Hsp27 inhibition with OGX-427 sensitizes non-small cell lung cancer cells to erlotinib and chemotherapy.

Barbara Lelj-Garolla¹, Masafumi Kumano¹, Eliana Beraldi¹, Lucia Nappi¹, Palma Rocchi², Diana N. Ionescu³, Ladan Fazli¹, Amina Zoubeidi¹, and Martin E. Gleave¹

1. The Vancouver Prostate Centre and Department of Urological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
2. Molecular Oncology Department, Marseille Cancerology Research Center (CRCM), Marseille, France
3. Pathology Department, BC Cancer Agency, Vancouver, British Columbia, Canada

Running title: Targeting Hsp27 in NSCLC

Keywords: non-small cell lung cancer, Hsp27, epidermal growth factor receptor, erlotinib, OGX-427

Grant Support: This study was supported by the Terry Fox New Frontiers Program to M. E. Gleave, and the Pacific Northwest Prostate Cancer SPORE NCI CA097186 to M. E. Gleave. B. Lelj-Garolla is supported by the Pier Luigi Tolaini Young Investigator Award from the Coalition to Cure Prostate Cancer.

Corresponding Author: Martin E. Gleave, Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Level 6, Vancouver, British Columbia, Canada V6H 3Z6. Phone: 604-875-4818; Fax: 604-875-5654; E-mail: mgleave@ubc.ca.

Disclosure of Potential Conflicts of Interest: By way of disclosure of conflict of interest, The University of British Columbia has submitted patent applications on OGX-427, listing Drs Gleave as inventor. This IP has been licensed to OncoGenex Technologies, a Vancouver-based biotechnology company that Dr. Gleave has founding shares in.

Word count (excluding references): 3,743

Main Text Figures: 6

Supplementary Figures: 3
Non-small cell lung cancer (NSCLC) is the most frequent cause of death from cancer worldwide. Despite the availability of active chemotherapy regimens and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, all advanced patients develop recurrent disease after first-line therapy. While heat shock protein 27 (Hsp27) is a stress-induced chaperone that promotes acquired resistance in several cancers, its relationship to treatment resistance in NSCLC has not been defined. Understanding adaptive responses of acquired resistance will help guide new strategies to control NSCLC.

Hsp27 levels were evaluated in an HCC827 erlotinib-resistant derived cell line (HCC-827_{Resistant}), and sensitivity to erlotinib was examined in Hsp27 over-expressing A549 cells. The role of Hsp27 in both erlotinib and cytotoxic treatment resistance was evaluated in HCC-827 and A549 NSCLC cells using the Hsp27 antisense drug OGX-427. The effect of OGX-427 in combination with erlotinib was also assessed in mice bearing A549 xenografts.

Hsp27 is induced by erlotinib and protects NSCLC cells from treatment-induced apoptosis, while OGX-427 sensitizes NSCLC cells to erlotinib. Interestingly, increased resistance to erlotinib was observed when Hsp27 was increased either in HCC827 ER or over-expressing A549 cells. Combining OGX-427 with erlotinib significantly enhanced antitumor effects in vitro and delayed A549 xenograft growth in vivo. OGX-427 also significantly enhanced the activity of cytotoxic drugs used for NSCLC.

These data indicate that treatment-induced Hsp27 contributes to the development of resistance, and provides pre-clinical proof-of-principle that inhibition of stress adaptive pathways mediated by Hsp27 enhances the activity of erlotinib and chemotherapeutics.
INTRODUCTION

Lung cancer is the most prevalent cancer and the leading cause of cancer related death worldwide [1]. In North America and Europe it is the third most common cause of mortality for men and women and is increasingly observed in non-smokers. Non-small cell lung cancer (NSCLC), with a five-year rate survival of only 15%, accounts for approximately 80% of all lung cancers. Platinum-based doublets with gemcitabine or pemetrexed remain the mainstay of front-line therapy for advanced NSCLC with modest improvement in survival and quality of life, and are superior to single agent therapy or three drug combinations [2]. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), including afatinib, erlotinib and gefitinib, are also approved and particularly active in patients with EGFR activating mutations or overexpression [3]. Despite these active agents, virtually all patients with advanced NSCLC develop recurrent disease after first-line therapy and long-term survival rates remain low in these patients. Understanding adaptive responses that support acquired resistance are needed to develop new strategies to control NSCLC.

The EGFR is a member of the ErbB receptor tyrosine kinase family, a transmembrane protein with an intracellular and a tyrosine kinase domain that self-phosphorylates upon receptor dimerization. Phosphorylation triggers a cascade of intracellular events including activation of the PI3K/Akt and the MAPK/RAS pathways leading to cell survival and proliferation [4]. Many solid tumors have constitutively activated EGFR, either by over-expression or by mutation, which leads to excessive signalling. Despite good initial responses to EGFR TKIs, most patients develop resistance and eventually die of metastatic disease. Resistance is often associated with the development of EGFR mutations that interfere with binding to the inhibitors to maintain EGFR activity [5], which can be partially overcome by increasing TKI potency or by co-targeting other pathways up-regulated during treatment. For example, there is evidence that co-targeting heat shock protein (Hsp)90, a molecular chaperone known to interact with EGFR, can increase EGFR molecular degradation even in the presence of mutations [6].
Other heat shock chaperones, like Hsp27 (HspB1), play a pivotal role in stress responses to treatment. Hsp27 is a stress-induced ATP-independent molecular chaperone that is transcriptionally regulated by HSF-1, HIF-1α, and other factors influenced by cell type and cell context [7, 8]. Additionally Hsp27 oligomerizes and self-associates in a phosphorylation-dependent manner regulated by AKT and MAPK signalling pathways [9]. Hsp27 is up-regulated in cisplatin-resistant ovarian cancer cells as well as taxane-resistant prostate cancer cells [10, 11], and shown to be highly expressed and associated with poor prognosis in many cancers. Hsp27 plays a crucial role in protein homeostasis, in stabilizing unfolding proteins, as well as the actin-cytoskeleton. Hsp27 promotes survival by binding to both cytochrome c and caspase 3 to inhibit intrinsic apoptotic pathway activation, and facilitates epithelial-mesenchymal transition and expression of metastatic genes [10, 12-14]. Hsp27 is a difficult protein to target because, unlike Hsp90, it lacks an active site or ATP-binding pocket. Second-generation antisense technology enables targeted inhibition of “undruggable” targets like Hsp27 by downregulating gene expression at the mRNA level. The antisense inhibitor of Hsp27, OGX-427 (OncoGeneX Pharmaceuticals) potently reduces Hsp27 levels with reported activity in preclinical cancer models [15-17] and tolerability as single agent and in combination with docetaxel chemotherapy in phase I studies. A phase II clinical trial of OGX-427 in castrate resistant prostate cancer reported single agent activity, and OGX-427 is currently in multicenter phase II clinical trials in metastatic CRPC, NSCLC, and bladder cancer (ClinicalTrials.gov, NCT01454089, NCT01829113 and NCT01120470).

In this study we show that Hsp27 is expressed in nearly 70-80% of NSCLC patients and that erlotinib or chemo-therapy increases levels of both total and phosphorylated Hsp27 via activation of HSF-1. Hsp27 overexpression limited the activity of erlotinib and cytotoxic agents, while Hsp27 inhibition with OGX-427 synergistically increased erlotinib-induced apoptosis and inhibition of A549 and HCC827 lung cancer cell growth in vitro and in vivo. These results illustrate that co-targeting treatment-induced adaptive responses mediated by Hsp27 can sensitize lung cancer cells to EGFR TKIs and cytotoxic therapies.
MATERIALS AND METHODS

Tumor Tissue Arrays
Six hundred nine cases of primary NSCLCs with follow-up data diagnosed between 1978 and 2002 were identified from the archives of St Paul’s Hospital, Vancouver, British Columbia. The paraffin-embedded tissue blocks were used to construct a duplicate core Tissue microarray (TMA). After review of the tissue cores, 588 cases, consisting of NSCLC met the criteria for inclusion in this study. Carcinoids, atypical carcinoids, large cell neuroendocrine carcinoma and metastatic tumors were all excluded. H&E-stained sections were reviewed and sub-classified as follows: 243 adenocarcinoma (AD), 272 squamous cell carcinoma (SCC), 35 large cell carcinoma (LCC), 32 non-small cell carcinoma, and 6 other (carcinoma, giant cell carcinoma).

Immunohistochemistry
Immunohistochemical staining was conducted by Ventana autostainer model Discover XT™ (Ventana Medical System, Tuscan, Arizona) with enzyme labeled biotin streptavidin system and solvent resistant DAB Map kit by using mouse monoclonal HSP27 antibody from Novocastra™ now Leica Biosystems Newcastle Ltd, Newcastle, UK and polyclonal phosphor-HSP27 (Ser82) antibody from Cell Signaling Technology, Danvers, MA. To ensure specificity of hsp27 and phsp27 antibodies, small cell lung carcinoma and benign prostate gland basal cells tissues were included as negative and positive controls respectively (Supp. S1)

Lung Cancer Cell Lines and Reagents
A549 (EGFR wild-type but kRAS mutated: G12S) and HCC827 (EGFR mutated: delE746-A750) cells were purchased from the American Type Culture Collection and authenticated with short tandem repeat (STR) profile analysis in Jan 2013 by Genetic Resources Core Facility at John Hopkins. Cells were maintained in RPMI-1640 media (Invitrogen Life Technologies) containing 5% fetal bovine serum (FBS; Invitrogen Life Technologies). Erlotinib was purchased from LC Laboratories. A549 cell lines overexpressing Hsp27
(A549Hsp27) were developed by stably transfecting cells with an Hsp27 vector by lentivirus transfection as previously described (8). HCC827Resistant cell lines were developed by maintaining HCC827Parental in 500nM erlotinib for 3 months. Genomic sequencing was done to confirm cell line identity. Antibodies: anti-HSF-
1 from Santa Cruz Biotechnology; anti-Hsp27 from StressGen; anti- phospho-EGFR (Tyr1068), anti-EGFR, anti-cleaved PARP, anti-phospho-Hsp27 (Ser82), anti-cleaved caspase3, anti-caspase3, anti-phospho-ERK and anti-phospho-Akt (Ser423) were purchased from Cell Signaling Technology; and anti-β-Actin from Sigma-Aldrich. Paclitaxel was purchased from Sigma Chemical Co. (St. Louis, MO). Gemcitabine (Lilly Pharmaceuticals, Indianapolis, IN), pemetrexed (Lilly Pharmaceuticals, Indianapolis, IN) and cis-platinum (Hospira, Montreal QC Canada) were obtained from the B.C. Cancer Agency, Vancouver, BC, Canada

ASO Transfection
Cells were transfected with antisense as described previously [18, 19]. Hsp27 ASO and scrambled (ScrB) control oligonucleotide sequences were manufactured by ISIS Pharmaceuticals (Carlsbad, CA, USA) and supplied by OncoGenex Technologies (Vancouver, British Columbia, Canada). The sequence of OGX-427 corresponds to the human Hsp27 translation initiation site (5′-GGGACGCGGCGCTCGGTCAT-3′). The sequence of heat shock factor 1 (HSF-1) siRNA corresponds to the human HSF-1 site (sc-35611; Santa Cruz Biotechnology). A scrambled siRNA (5′-CAGCGCUGACAACAGUUUCAU-3′; Dharmacon) was used as a control for RNA interference experiments. Transfections were performed by using Oligofectamine (Invitrogen), as previously described [20].

Western Blot Analysis
Total proteins were extracted using RIPA buffer (50mM Tris, pH 7.2, 1% NP-40, 0.1% deoxycholate, 0.1% SDS, 100mM NaCl, Roche complete protease inhibitor cocktail) and centrifuged to remove the insoluble material. Western Blots analysis was performed as described previously [19].
Quantitative reverse transcriptase PCR

RNA extraction and reverse transcriptase PCR (RT-PCR) were carried out as described previously [21]. Real-time monitoring of PCR amplification of cDNA was carried out using the following primer pairs and probes: *Hsp27* (Hs03044127_g1), *HSF1* (Hs00232134_m1), and *GAPDH* (Hs03929097_g1; Applied Biosystems) on the ABI PRISM 7900 HT Sequence Detection System (Applied Biosystems) with a TaqMan Gene Expression Master Mix (Applied Biosystems). Target gene expression was normalized to glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*) levels in the respective samples as an internal control. The results are representative of at least 3 independent experiments.

In Vitro Cell Growth Assay

Cells were plated in 12-well plates, and transfected with siRNA for 1 day or ASO for 2 days as indicated followed by erlotinib treatment at various concentrations for 48 hours. Cell viability was then assessed using crystal violet assay as described previously [22]. Absorbance was determined with a micro-culture plate reader (Becton Dickinson Labware) at 560 nm. Changes in cell viability were calculated as percentage relative to the vehicle-treated cells. Each assay was performed in triplicate. The combination index (CI) was evaluated using CalcuSyn dose–effect analysis software (Biosoft) as described previously [21]. CI was calculated at ED50, ED75 and ED90.

Cell Cycle Analysis

Cell cycle populations were analyzed by propidium iodide–staining using flow cytometry as previously described [18].

Animal manipulation and Assessment of In Vivo Tumor Growth

For *in vivo* xenograft studies, 6x 10^6 A549 cells were inoculated s.c. in the flank of 6- to 8-week-old male athymic nude mice (Harlan Sprague Dawley, Inc.) via a 27-gauge needle under isoflurane anesthesia. When tumors reached 100mm^3, mice were randomly selected for treatment with 50 mg/kg erlotinib (formulated in 0.5% methylcellulose + 0.1% Tween-80) orally administered once daily for 5 days per
week and 15 mg/kg OGX-427 or ScrB injected i.p. once daily for 7 days and three times per week thereafter. Each experimental group consisted of 8 mice. Tumor volume measurements were performed once weekly and calculated by the formula length x width x depth x 0.5236. Data points were expressed as average tumor volume ± SEM. All animal procedures were performed according to the guidelines of the Canadian Council on Animal Care and with appropriate institutional certification.

Luciferase assay

HCC827 and A549 cells were transfected with HSE luciferase plasmid and pRL-TK as internal control using lipofectin reagent (Invitrogen) followed by erlotinib treatment for 24 hrs at the indicated concentrations. The luciferase activity was measured using a dual-luciferase reporter assay system (Promega) and a microplate luminometer (Tecan). The results are representative of 3 independent experiments.

Statistical Analysis

Differences between the two groups were compared using Student’s t-test and Mann-Whitney U test. All statistical calculations were performed using Statview 5.0 software (Abacus Concepts, Inc.), and \(P \) values < 0.05 were considered significant.
RESULTS

Hsp27 and phospho-Hsp27 are highly expressed in human NSCLC.

Hsp27 has been reported to be highly and uniformly expressed in several cancers [23-27]. To assess the distribution of Hsp27 and phospho-Hsp27 expression in human NSCLC, we performed immunostaining of human NSCLC spotted on tissue microarrays (TMA). Positive Hsp27 staining was noted in 176 of 214 squamous cell carcinomas (82.2%), 139 of 195 adenocarcinomas (71.3%) and 21 of 31 large cell carcinomas (67.7%) (Fig. 1A). Positive phospho-Hsp27 staining was observed in 184 of 212 squamous cell carcinomas (86.8%), 147 of 184 adenocarcinomas (79.9%) and 27 of 31 large cell carcinomas (87.1%) (Fig. 1B). These data suggest that both Hsp27 and phospho-Hsp27 are frequently expressed in NSCLC.

Erlotinib induces Hsp27 expression in A549 and HCC827 cells via HSF-1 activation.

To evaluate the effect of erlotinib on Hsp27 expression and phosphorylation, we used erlotinib-resistant A549 (IC\textsubscript{25} = 4.2µM) and erlotinib-sensitive HCC827 NSCLC cell lines (IC\textsubscript{25} = 8nM). Erlotinib caused a clear decrease of EGFR phosphorylation associated with a time- (Fig. 2A) and dose- (Supp. S2) dependent increase of total Hsp27 and phospho-Hsp27 with a parallel increase of apoptosis as detected by cleaved PARP. Because HSF-1 is a key regulator of Hsp27 expression, we evaluated the effect of erlotinib on HSF-1 activity. Erlotinib led to increased HSF-1 and Hsp27 both at the protein (Fig. 2B, left panel) and mRNA levels in both A549 and HCC827 cell lines (Fig. 2B, right panel), together with an increase of HSF-1 activity as measured by HSE transactivation assay (Supp. S3). Moreover, silencing HSF-1 using siRNA abrogated erlotinib-induced up-regulation of Hsp27 (Fig. 2C). Hsp27 can be phosphorylated by p90Rsk downstream of pAkt and pErk [18], two pathways downstream of pEGFR, and therefore inhibited by erlotinib (data not shown). While levels of pAkt and pErk do not increase after erlotinib, increase of pHsp27 reflect increased HSF-1 mediated transcription of total Hsp27. Collectively these data indicate that stress-induced activation of HSF-1 by erlotinib leads to increased total Hsp27 levels and a consequent increase in p-Hsp27. This finding, in addition to the positive staining in TMA samples from a variety of NSCLC, implicates Hsp27 in erlotinib resistance and highlights it is a therapeutic target in combination therapy with EGFR TKI.
Hsp27 overexpression reduces erlotinib-induced cell death.

We previously reported that Hsp27 overexpression promotes cell survival and confers resistance to paclitaxel in prostate and bladder cancer cell lines [10, 28]. Here we investigated effects of Hsp27 overexpression on A549 cell growth in the presence of erlotinib by comparing cell viability of a stably transfected A549 cell line (A549_{Hsp27}) to A549_{Empty} controls after increasing doses of erlotinib. Cell viability curves in figure 3A confirm that A549_{Hsp27} cells are more resistant to erlotinib compared to control A549_{Empty} cells. Moreover, western blot analysis (Fig. 3B) indicates reduced PARP cleavage at 10 and 20 µM erlotinib in the A549_{Hsp27} vs. A549_{Empty} cell lines confirming that overexpression of Hsp27 protects lung cancer cells from erlotinib-induced apoptosis.

To better evaluate the role of Hsp27 in erlotinib resistance we established an HCC827 resistant cell line (IC_{25} = 1µM) by maintaining HCC827 parental cells in 500nM erlotinib for 3 months (Fig. 3C). Fig 3D shows reduced cleaved PARP and increased expression of Hsp27 in HCC827_{resistant} cells compared to parental. These findings further implicate Hsp27 in erlotinib resistance both when Hsp27 becomes endogenously over-expressed in response to treatment (HCC827_{resistant}) and when it is highly expressed via stable transfection (A549_{Hsp27}).

OGX-427 sensitizes both HCC827 and A549 to erlotinib.

Since the preceding results links Hsp27 to erlotinib resistance we hypothesized that co-targeting this chaperone in combination with EGFR TKI will increase erlotinib efficacy. Cell viability was assessed in A549 and HCC 827 cells after erlotinib or OGX-427 mono- and combination-therapy. OGX-427 reduces Hsp27 protein expression (Supp.S4), and when used in combination with erlotinib, leads to increased cell death compared to single agent therapy (Fig. 4A). Combination Index, calculated at a ratio OGX-427:erlotinib 1:200 for A549 and 20:1 for HCC827, confirms a synergistic effect for this drug combination (Fig. 4B). Increased levels of cleaved PARP and caspase 3 assessed by Western Blotting (Fig. 4C), together with increased subG0 apoptotic fraction assessed by PI staining–based FACS analysis (Fig. 4D)
confirmed that OGX-427 enhances erlotinib-induced apoptosis. These data confirm that Hsp27 inhibition increases NSCLC cancer cell sensitivity to erlotinib.

Combining OGX-427 with erlotinib enhances tumor growth inhibition in vivo

The combination effect of OGX-427 and erlotinib was next evaluated in an in vivo model using A549 xenografts. Tumor-bearing mice were randomly assigned to groups treated with ScrB+Diluent, ScrB+Erlotinib, OGX-427+Diluent or OGX-427+Erlotinib when A549 tumors reached 100 mm³. Mean tumor volume were similar in all groups at baseline and all treatments were performed for 7 weeks. Consistent with in vitro findings OGX-427 was able to reduce Hsp27 protein level, and the combination therapy of OGX-427 plus erlotinib significantly reduced tumor growth rates (Fig. 5A-C) compared with all other groups (P=0.0002, 0.03 and 0.01 against ScrB+Diluent, ScrB+Erlotinib and OGX-427+Diluent, respectively). Moreover, OGX-427 plus erlotinib-treated tumors had higher apoptotic rates as shown by increased TUNEL staining compared with the other groups (Fig. 5D). These studies indicated that this combination treatment significantly delays growth and increases apoptotic rates of A549 xenografts.

Combination therapy of OGX-427 plus cytotoxic agents increases tumor cell death

Hsp27 is known to be induced by cytotoxic agents in many cancers, and can confer resistance to cytotoxics [29, 30]. We next evaluated effects of OGX-427 in combination with pemetrexed, a first line therapy for the treatment of NSCLC. Pemetrexed increased total and phospho-Hsp27 levels in a time- and dose-dependent manner in A549 cells (Fig. 6A). Combined OGX-427 plus pemetrexed reduced A549 cell viability compared to cells treated with either drug alone and the combination index (CI) analysis demonstrated synergistic effects with combination therapy (Fig. 6B). Similar results were observed in A549 cells after OGX-427 treatment in combination with cisplatin, paclitaxel and gemcitabine, all cytotoxic agents used clinically in patients with NSCLC (Fig. 6C). Western blot analysis in A549 cells indicated marked increase in apoptosis as measured by cleaved PARP with OGX-427 combination regimens compared to single agents (Fig. 6D), supporting inhibition of Hsp27 as a co-targeting strategy with cytotoxic agents for the treatment of NSCLC.
DISCUSSION

Anti-cancer treatments induce stress responses that inhibit apoptosis and promote emergence of an acquired treatment-resistant phenotype. Molecular chaperones play key roles in these stress responses by regulating many pro-survival signaling and transcriptional networks. Two strategies have recently emerged that are revolutionizing the treatment landscape in cancer: the use of molecular-targeted agents and the selective inhibition of adaptive responses. In this work we focus on the role of treatment-induced Hsp27 expression and treatment response in NSCLC, the most common type of lung cancer and the largest cause of cancer-related death worldwide, where chemotherapy or EGFR-TKIs are first-line treatment. EGFR belongs to a family of membrane bound receptors with a tyrosine kinase domain that, when phosphorylated, activates a number of downstream pro-survival pathways including the PI3K/Akt and RAS/MAPK pathways [4]. Some patients, for whom EGFR-TKI is recommended, have a mutated EGFR that is constitutively activated. For these individuals the use of EGFR-TKI is recommended over chemotherapy as first line of treatment [31, 32]. Although EGFR TKIs have been shown to prolong life, most patients acquire resistance with a median progression-free survival of 10 months [33] and eventually die of metastatic disease.

Hsp27 is a stress-induced molecular chaperone that regulates many pro-survival cellular functions. Many solid tumors, including bladder, prostate, breast and colorectal cancers, express high Hsp27 levels that correlate with poor prognosis. Hsp27 maintains protein homeostasis by stabilizing protein conformation or facilitating proteasomal degradation [34] [35], inhibits apoptosis by interacting with pro-apoptotic molecules like cytochrome c [36] or pro-caspase 3 [37], and enhances oncogenic signaling pathways such as STAT3, IGF-1, androgen receptor (AR), and eIF4E [19, 38, 39]. Consistent with these multiple cytoprotective functions, overexpression of Hsp27 renders cancer cells resistant to chemo- and hormonal-therapy [29, 39].

Since Hsp27 functions as a regulatory “hub” in multiple regulatory pathways, its inhibition will simultaneously suppress many pathways implicated in cancer progression and resistance to hormone- and chemo-therapies. Hsp27 acts through an ATP-independent mechanism and is therefore not amenable to inhibition by 17-AAG derived small molecules. Strategies to inhibit Hsp27 at the mRNA level are an alternative approach.
to inhibiting “non-druggable” targets; indeed, short interfering RNA (siRNA) or antisense oligonucleotides targeting Hsp27 suppresses proliferation and EMT in prostate [10, 39-41] and breast cancer cells [42]. Hsp27 silencing also decreases clonogenic survival and induces cell senescence in HCT116 human colon cancer [43]. Hsp27 silencing chemosensitizes SK-BR-3 HR breast cancer cells to Herceptin [44], A549 lung cancer cells to 17-AAG [45], MUC-3 bladder cancer cells and PC-3 prostate cancer cells to paclitaxel [28, 40].

In this study we show that Hsp27 and phospho-Hsp27 are commonly expressed in a TMA of 440 squamous cell carcinomas, adenocarcinomas and large cell carcinomas of the lung. We also show that treatment stress with erlotinib or chemotherapy increases Hsp27 expression via the transcription factor HSF-1 and that high levels of Hsp27 induces resistance to erlotinib. These findings implicate a role for Hsp27 in cell survival of NSCLC under EGFR inhibition, and supports testing co-targeting Hsp27 with erlotinib or other chemotherapeutics for the treatment of NSCLC. Inhibition of treatment-induced Hsp27 using OGX-427 synergistically enhanced inhibitory effects of erlotinib on cell proliferation and cell viability in NSCLC cell lines in vitro. Similarly, combination therapy with erlotinib plus OGX-427 significantly inhibited A549 tumor growth in vivo compared to monotherapy. Consistent with these results, Hsp27 is up-regulated by HSF-1 in c-MET addicted gastric cell lines when c-MET is inhibited, and functions to limit the activity of c-MET-targeted therapies [46]. In this gastric cell line, the activation of K-RAS by transfection of G12V K-RAS downstream of c-MET reverses the effect of c-MET inhibitors on Hsp27 up-regulation [46]. We observed an increase of Hsp27 even in A549 lung cancer cells that have a constitutively activated MAP kinase pathway due to a K-RAS activating mutation (G12S), demonstrating that in A549 lung cancer cells, Hsp27 up-regulation via HSF-1 is a response to EGFR inhibition even when the MAP kinase pathway is constitutively active.

Because platinum-based doublets with gemcitabine or pemetrexed are the first-line of treatment for NSCLC in patients that do not carry an EGFR mutation, we also evaluated effects of Hsp27 inhibition as co-treatment with these cytotoxics. OGX-427 synergistically enhanced growth inhibitory effects of pemetrexed, gemcitabine, cisplatin and paclitaxel in A549 cells by enhancing treatment-induced apoptosis. These results provide a framework for building new drug combinations based on mechanism-
based interventions to overcome drug resistance, and pre-clinical proof-of-principle supporting clinical trials of OGX-427 combination regimens for lung and other cancers. OGX-427 has completed single agent and docetaxel-combination dose escalation Phase I trials in prostate, bladder, breast, and lung cancer [47]. OGX-427 is well tolerated, with the majority of the adverse events reported being Grade 1 or Grade 2, although a symptom complex of rigors, pruritus, and erythema during or shortly after infusion of drug has required steroid prophylaxis and/or treatment in some patients at higher doses. Preliminary data from a randomized phase II trial of OGX-427 plus prednisone in castration resistant prostate cancer reported a PSA decline ≥ 30% in 55% of patients and an acceptable safety profile [48]. Several randomized Phase II trials of OGX-427 in combination with chemotherapy are actively accruing, including untreated Stage IV NSCLC comparing carboplatin plus pemetrexed with or without OGX-427 (SPRUCE, clinicaltrials.gov NCT01829113).
REFERENCES

FIGURE LEGENDS

Figure 1. Hsp27 and phosphorylated Hsp27 expression in NSCLC. (A) Paraffin-embedded tissue blocks were used to construct a duplicate core tissue microarray (TMA). Hsp27 expression was evaluated in 440 NSCLC tissues. H&E-stained sections were reviewed and sub-classified as follows: 214 squamous cell carcinoma (SCC), 195 adenocarcinoma (AD) and 31 large cell carcinoma (LCC). (B) phospho-Hsp27 expression was evaluated in 427 NSCLC tissues. H&E-stained sections were reviewed and sub-classified as follows: 212 SCC, 184 AD and 31 LCC.

Figure 2. Erlotinib induces Hsp27/phospho-Hsp27 expression via activation of HSF-1. (A) A549 (left panel) and HCC827 (right panel) cells were treated with erlotinib for up to 72h, and Western Blots were performed with antibodies against p-Hsp27, total Hsp27, P-EGFR, total EGFR, Cleaved PARP. β-actin and vinculin were used as loading control. (B,) A549 and HCC827 cells were treated with erlotinib for 48 hours. (Left panel) Western Blots were performed against p-EGFR, total EGFR, p-Hsp27, total Hsp27, HSF-1, and β-actin was used as loading control. (Right panel) Hsp27 and HSF-1 mRNA levels were measured by real time PCR 48h after treatment. (C) A549 and HCC827 cells were transfected daily with 20nM HSF-1 siRNA or Scramble siRNA for 1 day, followed by erlotinib treatment for 48 hours. (Left panel) HSF-1, pEGFR, total EGFR, Hsp27 and β-actin as loading control were detected by Western Blot analysis. (Right panel) mRNA levels were analyzed by real time PCR 48h after treatments. Bars, SD. ** and *, differ from control \(P < 0.01 \) and \(P < 0.05 \), respectively.

Figure 3. Hsp27 overexpression induces erlotinib resistance. (A) A549 cells were stably transfected either with an empty vector (A549\text{Empty}) or with a vector containing wild-type Hsp27 (A549\text{Hsp27}). Cell viability was determined after increasing erlotinib doses 72h after treatment. (B) p-EGFR, total EGFR, Hsp27, cleaved PARP, and β-actin as loading control were detected by Western Blot in both cell lines after 72h erlotinib treatment. (C) HCC827 erlotinib-resistant cell lines (HCC827\text{resistant}) were established maintaining HCC827\text{parental} cells in 500nM erlotinib for 3 months. Hsp27 levels were measured by Western Blots (insert). Cell viability was determined after increasing erlotinib doses 72h after treatment. (D) Cleaved PARP, Hsp27, p-Hsp27, p-EGFR, total EGFR, and vinculin as loading control were detected by Western Blot for resistant cells at 500nM erlotinib and parental cells at 0 and 72h after 200nM erlotinib.
Figure 4. OGX-427 sensitizes both HCC827 and A549 to erlotinib. (A) A549 and HCC827 cells were transfected with 50nM OGX-427 or ScrB for 2 days and treated with the indicated concentration of erlotinib for 48 hours after the second transfection. Cell viability was determined by crystal violet assay 48h after erlotinib treatment. (B) Combination index analysis for erlotinib and OGX-427 treatment in A549 and HCC827 cell lines was performed according to the Chou and Talalay method [49]. (C) p-EGFR, total EGFR, total Hsp27, cleaved PARP, cleaved caspase-3, caspase-3 and β-actin, as loading control, were detected by Western Blot analysis. Inhibition of erlotinib-induced Hsp27 enhances cell apoptosis in both A549 and HCC827. (D) Cells were transfected with 50nM OGX-427 or ScrB for 2 days and treated with erlotinib (A549 at 10μM and HCC827 at 2.5nM) for 48 hours after the second transfection. Flow cytometry analysis of A549 and HCC827 show an increase in subG₀ and decrease in G₀/G₁. SD. ** and *, differ from control (P < 0.01 and P < 0.05, respectively).

Figure 5. OGX-427 plus erlotinib delays A549 xenograft growth in vivo. (A) A549 cells were inoculated s.c. and when tumor volume reached 50-100mm³, mice were treated with scrambled (ScrB) control+diluent, ScrB+erlotinib, OGX-427+diluent or OGX-427+erlotinib as described in Materials and Methods. Each data point represents the mean tumor volume in each group containing 8 mice ± SEM. *, differ from ScrB+diluent, ScrB+erlotinib, OGX-427+diluents or OGX-427+erlotinib treatment group (P<0.05). (B) Tumor volume changes were evaluated three weeks after starting the treatment. We set as 0 that at which tumor volume doubled after starting the treatment. (C) Hsp27 down regulation after OGX-427 treatment was evaluated by Western Blot. Three animals were (D) Tumors were collected after 49 days and TUNEL were evaluated by immunohistochemical analysis (original magnification: x200). used as representative samples from each group.

Figure 6. Combination of OGX-427 with chemotherapy enhances cytotoxicity in A549 cells. (A) Time- and dose-dependent induction of Hsp27 expression by pemetrexed in A549 cells. Protein expression levels of p-Hsp27, Hsp27, cleaved PARP and β-actin as loading control were evaluated by Western Blot. (B, left panel) Cells were treated with OGX-427 for 2 consecutive days followed by incubation with pemetrexed for an additional 72 hours. Cell viability was determined by crystal violet assay. (B, right panel) Combination index at ratio of OGX-427 to pemetrexed of 1:20 was calculated to establish synergy.
(C) A549 cell viability was evaluated in the presence of cisplatin, paclitaxel and gemcitabine in combination with ScrB or OGX-427. Bars, SD. ** and *, differ from control ($P < 0.01$ and $P < 0.05$, respectively). (D) Hsp27 and cleaved PARP were measured for the combination therapies by Western Blots. β-actin expression was used as a loading control.
Figure 1

A

Hsp27 (n=440)

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Positive (%)</th>
<th>Negative (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCC (n=214)</td>
<td>82.2% (n=176)</td>
<td>17.8% (n=38)</td>
</tr>
<tr>
<td>AD (n=195)</td>
<td>71.3% (n=139)</td>
<td>28.7% (n=56)</td>
</tr>
<tr>
<td>LCC (n=31)</td>
<td>67.7% (n=21)</td>
<td>32.3% (n=10)</td>
</tr>
</tbody>
</table>

Distribution of positive/negative cells (%)

B

P-Hsp27 (n=427)

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Positive (%)</th>
<th>Negative (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCC (n=212)</td>
<td>86.8% (n=184)</td>
<td>13.2% (n=28)</td>
</tr>
<tr>
<td>AD (n=184)</td>
<td>79.9% (n=147)</td>
<td>20.1% (n=37)</td>
</tr>
<tr>
<td>LCC (n=31)</td>
<td>87.1% (n=27)</td>
<td>12.9% (n=4)</td>
</tr>
</tbody>
</table>

Distribution of positive/negative cells (%)
Figure 2

A

Erlotinib (10μM) in A549

0 1 6 24 48 72

Hsp27

p-Hsp27 (Ser 82)

p-EGFR (Tyr 1068)

EGFR

Cleaved PARP

β-actin

Erlotinib (5nM) in HCC827

0 1 6 24 48 72

Hsp27

p-Hsp27 (Ser 82)

p-EGFR (Tyr 1068)

EGFR

Cleaved PARP

β-actin

B

A549

HCC827

- +

- +

(10μM)

(2.5nM)

Erlotinib

p-EGFR (Tyr 1068)

EGFR

p-Hsp27 (Ser 82)

Hsp27

HSF-1

β-actin

C

A549

HCC827

siScr (10nM)

siHSF-1 (10nM)

Erlotinib (10μM)

siScr (10nM)

siHSF-1 (10nM)

Erlotinib (2.5nM)

HSF-1

P-EGFR

EGFR

Hsp27

β-actin

48 hr treatment after transfection

Downloaded from mct.aacrjournals.org on June 15, 2021.
Figure 3

A

Cell viability (% of control) vs.
Erlotinib (μM)

A549 Empty
A549-Hsp27

Hsp27
β-actin

B

Erlotinib (μM)

A549 Empty
A549-Hsp27

P-EGFR(Tyr1068)
EGFR
Hsp27
HSF-1
Cleaved PARP
β-actin

72 hr treatment

C

Cell viability (% of control) vs.
Erlotinib (nM)

HCC827 parental
HCC827 resistant

Hsp27
Vinculin

D

Erlotinib (nM)

HCC827 parental
HCC827 resistant

Cleaved PARP
Hsp27
p-Hsp27 (Ser82)
p-EGFR (Tyr 1068)
EGFR
Vinculin
Figure 4

A

A549

HCC827

Cell viability (% of control)

0 2.5 5 10 20

[Erlotinib] in (µM)

0 2.5 5 10 20

[Erlotinib] in (nM)

B

A549

HCC827

Combination Index (CI)

ED50 ED75 ED90

ED50 ED75 ED90

C

D

ScrB
OGX-427
Erlotinib
P-EGFR(Tyr1068)
EGFR
Hsp27
Cleaved PARP
Cleaved Caspase-3
Caspase-3
β-actin

A549

HCC827

Erlotinib (10µM) Erlotinib (2.5nM)

Fractional content (%)

0 20 40 60 80

0 20 40 60 80

subG0 G0/G1 S G2/M

subG0 G0/G1 S G2/M

Downloaded from mct.aacrjournals.org on June 15, 2021. © 2015 American Association for Cancer Research.
Figure 5

A. Tumor Volume (mm3) vs. Week after treatment

B. % of tumor volume change

C. Relative level of Hsp27/GAPDH

D. Average number of positive cells

ScrB, ScrB+Erlotinib, OGX-427, OGX-427+Erlotinib
Hsp27 inhibition with OGX-427 sensitizes non-small cell lung cancer cells to erlotinib and chemotherapy

Barbara Lelj-Garolla, Masafumi Kumano, Eliana Beraldi, et al.

Mol Cancer Ther Published OnlineFirst March 4, 2015.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-14-0866

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2015/03/05/1535-7163.MCT-14-0866.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/early/2015/03/04/1535-7163.MCT-14-0866. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.