPR related nanoparticle accumulation as determined by IVIS imaging (Fig 4A-B). Flow cytometry analysis show tumor cell uptake of fluorophore-NPs, supporting NP tumor delivery of the payload (Fig 4C). We also observed NP accumulation in the spleen. This is likely due to macrophage uptake and the spleen red pulp. In spleen red pulp, red blood cells are sieved by splenic sinuses before re-entering circulation. Nanoparticles 100-200nm in size have been shown to difficulty traverse through the red pulp, resulting in accumulation within the red pulp as well as uptake by macrophages.

In vivo TNBC PDX studies demonstrated that the efficacy of NP-delivered paclitaxel and verteporfin for inhibiting PDX tumor growth and preventing CD44+/CD24- and ALDH+ CSCs enrichment (Fig 5). To our best knowledge, this is the first report showing the treatment efficacy of drug-NPs using a highly clinically relevant TNBC PDX mouse model. It is also the first demonstration of verteporfin’s capability of simultaneously inhibiting NF-κB, Wnt and YAP signaling (Fig 3A-C) as well as repressing both mesenchymal CD44+/CD24- and epithelial ALDH+ TNBC CSC subpopulations (Fig 3E). Recent reports have demonstrated that paclitaxel-mediated CSC enrichment is due to co-upregulation of NF-κB and Wnt pathways and the important role of YAP signaling in CSC development. Thus, concurrent inhibition of these
three signals might be an important mechanism underlying the effective treatment of PV-NPs. Given that the two drugs are commonly used in clinic and their synergic effects on killing TNBC bulk and CSCs, such a combination nanotherapy may lead to an effective treatment of TNBC patients.

Acknowledgements

We thank Brandon Sulaiman for thoroughly reading the manuscript and the Huntsman Cancer Institute in Salt Lake City, UT for the use of the Preclinical Research Resource (PRR) to provide the PDX (HCI-002) sample. We also thank Dr. Luk Cox and Dr. Idoya Lahortiga from Somersault 18:24 to allow the use of their Library of Science and Medical Illustrations (http://www.somersault1824.com/resources/) for the creation of the Figure 1 and the schematic. We thank Zaina Kahiel and Eliya Farah for helping with drug release profiles, HPLC, nanodrop experiments, and Emil Al-Kadi for helping with titrations and reporter experiments. Andrew Sulaiman and Sarah McGarry would like to dedicate this publication to Roberta Mattocks who has been combating ovarian cancer over the last three years and has been an inspiration to both authors. Drs. Côté and Gadde dedicate this publication to Ms. Aline Côté Racine.
References

Figure Legends

Figure 1. A schematic representation of PV-NPs’ effects on TNBC PDX tumors. Upon systemic administration, NPs accumulate and release drugs in PDX tumors via the EPR (enhanced permeability and retention) effect. Paclitaxel promotes bulk cell death via inhibition of the mitotic spindle apparatus; however, paclitaxel also promotes CSC enrichment due to upregulation of NF-kB, Wnt and YAP signals. Whereas verteporfin co-inhibits NF-kB, Wnt and YAP signals, preventing CSC enrichment and increasing the overall efficacy of combination nanotherapy although it does not potently induce bulk tumour death. MSA: mitotic spindle apparatus.

Figure 2. NP characterization and in vitro uptake. (A) Size and surface charge potential of single and dual-drug NPs. (B) Transmission electron microscopy image of PV-NP spherical structure, scale bar = 100nm. (C) PV-NPs size distribution. (D) Fluorescence microscopy of MDA-MB-231 TNBC cells after 3 hours of incubation with BODIPY tagged NPs. Data represent means +/- SD; n = 3 for all figures; there are no statistical differences between the indicated groups or vehicle control, scale bar = 10 µm.

Figure 3. NP-encapsulated verteporfin is capable of simultaneously suppressing NF-kB, Wnt and YAP as well as concurrently inhibiting both mesenchymal and epithelial CSC subpopulations in vitro. (A-C) Luciferase reporter activity of NF-kB, YAP and Wnt activities in MDA MB-231 cells treated with Veh (vehicle-NP), P-NP (containing 25 nM paclitaxel), V-NP (containing 500nM verteporfin) or both (PV-NP). (D) Viability analysis after 120 hours of
incubation with Vehicle (vehicle-NP), P-NP (5nM), V-NP (100nM) or PV-NP. (E) Flow cytometric analysis of CD44+/CD24- CSCs and ALDH+ CSCs after 120 hours of treatments. Data represent means +/- SD; n = 3 for all figures; * p < 0.05, **p < 0.01, *** p<0.001, in comparison to the indicated groups or vehicle-NP control.

Figure 4: In vivo NP bio-distribution and accumulation within TNBC PDX tumors. (A) T1-weighted MRI of PDX tumors before and 8 minutes after injection of Gadovist in the same mouse. (B) IVIS analyses of PDX tumors (low abdomen area) before and after injection of NPs labelled with Alexa750 at indicated time periods using excitation laser of 745 nm and emission filter of 800. (C) Flow cytometric analyses of cell uptake of NPs labelled with Qdot 800 in the dissociated organs vs PDX tumors 3 hours after tail vein injection. Flow cytometry analysis was performed using a 405 nm excitation laser and a 780/60nm filter to determine cellular uptake.

Figure 5: Efficacy of paclitaxel and verteporfin co-loaded NPs in the treatment of TNBC PDX tumors. (A) TNBC PDX tumors were surgically engrafted into the mammary fat pads of athymic nude mice and treated with Vehicle-NPs (empty NPs), free drugs (FD, 1 mg/kg of paclitaxel and 9 mg/kg V), or PV-NP (0.5 mg/kg of paclitaxel and 3.2 mg/kg verteporfin co-loaded NPs) every other day for 20 days. Tumor volumes were determined every 2-day. (B) Representative tumor photos after treatments with means of tumor weights shown below. (C, D) Flow cytometric analysis of CD44+/CD24- and ALDH+ CSCs within TNBC PDX tumor after completion of in vivo treatment. Data represent means +/- SD; n = 5 for mice and n = 3 for flow cytometric analysis; * p < 0.05, **p < 0.01.
Figure 2

A

B

C

D

nano-Bodipy FL DAPI Merge

Nanoparticles Vehicle control

Downloaded from mct.aacrjournals.org on November 4, 2021. © 2019 American Association for Cancer Research.
Figure 3

(A) NF-κB reporter

(B) YAP reporter

(C) Wnt reporter

(D) Viability

(E) CD44+/CD24- CSCs

Vehicle - 40.7%
P-NP - 44.4%
V-NP - 10.3%
PV-NP - 14.8%

ALDH+ CSCs

Vehicle - 21.2%
P-NP - 29.9%
V-NP - 3.12%
PV-NP - 7.20%
Figure 4

A. Pre-injection, Post-injection

B. Pre-injection, 3 hours, 6 hours, 24 hours

C. Heart-0.10%, Kidney-11.7%, Liver-8.19%, Spleen-34.0%, Tumor-34.6%
Figure 5

A

Tumor volume (cm³)

Days

FD

Vehicle-NPs

PV-NPs

B

C

CD44+/CD24- CSC enrichment

Vehicle-11.9%

FD-12.0%

PV-NP-7.39%

CD44

CD24

ALDH+ CSC enrichment

Vehicle-16.6%

FD-11.5%

PV-NP-7.44%

SSC

ALDH

D

Relative CD44+/CD24- CSCs

Vehicle

FD

PV-NP

Relative ALDH+ CSCs

Vehicle

FD

PV-NP
Molecular Cancer Therapeutics

Co-Targeting Bulk Tumor and CSCs in Clinically Translatable TNBC Patient-Derived Xenografts via Combination Nanotherapy

Andrew Sulaiman, Sarah McGarry, Sara El-Sahli, et al.

Mol Cancer Ther Published OnlineFirst July 15, 2019.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-18-0873

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2019/07/13/1535-7163.MCT-18-0873.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://mct.aacrjournals.org/content/early/2019/07/13/1535-7163.MCT-18-0873.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.