Anti-tumor activity of the Hsp90 inhibitor IPI-504 in HER2 positive trastuzumab-resistant breast cancer.

Maurizio Scaltriti1,3,*, Violeta Serra1*, Emmanuel Normant4, Marta Guzman1, Olga Rodriguez1, Alice R. Lin4, Kelly L. Slocum4, Kip A West4, Varenka Rodriguez4 Ludmila Prudkin2, José Jimenez2, Claudia Aura2 and José Baselga1,3,5.

1Medical Oncology and 2Molecular Pathology departments, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.

3Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School Boston, MA.

4Infinity Pharmaceuticals, Cambridge, MA, USA.

5Universitat Autonoma de Barcelona, Barcelona, Spain.

*These Authors equally contributed to this work

Corresponding author:
José Baselga, MD, PhD
10 North Grove Street, LH-108
Boston, Massachusetts 02114
Tel: 617-643-2438 Fax: 617-643-9686
Email: jbaselga@partners.org

Grants information: supported by BCRF and ERC

Running title: IPI-504 activity in trastuzumab-resistant cancer cells

Keywords: HER2, trastuzumab, IPI-504, Hsp90, breast cancer.

Conflict of interest: E.N, A.L, K.S., K.W., V.R. are Infinity Pharmaceuticals employees.
Abstract

Heat shock protein 90 (Hsp90) facilitates the maturation and stability of numerous oncoproteins, including HER2. The aim of this study was to assess the anti-tumor activity of the Hsp90 inhibitor IPI-504 in trastuzumab-resistant, HER2 overexpressing breast cancer cells. Therapy with trastuzumab, IPI-504 and the combination of trastuzumab and IPI-504 were evaluated in trastuzumab sensitive and trastuzumab-resistant cells. Inhibition of protein targets, cell proliferation and tumor growth was assessed in vitro and xenograft models.

IPI-504 inhibited proliferation of both trastuzumab-sensitive and trastuzumab-resistant cells. Administration of IPI-504 markedly reduced total levels of HER2 and Akt, as well as phosphorylated Akt and MAPK to an equal extent in trastuzumab-sensitive and trastuzumab-resistant cells. IPI-504, used as single agent or in combination with trastuzumab, also inhibited in vivo the growth of both trastuzumab-sensitive and resistant tumor xenografts. As a mechanism for the observed anti-tumor activity, IPI-504 resulted in a marked decrease in the levels of HER2, Akt, p-Akt and p-MAPK in trastuzumab-resistant xenografts as early as 12 hours after a single dose of IPI-504.

IPI-504 demonstrates antitumor activity in trastuzumab-sensitive and trastuzumab-resistant breast cancer cells in vitro and in vivo. IPI-504-mediated Hsp90 inhibition may represent a novel therapeutic approach in trastuzumab refractory HER2 positive breast cancer.
Introduction

Breast cancer is the most common cancer among women of western countries and is the second leading cause of cancer death in women. Amplification of the human epidermal growth factor receptor 2 (HER2) oncogene has been reported in approximately 20-30% of human breast tumors, and HER2 overexpression is associated with poor clinical outcome and recurrent disease (1-4). A milestone in the treatment of breast cancer was the development of trastuzumab, a humanized monoclonal antibody targeting HER2. Single-agent trastuzumab is clinically active and well tolerated among patients with advanced, refractory breast cancer (5-8). Combining trastuzumab with chemotherapy improves survival in metastatic, HER2 positive breast cancer, and this regimen is the current standard of care for this patient population (9, 10).

Despite these advances, intrinsic or acquired resistance to trastuzumab is common and eventually occurs in all patients with metastatic disease. With the exception of some cases where trastuzumab resistance may occur as a result of loss of HER2 (11), the majority of mechanisms of resistance described to date are the result of continued hyperactivation of HER2 downstream signaling either by the presence of trastuzumab-insensitive truncated receptors (12), HER2 dimerization with other receptors (13-15) or downstream deletion of tumor suppressor genes like PTEN (16) or activation mutations of PI3K (17). Thus, these tumors still remain heavily dependent on the HER2 pathway for their malignant behavior.

The heat shock protein 90 (Hsp90) chaperone complex facilitates the conformational maturation, stability, and activation of numerous wild type and mutated oncoproteins, including HER2 and mutated EGFR (18). Some of the critical components of the HER2
signaling pathway such as Akt are also client proteins of Hsp90. Accordingly, inhibition of Hsp90 induces proteasomal degradation of HER2 and suppresses growth of breast cancer cells and breast cancer xenograft tumors \textit{in vivo} (18-22). The Hsp90 inhibition mediated degradation of HER2 is enhanced with the addition of trastuzumab (23) and an early clinical trial that combined the Hsp90 inhibitor 17-AAG with trastuzumab has shown signs of efficacy among patients with trastuzumab refractory breast cancer (23, 24). 17-AAG is a potent inhibitor of Hsp90 but its clinical development has been hampered by pharmacological liabilities, including poor aqueous solubility, which could limit patient safety and the therapeutic index.

IPI-504 (retaspimycin hydrochloride) is a water-soluble, selective Hsp90 inhibitor capable of inter-conversion to 17-AAG \textit{in vivo} (see molecule structure in Fig 1). Both 17-AAG and IPI-504 have demonstrated activity in multiple models of solid (e.g., lung, breast, pancreatic, melanoma) and hematologic (e.g., chronic myelogenous leukemia, multiple myeloma) cancers (25-28). In HER2 positive human breast cancer cell lines, IPI-504 potently downregulates HER2 and inhibits cell growth (27). IPI-504 is currently under clinical investigation in a phase I/II trial in combination with docetaxel that is focused on patients with non-small cell lung cancer.

An unsolved question that is pertinent to the development of Hsp90 inhibitors is the level of activity of this class of agents in trastuzumab-resistant cells. The results described here demonstrate that IPI-504 treatment induces HER2 and Akt degradation with consequent cell growth inhibition in several models of trastuzumab-resistant cells, both \textit{in vitro} and \textit{in vivo}. The addition of trastuzumab does not seem to provide significant benefits to the antitumor activity of IPI-504. These data suggest that treatment with of
IPI-504 may represent an effective therapeutic strategy in trastuzumab refractory breast cancer.
Materials and Methods

Cell lines and treatments

BT474, SKBR-3 and HCC1569 cells were obtained from the American Type Culture Collection (Rockville, MD). BT474 and SKBR-3 cell (purchased in 2004) were maintained in Dulbecco’s modified Eagle medium/Ham F12 1:1 (DMEM/F12) supplemented with 10% fetal bovine serum (FBS) and 2 mM L-glutamine (Life Technologies, Inc. Ltd., Paisley, UK) at 37°C in 5% CO₂. HCC1569 cells (purchased in 2006) were maintained in RPMI-1640 medium containing 2nM L-glutamine (Invitrogen) supplemented with 10% fetal bovine serum (Hyclone) at 37°C in 5% CO₂. BT474, SKBR-3 and HCC1569 cells were authenticated by ATCC (DNA fingerprint, karyotyping and morphology study) and cells were not passaged/maintained for more than six months after resuscitation. BT474 and SKBR-3 HER2 positive breast cancer cell lines with acquired resistance to trastuzumab (BT474R and SKBR-3R) were obtained by culturing parental cells with increasing concentrations of trastuzumab for longer than 18 months. Several independent sub-clones refractory to the antiproliferative effects of trastuzumab were isolated from the pool of resistant cells and used for further analyses. BT474R and SKBR-3R clones were authenticated in house by SNP array analyses in 2008. Levels of HER2 and phosphorylated HER2 were not significantly different between parental and resistant cells (data not shown). Further, there were no observed changes in trastuzumab binding affinity to HER2 in resistant cells relative to parental cells (data not shown).

BT474 cells transfected with empty pBabe vector (BT474 empty) and stably overexpressing the p110α subunit of PI3K bearing the H1047R mutation
(BT474H1047R) were obtained as previously described (29) and not passaged/maintained for more than six months.

Trastuzumab (kindly provided by F. Hoffmann-La Roche, Basel, Switzerland) was dissolved in sterile apyrogen water (stock solution of 21.4 mg/ml) and stored at 4 °C. IPI-504 (Infinity Pharmaceuticals, Cambridge MA) was dissolved in citrate 50 mM buffer pH3.3, EDTA as a stock solution at 20 mM and stored at -20 °C.

In vitro proliferation assays and cell cycle analysis

Cell proliferation was studied using the cell proliferation reagent WST-1 (Roche, Indianapolis, IN) according to the manufacturer’s protocol. Briefly, 8×10^3 cells were seeded in triplicate in 96 well plates and treated for 5 days with either trastuzumab or IPI-504 as indicated. Viable cells were estimated on the basis of their ability to metabolize tetrazolium salt WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) to formazan by mitochondrial dehydrogenases. Quantification of the formazan dye directly correlates with the number of metabolically active cells and was analyzed by a scanning microplate reader (ELISA reader). Results are shown as means ± standard error (SE).

Western blot

Cells were washed twice with ice-cold PBS and scraped into ice-cold lysis buffer (50 mmol/L HEPES, pH 7.0, 10% glycerol, 1% Triton X-100, 5 mmol/L EDTA, 1 mmol/L MgCl$_2$, 25 mmol/L NaF, 50 µg/mL leupeptin, 50 µg/mL aprotinin, 0.5 mmol/L orthovanadate, and 1 mmol/L phenylmethylsulfonyl fluoride). Tumor xenografts were
minced into ice-cold lysis buffer using a Labgen 125 tissue homogenizer (Cole Palmer, Vernon Hills, IL).

Lysates were centrifuged at 15000g for 20 minutes at 4°C, and supernatants were removed and assayed for protein concentration using the Dc Protein assay (Bio-Rad, CA). Protein extracts were resolved by SDS-polyacrylamide gel electrophoresis (PAGE) acrylamide, and electrophoretically transferred to nitrocellulose membranes. Membranes were hybridized with the following primary antibodies: mouse monoclonal anti-total HER2 (CB11, Biogenex, San Ramon, CA); rabbit polyclonal phospho-Akt (Ser 473), rabbit polyclonal phospho-p44/42 MAPK (Thr202/Tyr204), rabbit polyclonal total Akt and rabbit polyclonal total MAPKs (Cell Signaling Technology, Beverly, MA). HER2 antibody were incubated in Tris-buffered saline-Tween buffer (T-TBS, 50mM Tris-HCl pH7.5, 150mM NaCl, 0.1% Tween-20)/5% non-fat dry milk. Anti-p-Akt, p-MAPKs, total Akt and total MAPKs were incubated in T-TBS/5% bovine serum albumin (BSA). Mouse and rabbit HRP-conjugated secondary antibodies (Amersham Biosciences, Little Chafont, UK) were used at 1:3000 in T-TBS/5% non-fat dry milk. Protein-antibody complexes were detected by chemiluminescence with Immobilon Western HRP substrate (Millipore, Billerica, MA, cat n. WBKLS0500).

In Vivo Xenograft Studies

Mice (Harlan Laboratories, Italy) were maintained as previously described (12). A 17β-estradiol pellet (Innovative Research of America, Sarasota, FL) was inserted subcutaneously to each mouse 1 day before cell injection.
For all the experiments 2 X 10^7 cells were injected into the right flanks of 10 mice for each experimental condition. Established tumors were treated with trastuzumab, IPI-504 or the combination as following: trastuzumab (10mg/kg in sterile PBS) or sterile PBS (control) was given intra-peritoneally twice weekly. IPI-504 (100mg/kg) was administered intra-peritoneally thrice weekly. IPI-504, trastuzumab and the combination treatments were tolerable. No significant toxicity was noticed among the treatment arms. Tumor growth was measured with digital calipers as indicated and tumor volume was determined using the formula: (length x width^2) x (π/6). At the end of the experiments the animals were anesthetized with 1.5% isofluorane-air mixture and killed by cervical dislocation. Results are depicted as means tumor volume ± SE.

Statistical Analysis

For *in vitro* assays and nude mice experiments, comparisons between groups were made using a two-tailed Student’s *t* test. When more than two groups were compared we used the one-way ANOVA test. Differences for which *P* was less than .05 were considered statistically significant.
Results

Antiproliferative activity of IPI-504 in trastuzumab-resistant cells

The isolation and characterization of the trastuzumab-resistant cells BT474R, SKBR-3R and BT474H1047R is described in Materials and Methods. BT474R, SKBR-3R, BT474H1047R and HCC1569 cells were confirmed to be refractory

in vitro to the antiproliferative effects of trastuzumab compared to parental cells or cells transfected with empty vector that served as trastuzumab-sensitive controls (Fig 2).

To test the sensitivity of trastuzumab-resistant cells to the inhibition of Hsp90 in terms of cell growth we treated both control and trastuzumab-resistant cells with increasing concentration of IPI-504 for 5 days. IPI-504 inhibited in a dose-dependent fashion the growth of both trastuzumab-sensitive and resistant cells (Fig 2). At low concentration of IPI-504 BT474H1047R and SKBR-3R cells were slightly less sensitive compared to controls (Fig 1B and C) but nevertheless a robust inhibition of growth was observed at clinically achievable concentrations of the inhibitor. Data is representative of experiments repeated in triplicate.

IPI-504 decreases HER2 protein expression and inhibits both Akt and MAPKs pathways

Both control and trastuzumab-resistant cells were exposed to increasing concentrations of IPI-504 for 24 hours, and HER2 protein levels were subsequently assessed. Treatment with IPI-504 resulted in a marked dose-dependent HER2 downregulation (Fig 3). Since continued activation of HER2 downstream signaling pathways is a common feature of trastuzumab resistance (see introduction) we decided to explore the effects of IPI-504
on critical elements of these pathways. Akt and mitogen-activated protein kinases
(MapKs) signaling pathways are activated in breast cancer cells by HER2 (30). Akt is
dependent on Hsp90 for protein maturation and stability, whereas MAPKs are not (31).
Incubation of IPI-504 potently suppressed both Akt and MAPKs phosphorylation in both
sensitive and trastuzumab-resistant cells (Fig 3). Total levels of Akt decreased in all four
cell lines in a dose-dependent manner. However, levels of total MAPKs were not
significantly altered with IPI-504 treatment. Similar results were obtained also with
SKBR-3 and SKBR-3R cells (Supplementary Fig 1). Data is representative of
experiments repeated in triplicate.

In vivo antitumor activity of IPI-504 in trastuzumab refractory tumors

To expand our results to the in vivo setting, we evaluated tumor growth inhibition in
xenografts derived from BT474 and BT474R in response to IPI-504 and trastuzumab
dosing. Treatments were started 22 days after cell injection, when tumors were well
established. IPI-504 and trastuzumab independently induced tumor regression of
trastuzumab-sensitive BT474 cell-derived xenografts (Fig 4A). Xenografts derived from
BT474R cells continued to grow in the presence of trastuzumab, but were still sensitive
to IPI-504 (Fig 4B). When used in combination, IPI-504 and trastuzumab added only
marginal benefits to IPI-504 monotherapy (Fig 4B).

Low expression of PTEN (16) or the presence of PI3K activating mutations (such as the
E545K and the H1047R) (17) have been shown to correlate with decreased sensitivity to
trastuzumab-based therapy in HER2 positive breast cancer patients. Aiming to evaluate
whether inhibition of Hsp90 could be a valid therapeutic strategy to target trastuzumab
resistance driven by deregulation of the PI3K pathway we tested the antitumoral activity of IPI-504 in xenografts bearing the aforementioned aberrations. We treated both BT474 empty and BT474H1047R-derived xenografts with IPI-504 and trastuzumab and found that both controls and cells bearing the PI3K mutation respond similarly to Hsp90 inhibition (Fig 5A and B). Interestingly, the H1047R mutation of the p110α subunit of PI3K was not found sufficient to decrease in vivo trastuzumab sensitivity of BT474 cells (data not shown). This phenomenon has been observed previously in the HER2-amplified KPL-4 breast cancer cell line (32) and independently verified by our group as well (data not shown).

We then assessed the efficacy of IPI-504 in tumors derived from HCC1569 cells, a recognized preclinical model with activated PI3K pathway due to low levels of PTEN (33). Tumors derived from this cell line were treated with trastuzumab, IPI-504 or the combination (Fig 5C). As expected, IPI-504 as a single agent was more efficacious than trastuzumab in inhibiting tumor growth in HCC1569 xenografts. The combination was not significantly to IPI-504 used as single agent. The inhibitory effects of IPI-504 on both Akt and MAPKs pathways was confirmed also in this cell line (Supplementary Fig 2).

Effects of IPI-504 on HER2 and downstream signaling

Expression of HER2, p-Akt, p-MAPKs, Akt, and MAPKs was evaluated in both BT474R and BT474H1047R xenografts at the end of the experiments of Figs 4 and 5. In Fig 6A we show decreased levels of total HER2, pAkt and pMAPKs in xenografts treated with IPI-504. Total Akt levels were unaffected in these tumors. To further analyze the effects of IPI-504 on HER2 and downstream signaling in vivo, we performed a
pharmacodynamics study treating BT474R tumors with a single dose of IPI-504 (100mg/kg) and follow the expression of these markers overtime. The levels of HER2, p-Akt and p-MAPKs were significantly decreased 12 hours after a single dose of 100mg/kg IPI-504 (Fig 6B). Total levels of Akt were decreased only after 24 hours. Maximum downregulation of the levels of HER2 were achieved at 24 hours after treatment initiation, whereas maximal decreases of activated Akt and MAPKs were reached between 12 and 24 hours. At 48 hours, p-Akt, p-MAPKs and, less evidently, HER2 expression started to recover, whereas Akt levels remained suppressed. These results were also reproduced in cultured BT474 and BT474R cells, showing good correlation between in vivo and in vitro data (Supplementary Fig 3).
Discussion

In the last decade the treatment of HER2 positive breast cancer has significantly improved by the introduction of anti-HER2 agents such as trastuzumab and, more recently, tyrosine kinase inhibitors (34, 35). Despite these advances, resistance to anti-HER2 agents is frequent and new anti-HER2 approaches are being explored (36). Among these novel approaches, Hsp90 inhibitors have been considered as potential agents since they result in decreased HER2 expression, and there is already some evidence of antitumor activity with these agents (23, 37).

Hsp90 is described to interact with over 200 different “client” proteins (http://www.picard.ch/downloads/Hsp90interactors.pdf), including numerous oncogenes (18, 38). Hsp90 may regulate the maturation, stability, and/or trafficking of these proteins. For instance, maturing and fully mature forms of HER2 depend on Hsp90 association for stability and, in fact, HER2 is considered one of the most sensitive client proteins to Hsp90 inhibition (39).

In this study, we investigated whether Hsp90 inhibitors would also be active in HER2 positive cell lines with either primary (intrinsic) or secondary (acquired) resistance to trastuzumab. We show that cells/tumors that developed resistance to trastuzumab following chronic exposure to the antibody (BT474R and SKBR-3R) were highly sensitive to IPI-504. Similar results were observed in tumor models bearing the H1047R PI3K activating mutation or low levels of PTEN, known to be clinically confirmed mechanisms of intrinsic trastuzumab resistance (16, 17). Furthermore, it has also been recently demonstrated that IPI-504 reduces tumor growth of JIMT-1 xenografts which are believed to be intrinsically resistant to trastuzumab due to upregulation of the membrane-
associated mucin 4 (27). Taken together, these data suggest that IPI-504 treatment can counteract multiple trastuzumab-resistant mechanisms, which may offer a potential clinical path forward for intervention in this setting. As a potential mechanistic explanation for the observed activity on resistant cells, we show that IPI-504 not only downregulates HER2 but also prevents phosphorylation of both Akt and MAPKs in trastuzumab-resistant cells. Since continued signaling via HER2 dependent pathways is still observed in the majority of trastuzumab-resistant cells, the silencing of these pathways by IPI-504 could partially explain its activity in this setting.

Interestingly, both BT474R and HCC1569 tumors were not entirely refractory to trastuzumab treatment. This phenomenon is most likely due to antibody-dependent cell-mediated cytotoxicity, proved to be one of the mechanisms of action of trastuzumab in vivo (40).

In conclusion, our results suggest that IPI-504-mediated inhibition of Hsp90 may be a valid therapeutic approach to target HER2 positive breast cancer patients who have become refractory to trastuzumab therapy. Our data confirm that Hsp90 inhibition is a promising strategy for trastuzumab-resistant HER2 amplified breast cancer.
References

Legends

Figure 1. Structure of IPI-504

Figure 2. Antiproliferative activity of IPI-504 in trastuzumab resistant cells. Five days proliferation of BT474R (A), BT474H1047R (B) and SKBR-3R (C) cells in response to increasing concentrations of trastuzumab or IPI-504 was compared to controls. D. Five days proliferation of HCC1569 cells in response to increasing concentrations of trastuzumab or IPI-504. The experiments were performed three times.

Figure 3. Inhibitory effects of IPI-504 on Akt and MAPKs pathways. Western blots showing the effects of increasing concentrations of IPI-504 for 24 hours on the expression of total levels of both HER2 and Akt and the phosphorylation of both Akt and MAPKs in BT474, BT474R, BT474 empty and BT474H1047R cells. Total MAPKs serve as loading controls. The experiments were performed three times.

Figure 4. Antitumor activity of IPI-504 in BT474R xenografts. A. Tumor growth inhibition of BT474 xenografts in response to IPI-504 or trastuzumab. Data are expressed as mean ±SE. *P<0.01 between treatment groups versus untreated control. B. Tumor growth inhibition of BT474R xenografts in response to IPI-504, trastuzumab or the combination of the two agents. Data are expressed as mean ±SE. *P<0.01 of IPI-504 and combination groups versus control.

Figure 5. Antitumor activity of IPI-504 in BT474H1047R and HCC1569 xenografts. A. Tumor growth inhibition of BT474 empty xenografts in response to IPI-504. Data are expressed as mean ±SE. *P<0.01 versus control xenografts. B. Tumor growth inhibition of BT474H1047R xenografts in response to 100mg/kg IPI-504. Data are expressed as
mean±SE. *P<0.05 versus control xenografts. C. Tumor growth inhibition of HCC1569 xenografts in response to 50mg/kg IPI-504, trastuzumab or the combination of the two agents. Data are expressed as mean±SE. *P<0.05 of IPI-504 and combination groups versus control.

Figure 6. Western blots showing the effects of IPI-504 on HER2 and downstream signaling pathways in BT474R and BT474H1047R tumors. A. Expression levels of HER2, pAkt, Akt, and pMAPK in both BT474R and BT474H1047R tumors at the end of the tumor growth experiments. Total MAPKs serve as loading controls.

B. Time course experiment showing the effects of a single administration of IPI-504 (100mg/kg) on HER2, Akt, p-Akt and p-MAPKs levels in BT474R tumors. Total MAPKs serve as loading controls.
Fig 2
Fig 3
Fig 5
Molecular Cancer Therapeutics

Anti-tumor activity of the Hsp90 inhibitor IPI-504 in HER2 positive trastuzumab-resistant breast cancer

Maurizio Scaltriti, Violeta Serra, Emmanuel Normant, et al.

Mol Cancer Ther Published OnlineFirst March 7, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-10-0966

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2011/03/07/1535-7163.MCT-10-0966.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/early/2011/03/04/1535-7163.MCT-10-0966. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.