PF-03814735, an Orally Bioavailable Small Molecule Aurora Kinase Inhibitor for Cancer Therapy

Jitesh P. Jani1, Joel Arcari2, Vincent Bernardo2, Samit K. Bhattacharya2, David Briere1, Bruce D. Cohen2, Kevin Coleman2, James G. Christensen1, Erling O. Emerson2, Amy Jakowski2, Kenneth Hook1, Gerrit Los1, James D. Moyer2, Ingrid Pruimboom-Brees3, Leslie Pustilnik2, Ann Marie Rossi2, Stefan J. Steyn2, Chunyan Su2, Konstantinos Tsaparikos1, Donn Wishka2, Kwansik Yoon2, and John L. Jakubczak4

Abstract

The Aurora family of highly related serine/threonine kinases plays a key role in the regulation of mitosis. Aurora1 and Aurora2 play important but distinct roles in the G2 and M phases of the cell cycle and are essential for proper chromosome segregation and cell division. Overexpression and amplification of Aurora2 have been reported in different tumor types, including breast, colon, pancreatic, ovarian, and gastric cancer. PF-03814735 is a novel, potent, orally bioavailable, reversible inhibitor of both Aurora1 and Aurora2 kinases that is currently in phase I clinical trials for the treatment of advanced solid tumors. In intact cells, the inhibitory activity of PF-03814735 on the Aurora1 and Aurora2 kinases reduces levels of phospho-Aurora1, phosphohistone H3, and phospho-Aurora2. PF-03814735 produces a block in cytokinesis, resulting in inhibition of cell proliferation and the formation of polyploid multinucleated cells. Although PF-03814735 produces significant inhibition of several other protein kinases, the predominant biochemical effects in cellular assays are consistent with inhibition of Aurora kinases. Once-daily oral administration of PF-03814735 to mice bearing human xenograft tumors produces a reduction in phosphohistone H3 in tumors at doses that are tolerable and that result in significant inhibition of tumor growth. The combination of PF-03814735 and docetaxel in xenograft mouse tumor models shows additive tumor growth inhibition. These results support the clinical evaluation of PF-03814735 in cancer patients.

Mol Cancer Ther; 9(4); 883–94. ©2010 AACR.

Introduction

The Aurora kinases are a highly related family of serine/threonine kinases that are key regulators of mitosis and are thus potential molecular targets for the development of novel anticancer therapeutics (1–3). These kinases play an important role in centrosome duplication, mitotic spindle formation, chromosome alignment, mitotic checkpoint activation, and cytokinesis (4). In mammals, three related Aurora kinases known as Aurora-A (Aurora2), Aurora-B (Aurora1), and Aurora-C (Aurora3) have been identified (3). Although these kinases have significant sequence homology, their subcellular localization, timing of activation, and biological functions during mitosis are largely distinct from one another (5, 6).

Aurora1 is located on chromosome 17p13.1 and its exogenous overexpression in Chinese hamster embryo cells has been shown to cause chromosomal separation defects and an increased cellular invasiveness in vivo (7). Aurora2 maps to chromosome 20q13.2, a region commonly amplified in human malignancies. Amplification and overexpression of Aurora2 have been reported in different tumor types, including breast, colon, pancreatic, ovarian, and gastric cancer (5, 8–13). In fact, a significant association between Aurora2 overexpression with higher grade tumors and poor prognosis has been indicated (12). In preclinical studies, overexpression of wild-type or mutant forms of Aurora2 has been shown to transform Rat1 and NIH 3T3 cells in vitro in soft agar assays (5, 13). In nu/nu mice, NIH 3T3 cells expressing constitutively active Aurora2 form solid tumors (5). The biological function of Aurora3 remains unclear, and its expression is predominantly restricted to germ cells (14). Although the expression of Aurora3 in normal tissues is limited, its overexpression has been reported in a high percentage of primary colorectal cancers and in tumor cell lines (14, 15). These observations have intensified interest in identifying and developing Aurora kinase inhibitors for the treatment of human malignancies.
In the last few years, several small-molecule inhibitors of the Aurora1 and Aurora2 kinases as well as inhibitors specific to Aurora1 or Aurora2 kinase have been identified, and several of these agents are undergoing clinical trials (16, 17). Preclinically, these inhibitors have been shown to cause tumor cell growth inhibition associated with the reduction of histone H3 phosphorylation, formation of cells with >4N DNA content, and the induction of apoptosis in multiple cancer cell lines and tumor xenografts (18–24). We describe here the preclinical studies to characterize the biochemical, cellular, and pharmacologic effects of a novel Aurora kinase inhibitor, PF-03814735, that is currently in phase I clinical trials.

Materials and Methods

Compound

PF-03814735 (N-[2-[6-(4-Cyclobutylamino-5-trifluoromethyl-pyrimidine-2-ylamino)-1,4-epiazano-naphthalen-9-yl]-2-oxo-ethylacetamide) was synthesized at Pfizer Global Research and Development, Groton/New London Laboratories (25). The mesylate salt form of PF-03814735 was used in all studies unless otherwise noted.

Cell culture

The human tumor cell lines HCT-116, Colo-205, and SW620 colorectal carcinomas; HL-60 promyelocytic leukemia; MDA-MB-231 breast carcinoma; A549 and H125 non–small cell lung carcinomas; C6 (rat glioma); L1210 (mouse leukemia); and MDCK (dog kidney cells) were obtained from the American Type Culture Collection and were maintained in either DMEM or RPMI supplemented with 10% fetal bovine serum.

Antibodies

The following antibodies were obtained from Cell Signaling Technology: phospho-Thr288-Aurora2 (rabbit), phospho-Ser10 Histone H3 (mouse and rabbit), and phospho-Y15 cdc2 (rabbit). The PMP2 antibody (mouse) was obtained from Millipore. The Aurora1 (mouse) and Aurora2 (mouse) antibodies were obtained from BD Biosciences. Secondary antibodies used were goat anti-rabbit labeled with Alexa 594, and goat anti-mouse labeled with Alexa 488, both from Invitrogen.

Recombinant kinase assays

Aurora1 and Aurora2 proteins were produced as full-length His-tag recombinant proteins expressed in insect cells. For the Aurora2 kinase assay, phosphorylation of the substrate peptide by recombinant Aurora2 protein was assessed by a Z’-LYTE assay (Invitrogen) at 3 to 300 μmol/L ATP and various concentrations of PF-03814735 over 60 min, at a substrate peptide concentration of 2 μmol/L (biotinylated LRRWSLG, ×4). Phosphorylation was linear over this time for all conditions. For the Aurora1 kinase assay, phosphorylation of the substrate peptide by recombinant Aurora1 protein was assessed by a scintillation proximity assay in a 96-well plate format in which the incorporation of 33P into the peptide substrate (biotinylated LRRWSLG, ×4) was measured by capturing the peptide on a streptavidin scintillation proximity assay bead. Inhibition of the FAK kinase activity was assessed as previously described (26).

In vitro immunohistochemistry and image analysis

Asynchronous exponentially replicating MDA-MB-231 cells were seeded at 5,000 cell/well in 100 μL medium (DMEM high glucose, 10% heat-inactivated fetal bovine serum with penicillin-streptomycin) in 96-well plates. The next day, cultures were exposed to PF-03814735 or vehicle for the indicated times followed by fixation in cold 100% methanol. The fixed cells were blocked with 100 μL 4% goat serum and 3% bovine serum albumin in TBS Tween-20 and incubated with 4,6-diamidino-2-phenylindole stain and appropriate antibodies overnight at 4°C, followed by incubation with secondary antibodies. These cells were subjected to quantitative image analysis by a Thermo Scientific Cellomics ArrayScan HCS Reader with a 10× or 20× objective. Typically >400 cells were examined.

Flow cytometry

Cell cycle distribution of HCT-116 cultures treated with PF-03814735 was done by flow cytometric analysis on 1 to 2 × 10^6 cells treated for 4 h or 48 h with 300 nmol/L PF-03814735 followed by fixation in 70% ethanol and propidium iodine staining. The samples were analyzed on a Becton Dickenson FacsCaliber Instrument.

Cell proliferation assays

Cell lines were grown in appropriate media and evaluated after 48 h of exposure to either PF-03814735 or vehicle, followed by cell number determination in a Coulter Counter, as previously described (27). Proliferation (as measured by an increase in cell number) was expressed as a percent of untreated controls. To evaluate the PF-03814735 exposure time required for antiproliferative activity, HL-60 cell cultures were cultured in RPMI medium supplemented with 15% heat-inactivated fetal bovine serum and exposed to various PF-03814735 concentrations for 4, 8, 12, 24, and 48 h, followed by a washout step and incubation with growth media without PF-03814735 for the remainder of the 72-h assay period. Continuous exposure to PF-03814735 for 72 h was also evaluated. Cell counts were determined by a Coulter Counter, as previously described (27).

In vivo studies

Female nude (Crl:nu/nu-Foxn1tnu) and severe combined immunodeficient (SCID) beige (CB17/lcr.Cg-PrkdcscidLystbg/Crl) mice were obtained from Charles
River Laboratories for all xenograft studies except the SW620 model where we used nude (Hsd:Athymic Nude-Foxn1	extsuperscript{nu}) female mice obtained from Harlan Sprague Dawley. The mice were cared for and maintained in accordance with applicable United States Animal Welfare regulations under an approved Institutional Animal Care and Use Protocol in a Pfizer animal facility (Groton, CT) or at Piedmont Research Center (Morrisville, NC), both of which are accredited by the Association for Assessment and Accreditation of Laboratory Animal Care. For disease treatment studies, PF-03814735 was formulated as a solution in cremophor EL [cremophor/ethanol/0.9% saline (12.5%/12.5%/75%)]. Docetaxel was formulated in 7.5% ethanol, and 7.5% Tween 80 in distilled water. Tumors were implanted s.c. on the right flank either as cell suspensions (3 × 10⁶ to 1 × 10⁷ cells in 100 μL of PBS) or as 1-mm³ tumor fragments in the case of the SW620 model.

For the continuous infusion experiments, Alzet mini-osmotic pumps (model 1007D, Durect) were used (pumping rate 0.5 μL, duration 7 d, reservoir volume 100 μL). The pumps were filled with PF-03814735 or vehicle according to the manufacturer’s protocol and placed into sterile saline until implant. While under isoflurane anesthesia, the abdominal region was wiped with disinfectants and a small longitudinal incision was made (2–4 mm). The pump was then inserted into the peritoneal cavity and the incision closed with surgical sutures and wound clips (7–9 mm).

Pharmacokinetic and pharmacodynamic studies

Mice bearing s.c. HCT-116 xenograft tumors (250–400 mm³) were evaluated for plasma drug concentrations and tumor levels of phosphohistone H3 Ser10. Mice were treated with a single dose of PF-03814735 or vehicle by oral gavage and were sacrificed at 0.5, 1, 2, 3, 7, 16, or 24 h postdose (3–4 mice/time point).

For pharmacodynamic analysis, tumors were excised and cut into two pieces, one snap frozen in liquid N2 and the other fixed in 10% neutral-buffered formalin. Frozen tumor tissue was homogenized in ice-cold lysis buffer (1% Triton-X100, 10 mmol/L Tris, 5 mmol/L EDTA, 50 mmol/L NaCl, 30 mmol/L Na₄P₂O₇ 100 μmol/L NaVO₄ 1 mmol/L phenylmethylsulfonylfluoride, Pefablock, 1 Roche inhibitor tablet/50 mL volume) at 1 mL buffer/100 mg of tumor weight and spun for 5 min at 14,000 rpm. Total protein concentration was determined using a bichinonic acid protein assay (Pierce). The supernatants were subjected to SDS-PAGE, transferred to nylon membrane, and incubated with an anti-human phosphohistone H3 Ser10 antibody (Millipore), and an anti-human actin antibody (Sigma), followed by incubation with two specific detection antibodies (antirabbit and antimouse, Jackson ImmunoResearch). The levels of phosphohistone H3 Ser10 and actin were quantitated with a Lumi-Imager. The levels of phosphohistone H3 were normalized to actin in each tumor sample and the percent inhibition calculated versus vehicle-treated control tumors harvested at 2 h postdose. Formalin-fixed tumor tissue was embedded in paraffin, thin sectioned, and levels of phosphohistone H3 were measured with a rabbit polyclonal phosphohistone H3 Ser10 antibody (Cell Signaling Technology) at 1:200 dilution followed by incubation with a

Table 1. PF-03814735 and its kinase inhibitory properties

<table>
<thead>
<tr>
<th>Kinase</th>
<th>IC₅₀ nmol/L</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aurora1</td>
<td>0.8 ± 0.6</td>
<td>nd</td>
</tr>
<tr>
<td>Aurora2</td>
<td>5 ± 3</td>
<td>≥90</td>
</tr>
<tr>
<td>FAK</td>
<td>10</td>
<td>≥90</td>
</tr>
<tr>
<td>TrkA</td>
<td>30</td>
<td>≥90</td>
</tr>
<tr>
<td>Met</td>
<td>100</td>
<td>≥90</td>
</tr>
<tr>
<td>FGFR1</td>
<td>100</td>
<td>≥90</td>
</tr>
<tr>
<td>CDK5/p35</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>FTS/DBS3Y</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>ARK5</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>NEK2</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>Fank</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>Ret</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>MLK1</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>TrkB</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>Fisk</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>JAK2</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>Fit3</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>MST3</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>CDK5/p25</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>MST2</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>Rsk3</td>
<td>nd</td>
<td>≥90</td>
</tr>
<tr>
<td>Abi(T315I)</td>
<td>nd</td>
<td>69</td>
</tr>
<tr>
<td>Abi</td>
<td>nd</td>
<td>50</td>
</tr>
</tbody>
</table>

Note: The chemical structure of the trifluoromethylpyrimidine PF-03814735. The kinase inhibition profile was assessed against a panel of 220 recombinant protein kinases at 100 nmol/L concentration of PF-03814735 and ATP substrate at 10 μmol/L. Kinases that showed ≥90% inhibition are indicated, except for the Abi kinase, which showed 50% inhibition. For a subset of kinases, additional concentrations of PF-03814735 were evaluated to calculate the IC₅₀ value (± SD when available). Abbreviation: nd, not done.
biotinylated goat anti-rabbit IgG at 1:150 dilution. For each tumor section, the number of phosphohistone H3–positive cells was counted in three areas, at 40× magnification.

For pharmacokinetic analyses, plasma was collected in heparinized vacutainers following intracardiac puncture. Aliquots (50 μL) of plasma were extracted with 150 μL acetonitrile containing an internal standard (0.25 μg/mL). The organic layer was separated by centrifugation and transferred to a high performance liquid chromatography sample plate. Concentrations of PF-03814735 and an internal standard were determined by liquid chromatography-tandem mass spectrometry with a Sciex API 3000 triple quadrupole mass spectrometer. PF-03814735 and an internal standard were separated chromatographically using a reverse phase analytical column (30 × 2.1 mm; 5-μm particle, Advantage Armor C18 5 μm) at a flow rate of 400 μL/min at ambient temperature. The mobile phase was delivered as 90% 5 mmol/L ammonium acetate adjusted to pH 4.5 with glacial acetic acid and 10% acetonitrile for the first minute followed by a linear gradient from 10% to 90% acetonitrile over 0.6 min. Then the mobile phase was delivered isocratically at 90% acetonitrile for 1 min before a subsequent gradient back to 10% acetonitrile over 0.5 min. The column was allowed to re-equilibrate at 90% 5 mmol/L ammonium acetate (pH 4.5) and 10% acetonitrile for 0.7 min before the next sample injection. PF-03814735 and the internal standard were analyzed by a turbo ion-spray interface operating in positive ion mode by multiple reactions monitoring with m/z transitions being 475.2/359.1 and 454.2/383.1 a.m.u., respectively. The retention times of PF-03814735 and the internal standard were both approximately 1.15 min. Data collection and integration were accomplished using Analyst (version 1.2). The ratio of peak area responses of the drug relative to internal standard was used to construct a standard curve using a linear least squares regression with a 1/x2 weighting. The dynamic range of the drug relative to internal standard was used to construct a standard curve using a linear least squares regression with a 1/x2 weighting. The dynamic range of the drug relative to internal standard was used to construct a standard curve using a linear least squares regression with a 1/x2 weighting. The dynamic range of the drug relative to internal standard was used to construct a standard curve using a linear least squares regression with a 1/x2 weighting. The dynamic range of the drug relative to internal standard was used to construct a standard curve using a linear least squares regression with a 1/x2 weighting. The dynamic range of the drug relative to internal standard was used to construct a standard curve using a linear least squares regression with a 1/x2 weighting.

Antitumor efficacy studies

Xenograft tumors were allowed to reach a size of 63 to 190 mm³, at which point mice were randomly distributed into treatment groups of 6 to 10 mice. The mice were treated with PF-03814735 or vehicle by oral gavage, continuous infusion (as described above) or with docetaxel by tail vein injection. Tumor volumes were recorded twice weekly by calipers using the formula length × width² × π/6. Tumor growth inhibition was calculated using the formula 100 × (1-ΔT/ΔC) where ΔT and ΔC are the changes in the mean tumor volumes between the last day and the first day of measurement for the treatment and control groups, respectively. Mean tumor volumes were calculated for all of treatment groups as long as each group remained intact, unless otherwise noted. Animals were sacrificed when tumors exceeded a volume of ~2,000 mm³ or if the physical condition of the animal warranted intervention.

Statistical analysis

Statistical comparisons among mouse treatment groups were done on mean tumor volumes by one-way ANOVA.

Results

Kinase inhibitory properties of PF-03814735

The trifluoromethylpyrimidine PF-03814735 (Table 1) was identified in in vitro enzymatic assays as a potent inhibitor of the Aurora1 and Aurora2 kinases, with IC₅₀ values of 0.8 nmol/L and 5 nmol/L, respectively (Table 1). The kinetics of inhibition of recombinant Aurora2 kinase by PF-03814735 indicated that inhibition was ATP competitive (data not shown). PF-03814735 produced significant inhibition of several other protein kinases in recombinant kinase enzymatic assays. Of 220 kinases evaluated, 19 others showed >90% inhibition at 100 nmol/L of PF-03814735 (Table 1). The IC₅₀ values of PF-03814735 for a subset of these kinases revealed the greatest potency for Aurora1 and Aurora2, followed by Fli1, FAK, TrkA, Met, and FGFR1. Thus, PF-03814735 was shown to be a potent inhibitor of Aurora1 and Aurora2 kinases as well as several other protein kinases in enzymatic assays.

Cellular effects of PF-03814735

We used high-content immunofluorescence imaging analysis to characterize the effects of PF-03814735 in whole cells. Protein expression, distribution, and activation were examined in asynchronously growing MDA-MB-231 cells in culture using a panel of antibodies. MDA-MB-231 cells were exposed to PF-03814735 for 4 hours followed by fixation, staining for antibodies specific for various protein kinase substrates and quantitative image analysis. We found that PF-03814735 treatment markedly reduced levels of Aurora1 phosphorylated on Thr 232 in cells, a sensitive marker of Aurora1 activity, with an IC₅₀ ~20 nmol/L (Figs. 1A and 2C). PF-03814735 also inhibited the phosphorylation of histone H3 on Ser10, another marker of Aurora1 kinase activity, with an IC₅₀ ~50 nmol/L (Fig. 2A and C). We measured the inhibitory activity of PF-03814735 on the Aurora2 kinase in this cell line by the loss of cells staining positively for Aurora2 autophosphorylated on Thr288 (Figs. 1B and 2C) and observed an IC₅₀ of ~150 nmol/L. Finally, we evaluated levels of MPM2, a phospho-epitope formed in cells by an undetermined protein kinase specifically at M phase and found its levels were not substantially affected by PF-03814735 at concentrations that profoundly reduced the other three phosphoprotein markers (Fig. 2B and C). Thus, PF-03814735 was a potent inhibitor of the Aurora1 and Aurora2 kinases in cells.
The kinetics of PF-03814735 treatment were also measured in cell culture. In MDA-MB-231 cells, we found that PF-03814735 induced a marked depletion of phosphorylated histone H3 and phosphorylated Aurora2 levels within 30 minutes of treatment (data not shown). After short-term exposure (4 hours), levels of phosphorylated histone H3 and phosphorylated Aurora2 quickly recovered upon washout of the compound from the cell cultures (data not shown). PF-03814735 treatment did not reduce the levels of Aurora2 protein, but did markedly change its subcellular distribution. Aurora2 was sharply localized to centrosomes in untreated cells, but in cells exposed to PF-03814735 it was more diffuse and it remained unphosphorylated (Fig. 1B). Aurora2 delocalization was rapidly reversed and sharply localized at centrosomes within 1 hour of washout (data not shown). Thus, PF-03814735-induced inhibition of Aurora kinases was rapid and reversible in cells.

In addition to the high-content immunofluorescence imaging analysis, we evaluated the cell cycle kinetics of cells treated with PF-03814735. Extended treatment of HCT-116 human colon carcinoma cells with PF-03814735 led to the formation of polyploid cells. Following 4 hours' treatment with PF-03814735, we observed an increase in numbers of cells with 4N DNA content and a reduction of cells with 2N DNA content (Fig. 3A). After 48 hours of exposure to PF-03814735, the numbers of 2N and 4N cells were both markedly reduced, with an increase in cells of ≥8N DNA content observed, consistent with failed cytokinesis after DNA replication (Fig. 3A). Similar accumulation of polyplloid cells was seen in cultures of MDA-MB-231 and HL-60 human leukemia cells upon exposure to PF-03814735 (data not shown). These findings were corroborated by immunofluorescence studies that indicated formation of multinucleated MDA-MB-231 cells after 24 hours of PF-03814735 treatment (data not shown). Thus, PF-03814735 treatment resulted in effects on the cell cycle presumably due to a block in cytokinesis secondary to inhibition of Aurora1 kinase.

Antiproliferative effects of PF-03814735

Inhibition of cell proliferation by PF-03814735 was evaluated against several human cell lines from various tumor types (HCT-116, HL-60, A549, and H125) as well as tumor cell lines of rat (C6), mouse (L1210), and dog (MDCK) origin. Cell lines were exposed to PF-03814735 in culture for 48 hours followed by determination of cell counts. PF-03814735 treatment resulted in a reduction in cell number relative to untreated control cultures. For this panel of cell lines, the calculated IC50 for PF-03814735 was 42 to 150 nmol/L (Supplementary Table S1). PF-03814735 treatment at 300 nmol/L produced...
near-complete inhibition of proliferation of these cell lines tested (data not shown).

Because the role of the Aurora kinases seems to be limited to the G2 and M phases of the cell cycle, we anticipated that only a portion of an asynchronous cell population would be sensitive to Aurora inhibition at any given moment. Thus, prolonged exposure would be necessary to affect a high proportion of the cells as they enter and traverse the phases of the cell cycle. This was confirmed by experiments in which we treated asynchronous HL-60 cell cultures for various periods of time with PF-03814735, followed by washout of the compound and subsequent measurement of cell numbers after a total of 72 hours in culture. We found that incubations of \(\leq 8\) hours were relatively ineffective, and inhibition of cell proliferation was seen only at \(\geq 12\) hours’ exposure (Fig. 3B). Taken together, the above data indicate that PF-03814735 is a potent inhibitor of Aurora1 and Aurora2 kinases in a wide variety of tumor cell lines, with resulting effects on the cell cycle and cell proliferation consistent with Aurora kinase inhibition.

Reduction of phosphorylated histone H3 levels in vivo

Next we assessed the oral pharmacokinetics and pharmacodynamics of PF-03814735 *in vivo*. Athymic mice bearing s.c. HCT-116 human colorectal cancer xenografts were treated with single doses of PF-03814735 of 10, 15, 20, and 30 mg/kg. This dose range resulted in mean peak plasma levels from 1,500 ng/mL to 4,565 ng/mL. The absorption of PF-03814735 was rapid after oral administration, reaching maximum plasma concentration at approximately 2 hours (Fig. 4A). To evaluate the pharmacodynamics of PF-03814735 *in vivo*, we measured the levels of phosphorylated histone H3 in HCT-116 xenografts as a measure of Aurora1 kinase inhibition. Tumors were collected from mice at various times after treatment with different dose levels of PF-03814735. The levels of phosphorylated histone H3 were quantified in tumor extracts from treated mice relative to vehicle-treated tumors by immunoblots with an antibody specific for Ser 10 phosphorylation. The kinetics of phosphorylated histone H3 reduction were rapid, similar to that of PF-03814735 pharmacokinetics. By 1 hour postdose with 20 mg/kg PF-03814735, phosphorylated histone H3 levels were inhibited 96% and by 7 hours had returned to normal levels relative to vehicle treatment (Fig. 4A). PF-03814735 is highly protein-bound in mouse blood, with the free fraction in mouse blood calculated to be 0.027 (data not shown). The 50% maximal effective concentration (EC\(_{50}\)) value for the inhibition of phosphorylated histone H3 was 64 nmol/L free concentration. The EC\(_{50}\) value for

Figure 2. PF-03814735 reduces phosphorylation of Aurora kinase substrates but does not reduce MPM2 levels in cells. MDA-MB-231 tumor cell cultures were treated with 300 nmol/L PF-03814735 (rows T in A and B) or vehicle (rows C in A and B) for 4 h, then fixed and analyzed by high-content immunofluorescence analysis. A, PF-03814735 reduces levels of histone H3 phosphorylated on Ser 10 (pH3) in cells. Representative field of cells stained for DNA (DAPI) and phosphohistone H3. B, PF-03814735 treatment at this concentration does not reduce levels of MPM2 in cells. Representative field of cells stained for DNA (DAPI) and MPM2. C, the effects of varying concentrations of PF-03814735 on the percentage of cells positive for phospho-Aurora1, phospho-Aurora2, phosphohistone H3, or MPM2 were assessed. MDA-MB-231 cell cultures were exposed to the indicated concentrations of PF-03814735 for 4 h followed by fixation, staining with the indicated antibody, and high content immunofluorescence image analysis. Data plotted are the means of triplicate wells as a percentage of control untreated wells, ± SD.
phosphorylated histone H3 inhibition in tumors was thus consistent with the IC50 measured in vitro (~50 nmol/L) in MDA-MB-231 cells (Fig. 2C). These immunoblot results were corroborated by immunohistochemical staining of tumors for phosphorylated histone H3 that showed similar inhibition in the percentage of positive-staining cells (Fig. 4B). Thus, PF-03814735 was shown to be a potent inhibitor of Aurora1 kinase in tumor cells in vivo.

Tumor growth inhibition in vivo

The effects of PF-03814735 on tumor growth in vivo were evaluated in s.c. human xenograft mouse models. Once-daily oral dosing of ≥20 mg/kg of PF-03814735 for 10 days to mice bearing HCT-116 xenografts resulted in statistically significant and dose-dependent tumor growth inhibition of ≥50% relative to vehicle-treated mice (Fig. 5A). The average free plasma concentration of PF-03814735 over 24 hours associated with ~50% tumor growth inhibition for the 10-day treatment schedule in this model was 31 nmol/L. This level of tumor growth inhibition was associated with a reduction in phosphorylated histone H3 levels of ≥50% for approximately 5 hours each day for 10 days (Fig. 4A). Significant single-agent antitumor efficacy was observed in five additional xenograft tumor models, including A2780 ovarian carcinoma (Fig. 5B), MDA-MB-231 breast carcinoma, colo-205 and SW620 colorectal carcinomas, and HL-60 acute promyelocytic leukemia (Table 2). All showed statistically significant tumor growth inhibition, suggesting that PF-03814735 has activity across a broad range of tumor types.

We noted steep dose response curves for both efficacy and tolerability in mice in response to PF-03814735 administration. The relationship between efficacy and tolerability was explored by evaluating various dosing schedules in the HCT-116 xenograft model. Mice were treated on different dosing schedules, including (a) an “intermittent” treatment schedule consisting of a cycle of 5 once-daily doses (qd x5), a 9-day dosing holiday, and a 2nd cycle of 5 treatment days; (b) once-weekly doses for 5 weeks (q7d x5); and (c) continuous i.p. infusion for 7 days via Alzet osmotic minipump. On the intermittent schedule, 62% tumor growth inhibition was observed at 40 mg/kg and 82% tumor growth inhibition was observed at 60 mg/kg, with 1 of 8 mice experiencing >20% body weight loss at the higher dose. On the weekly schedule, 62% tumor growth inhibition was seen...
at 100 mg/kg and 76% tumor growth inhibition was observed at 125 mg/kg. Both doses were well tolerated. Finally, 78% tumor growth inhibition was seen by continuous infusion of 36 mg/kg/d without significant toxicity. We conclude from these studies that efficacious and tolerated doses could be found on a number of different dose schedules, with only minor differences in the therapeutic index.

An additional strategy to improve the efficacy of Aurora inhibitors is combination with other anticancer therapies. It has been reported that the combination of an Aurora kinase inhibitor with taxanes can have at least additive effects on antitumor efficacy in mouse tumor models (22). We evaluated PF-03814735 in combination with docetaxel in two xenograft models. Mice bearing SW620 or A2780 xenografts were treated orally with 20 mg/kg PF-03814735 once daily for 10 days and i.v. with 20 mg/kg docetaxel on study days 1 and 8. Both single-agent PF-03814735 and docetaxel treatments showed approximately 60% tumor growth inhibition in both tumor models (Fig. 5B and Table 2). The combination of PF-03814735 and docetaxel resulted in a statistically significant increase in tumor growth inhibition relative to either single-agent treatment alone, without a significant increase in toxicity (Fig. 5B and Table 2). Thus, whereas PF-03814735 and docetaxel were efficacious as single agents, their antitumor activity was enhanced in combination.
Discussion

The Aurora1 and Aurora2 kinases have been widely regarded as suitable targets for the discovery and development of small-molecule inhibitors for cancer therapy. We report here the discovery of a novel small-molecule inhibitor of both Aurora1 and Aurora2 kinases, PF-03814735. This is an ATP-competitive agent that inhibits both Aurora kinases in intact cells resulting in a block in cytokinesis, formation of polyploid cells, and inhibition of cell proliferation both in cell culture and in xenograft tumor models. Other inhibitors of Aurora kinases have been described in the literature and evaluated in clinical trials, including VX-680/MK-0457, MLN8054, AZD1152, PHA-739538, AT9283, and SNS-314 (18–24). As a group, these compounds are similar to PF-03814735 in that they are all antiproliferative agents that produce a block in cytokinesis and result in the emergence of polyploidy and multinucleation. The reported agents, however, differ in their kinase selectivity pattern within the Aurora kinase family as well as off-target kinases (28). Like PF-03814735, VX-680/MK-0457, PHA-739538, SNS-314, and AT9283 are pan-Aurora inhibitors, affecting both Aurora1 and Aurora2 kinase activity (19–21, 24). AZD1152 is reported to be more selective for Aurora1 (23). MLN8054 seems to be relatively sparing of Aurora1 and more active against Aurora2, although polyploidy and multinucleated cells are generated upon treatment with this agent as well (18). All of these agents have been shown to have antitumor activity in tumor xenograft models.

Figure 5. Antitumor activity of PF-03814735 in vivo. Mice with pre-established subcutaneous xenograft tumors from the indicated cell lines were treated on the indicated dosing schedule with PF-03814735, docetaxel or vehicle. Tumor volumes were measured twice weekly by electronic calipers and the mean tumor volumes + SE were plotted over time. A, effects of varying doses of single agent PF-03814735 on HCT116 xenograft tumor volumes over time in mice treated orally once daily for 10 d. *, P < 0.05 by one way ANOVA versus vehicle tumor volume. ‡, because 2 of 8 mice experienced >20% body weight loss after day 11, data for this group are plotted only through day 11. B, effects on A2780 xenograft tumor volumes over time in mice treated orally once daily for 10 d with single-agent PF-03814735 (20 mg/kg), i.v. on study days 1 and 8 with single-agent docetaxel (20 mg/kg), or PF-03814735 and docetaxel in combination. *, P < 0.05 by one way ANOVA versus mean tumor volumes in vehicle group. †, P < 0.05 by one way ANOVA versus mean tumor volumes in single-agent PF-03814735 and docetaxel treatment groups.
In the clinic, these agents are being evaluated in phase I and phase II studies in a variety of malignancies. All of these compounds are administered i.v. in the clinic, with the exception of the Aurora2-selective MLN8054, which is administered orally.

Given the relatively high level of off-target inhibition by PF-03814735 in enzymatic assays, the selectivity of action was further evaluated by cellular assays of protein kinase inhibition as well as broader measures of biochemical/biological activity. In whole cell assays, PF-03814735 decreased levels of phosphorylated Aurora1, Aurora2, and histone H3 in intact cells at concentrations that led to defects in cytokinesis, an increase in ploidy, and inhibition of cell proliferation. Conversely, levels of MPM2, an M phase–specific phosphoepitope generated by unknown kinases, were not reduced. Although PF-03814735 showed inhibition of other mitotic kinases in enzymatic assays, such as Nek2 and CDK1, the cellular effects of PF-03814735 seemed more consistent with Aurora kinase inhibition. It has been shown that disrupting Nek2, or its substrate Hec1, by RNA interference (RNAi) or antibody inhibition results in mitotic abnormalities such as spindle configuration changes, chromosome misalignment, and mitotic catastrophe, but notably not the effects of PF-03814735. Following treatment with PF-03817345 (data not shown).

The antiproliferative effects of PF-03814735 in vivo in mouse tumor models were also consistent with inhibition of Aurora kinases. We observed reductions in levels of phosphorylated histone H3 in xenograft HCT-116 tumors at plasma concentrations associated with tumor growth inhibition in vivo and antiproliferative activity in cell culture. Although the biochemical effects on Aurora1 and Aurora2 seem to be the primary basis of the antiproliferative activity seen both in cell culture and in tumors in vivo, we cannot rule out that inhibition of one or more of the off-target kinases contributes to the effects of PF-03814735.

Unlike the other pan-Aurora kinase inhibitors such as VX-680/MK-0457, PHA-739358, AT9283, and SNS-314, PF-03814735 can be administered orally to patients. We explored alternative oral dosing schedules in preclinical tumor models and found efficacious and tolerated doses on multiple schedules, including daily, weekly, and intermittent dosing. The preclinical efficacy and tolerability data associated with oral administration of PF-03814735 thus support flexible dosing regimens in cancer patients.

In addition to alternative dosing regimens, combination therapy with chemotherapeutics is another strategy for improving the therapeutic benefit of Aurora kinase inhibitors. Combining an agent that blocks cytokinesis and promotes polyploidy and multinucleation such as PF-03814735 with a microtubule stabilizer such as docetaxel in mouse xenograft tumor models enhanced the tumor growth inhibition observed with either single agent alone. The additive benefit of PF-03814735 and taxane treatment has also been shown in vitro in A2780 cell

Table 2. PF-03814735 single-agent and combination antitumor activity in vivo

<table>
<thead>
<tr>
<th>Xenograft model</th>
<th>PF-03814735 dose (mg/kg), QDx10</th>
<th>Docetaxel dose (mg/kg), days 1 and 8</th>
<th>Maximum TGI % (study day)</th>
<th>Maximum body weight loss % (study day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCT-116</td>
<td>30</td>
<td>—</td>
<td>78 (11)</td>
<td>>20 (14)*</td>
</tr>
<tr>
<td>colo205</td>
<td>30</td>
<td>—</td>
<td>66 (11)</td>
<td>11 (11)</td>
</tr>
<tr>
<td>MDA-MB-231</td>
<td>30</td>
<td>—</td>
<td>63 (14)</td>
<td>4 (11)</td>
</tr>
<tr>
<td>HL60</td>
<td>30</td>
<td>—</td>
<td>57 (14)</td>
<td>8 (8)</td>
</tr>
<tr>
<td>SW620</td>
<td>20</td>
<td>—</td>
<td>58 (11)</td>
<td>5 (14)</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>20</td>
<td>63 (14)</td>
<td>13 (21)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td>92 (11)</td>
<td>6 (7)</td>
</tr>
<tr>
<td>A2780</td>
<td>20</td>
<td>—</td>
<td>64 (8)</td>
<td>2 (11)</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>20</td>
<td>62 (15)</td>
<td>16 (15)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td>101 (8)</td>
<td>14 (15)</td>
</tr>
</tbody>
</table>

NOTE: Summary of antitumor activity of orally administered PF-03814735 in six xenograft mouse tumor models. For the SW620 and A2780 models, PF-03814735 was combined with i.v. docetaxel administration on the indicated schedule.

*2/8 mice experienced >20% body weight loss by day 14.

effects of PF-03814735 in cells, we examined treatment-related effects on DNA synthesis. Initiation and sustenance of DNA synthesis require the action of numerous protein kinases and other enzymes. However, the percent of cells labeled with bromodeoxyuridine was relatively unchanged following treatment with PF-03817345 (data not shown).

The antiproliferative effects of PF-03814735 in vivo in mouse tumor models were also consistent with inhibition of Aurora kinases. We observed reductions in levels of phosphorylated histone H3 in xenograft HCT-116 tumors at plasma concentrations associated with tumor growth inhibition in vivo and antiproliferative activity in cell culture. Although the biochemical effects on Aurora1 and Aurora2 seem to be the primary basis of the antiproliferative activity seen both in cell culture and in tumors in vivo, we cannot rule out that inhibition of one or more of the off-target kinases contributes to the effects of PF-03814735.
cultures treated with PF-03814735 and paclitaxel; preliminary results indicate that the addition of PF-03814735 before paclitaxel is important for the therapeutic benefit of the combination in cell culture systems. This is consistent with the in vitro and in vivo results of another Aurora kinase inhibitor, SNS-314 (22). Our results and the results with SNS-314 support a model in which the therapeutic benefit of inducing polyploidy by Aurora kinase inhibition can be enhanced by combination with agents that activate the spindle assembly checkpoint, such as taxanes. It will be important in future studies to evaluate the effects of different dosing sequences in vivo to further explore the therapeutic benefit of combination therapies, as there is evidence that this can have a significant impact on efficacy (22).

In summary, we report the discovery and preclinical characterization of a potent small-molecule Aurora1 and Aurora2 inhibitor for the treatment of cancer. Its pharmacokinetic properties support oral dosing in the clinic, a feature unique among pan-Aurora kinase inhibitors. Ongoing clinical trials will determine if PF-03814735 offers advantages as an anticancer therapeutic relative to the other Aurora kinase inhibitors in the clinic, either based on pharmacologic properties or on different selectivity profiles.

Disclosure of Potential Conflicts of Interest

J.D. Moyer and K. Hook are shareholders of Pfizer. The other authors declared no potential conflicts of interest.

Acknowledgments

We thank Tracey Boyd, Mary Campbell, Camilla Fowst, John Gibbs, Joel Hardink, Chao Li, Michael Luzzio, Ling Ma, Kendra Nelson, Gonghua Pan, Kathleen Pelletier, Kristina Rafidi, Richard Shepard, Shusen Sun, Ian Taylor, Courtney Williams, Jun Xiao, and Xiaomao Zhao for their many contributions to this project, and Suzanne Lens for her comments on the manuscript.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 10/02/2009; revised 02/17/2010; accepted 02/25/2010; published OnlineFirst 03/30/2010.

References

Molecular Cancer Therapeutics

PF-03814735, an Orally Bioavailable Small Molecule Aurora Kinase Inhibitor for Cancer Therapy

Jitesh P. Jani, Joel Arcari, Vincent Bernardo, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-09-0915

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2010/03/30/1535-7163.MCT-09-0915.DC1

Cited articles
This article cites 30 articles, 18 of which you can access for free at:
http://mct.aacrjournals.org/content/9/4/883.full#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/9/4/883.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://mct.aacrjournals.org/content/9/4/883.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.