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Abstract
Metastasis is a final stage of tumor progression. Breast
and prostate cancer cells preferentially metastasize to
bone, wherein they cause incurable osteolytic and
osteoblastic lesions. The bone matrix is rich in factors,
such as transforming growth factor-B and insulin-like
growth factors, which are released into the tumor
microenvironment by osteolysis. These factors stimulate
the growth of tumor cells and alter their phenotype, thus
promoting a vicious cycle of metastasis and bone
pathology. Physical factors within the bone microenviron-
ment, including low oxygen levels, acidic pH, and high
extracellular calcium concentrations, may also enhance
tumor growth. These elements of the microenvironment
are potential targets for chemotherapeutic intervention to
halt tumor growth and suppress bone metastasis. [Mol
Cancer Ther 2007;6(10):2609–17]

Introduction
Breast and prostate cancer are a leading cause of cancer
death among women and men — second only to lung
cancer. Mammography and prostate-specific antigen test-
ing have improved early detection and treatment of these
cancers, slowing their increase in incidence over the past
decade and increasing the 5-year survival rate to 98% for
breast cancer and 100% for prostate cancer when detected
at the earliest stages. However, the breast cancer survival
rate drops dramatically to 83% for patients initially
diagnosed with regional spread and to 26% for those with
distant metastases. Prostate cancer survival rate drops to
33% with distant metastases (1).
The skeleton is a preferred site for breast and prostate

cancer metastasis. Within the skeleton, metastases present
as two types of lesions: osteoblastic or osteolytic. These

lesions result from an imbalance between osteoblast-
mediated bone formation and osteoclast-mediated bone
resorption. Osteoblastic lesions, characteristic of prostate
cancer, are caused by an excess of osteoblast activity
relative to resorption by osteoclasts, leading to abnormal
bone formation. In breast cancer, osteolytic lesions are
found in 80% of patients with stage IV metastatic disease
(2). The lesions are characterized by increased osteoclast
activity and net bone destruction (3).
Breast cancer bone lesions span a spectrum in which the

majority are osteolytic, but up to 15% are osteoblastic or
mixed (2). Although bone metastases are classified by their
radiographic appearance, most patients have evidence of
abnormal bone resorption and formation. For example,
autopsy examination of prostate cancer bone metastases
found marked phenotypic heterogeneity both within a
particular lesion and between lesions from a single patient
(4). Both osteoblastic and osteolytic bone metastases lead to
numerous skeletal complications, including bone pain,
hypercalcemia, pathologic fractures, and spinal cord and
nerve compression syndromes (5). Such complications
increase morbidity and diminish quality of life in these
patients.
Metastasis to bone occurs in the late stages of tumor

progression and is a multistep process. Cancer cells first
detach from the primary tumor and migrate locally to
invade blood vessels. Once in the bloodstream, cancer cells
are attracted to preferred sites of metastasis through site-
specific interactions between tumor cells and cells in the
target tissue (3). Tumor cells that metastasize to the
skeleton adhere to the endosteal surface and colonize bone.
The bone microenvironment is composed of osteoblasts,
osteoclasts, and the mineralized bone matrix, plus many
other cell types. It is highly favorable for tumor invasion
and growth. Crosstalk between tumor cells and the
microenvironment promotes a vicious cycle of tumor
growth and bone destruction (2, 6). This vicious cycle is
shown in Fig. 1. Tumor cells secrete factors which stimulate
osteoclast-mediated bone destruction and the consequent
release of numerous factors immobilized within the bony
matrix that act on cancer cells, promoting a more
aggressive tumor phenotype and potentiating cancer
spread and bone destruction.
Crosstalk between tumor and bone activates numerous

signaling pathways which drive the vicious cycle. In
prostate cancer bone metastasis, for example, Wnt proteins
released by tumor cells stimulate osteoblasts and have
autocrine effects on tumor proliferation (7). An inhibitor of
Wnt signaling, Dkk-1, can regulate metastatic progression
by opposing osteogenic Wnts early in metastasis and
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controlling the phenotypic switch from osteolytic to
osteoblastic lesions later in metastasis.
Tumor cells and bone cells may rely on the same signaling

pathways and transcription factors to facilitate their
cooperative interactions at sites of metastases. This phe-
nomenon has been suggested to represent ‘‘osteomimicry’’
on the part of the tumor cells (8). For example, metastatic
breast cancer cells express bone sialoprotein (9) under
control of Runx2 and MSX2 transcription factors, which are
also important regulators of osteoblast functions. Runx2
activity in both cancer cells and osteoblasts stimulates the
production and release of angiogenic factors andmatrix
metalloproteinase (MMP) into the microenvironment and
up-regulates adhesion proteins, which allow tumor and
bone cells to bind (10). Runx2 expression by cancer cells
may also support tumor-induced osteoclastogenesis. Ex-
pression of similar surface proteins and secreted factors
allows for coexistence of these two cell types and promotes
the growth of metastatic lesions.

We believe that the bonemicroenvironment plays a critical
role in the vicious cycle by altering the phenotype of tumor
cells to give highly aggressive metastatic lesions. The bone
matrix is rich in growth factors, such as transforming growth
factor-h (TGF-h), insulin-like growth factor-I (IGF-I), and
IGF-II, which are released by osteolysis and can stimulate
bone and tumor cell proliferation. Physical properties of
the bone matrix, including low oxygen content, acidic pH,
and high extracellular calcium concentration, create an
environment favorable for tumor growth. Hypoxia, acido-
sis, and high calcium, plus growth factors, such as TGF-h
and IGFs, combine to drive the vicious cycle of bone
metastasis (Fig. 2).

Growth Factors as Mediators of the Bone
Microenvironment
The destruction of bone by osteoclasts releases calcium and
growth factors from thematrix. Ninety percent of the protein

Figure 1. The vicious cycle of bone metastases. Factors, such as MMPs, chemokine receptor 4 (CXCR4 ), vascular endothelial growth factor (VEGF ),
and connective tissue growth factor (CTGF ), target metastatic tumor cells to bone and facilitate survival within the bone microenvironment. Physical
factors within the bone microenvironment, including hypoxia, acidic pH, and extracellular Ca2+, and bone-derived growth factors, such as TGF-h and IGFs,
activate tumor expression of osteoblast-stimulatory factors, including vascular endothelial growth factor, platelet-derived growth factor (PDGF ), and ET-1.
Osteoclast-stimulatory factors, including PTHrP, TGF-h, and IL-11, can also be increased. These factors stimulate bone cells, which in turn release factors
that promote tumor growth in bone.
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released consists of collagen; among the remaining 10% are
IGFs, TGF-h, fibroblast growth factor, platelet-derived
growth factor, and bone morphogenetic proteins (11). All
of these factors can act on metastatic cells. Although termed
‘‘growth’’ factors, they need not increase tumor burden
by direct stimulation of cancer cell proliferation. They can
also act indirectly to promote angiogenesis and increase
tumor production of osteolytic and osteoblastic factors,
which remodel the skeleton to accommodate tumor growth.
TGF-h is not the most abundant growth factor in bone,

but it has the best established role in osteolytic metastases.
TGF-h binds to a heterodimeric receptor and can activate the
canonical Smad signaling pathway or Smad-independent
pathways through extracellular signal-regulated kinase
1/2, p38 mitogen-activated protein kinase, and c-Jun-NH2

kinase (12). TGF-h is deposited in the bone matrix by
osteoblasts and released and activated during osteoclastic
resorption (13). It regulates bone development and remod-
eling (for review, ref. 14). Advanced cancers often escape
growth inhibition by TGF-h, and this factor mediates
metastases by activating epithelial-mesenchymal transition
and tumor cell invasion, increasing angiogenesis and
suppressing immune surveillance of tumor cells (15).

In 75% of patients with biopsied bone metastases,
tumor cells stained positive for phosphorylated Smad2
localized to the nucleus (16). When MDA-MB-231 cells
transduced with a retroviral vector expressing a reporter
gene under the control of a TGF-h–sensitive promoter,
micro–positron emission tomography imaging showed
reporter activation only in bone and not in adrenal
metastases (16), demonstrating that Smad signaling was
activated when the tumor cells were in bone. Knockdown
of Smad4 (16), engineered expression of the inhibitory
Smad7 (17), or introduction of a dominant-negative TGF-h
type II receptor (ThRII Dcyt; ref. 18) dramatically decreased
bone metastases in breast or melanoma models. Small-
molecule inhibitors of TGF-h type I receptor kinase give
similar results in mouse models (19–21).
TGF-h may stimulate bone metastases by inducing

proosteolytic gene expression in cancer cells, with para-
thyroid hormone–related protein (PTHrP) having a central
role. PTHrP is expressed by osteolytic breast and prostate
cancer cell lines, such as MDA-MB-231, MDA-MB-435, and
PC-3 (18, 22). Its expression is higher at sites of bone
metastases compared with nonosseous metastases (23).
Among factors released from bone during resorption, only

Figure 2. Signaling pathways in bone metastases. The bone microenvironment up-regulates signaling pathways within tumor cells, including the TGF-h,
hypoxia, and calcium signaling pathways, enabling survival and tumor growth in bone. TGF-h binding to its receptor activates the Smad signaling pathway
to mediate gene transcription. In the hypoxic bone microenvironment, HIF-1a is stabilized and mediates the transcription of hypoxia-responsive genes.
Extracellular calcium stimulates the CaSR to stimulate tumor-cell proliferation and result in PTHrP release.
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TGF-h increased PTHrP production (18), which occurred
via Smad-dependent and Smad-independent pathways
(24). This induction was prevented by the expression of
ThRII Dcyt in MDA-MB-231 cells (18, 24). These cells gave
decreased bone metastases in mice, which could be
reversed by overexpression of PTHrP or a constitutively
active type I receptor subunit (24). Neutralizing antibodies
against PTHrP (22) or inhibitors of its gene transcription
(25) decreased osteolytic metastases and tumor burden
in cancer models. TGF-h–induced PTHrP increases osteo-
blastic production of RANK ligand, which stimulates
osteoclast formation and activity and promotes bone
metastases (26–28). The consequent increase in bone
resorption releases more bone matrix factors to act on
cancer cells, sustaining a vicious cycle.
PTHrP is not the only factor regulated by TGF-h.

Cyclooxygenase-2 is expressed in 87% of the bone
metastases from patients (29). Its expression by MDA-
MB-231 cells is higher in bone metastases than in cells
growing orthotopically. TGF-h increases cyclooxygenase-2
expression in osteoblasts, bone marrow stromal cells, and
breast cancer cells, whereas, as an inhibitor of bone
resorption, the bisphosphonate risedronate reduced cyclo-
oxygenase-2 immunostaining in bone (29). Media condi-
tioned by TGF-h– treated MDA-MB-231 cells support
osteoclast formation, a response blocked by the cyclo-
oxygenase-2 inhibitor NS-398. The inhibitors NS-398,
nimesulide, and MF-tricyclic decreased the number of
osteoclasts at the tumor-bone interface, as well as skeletal
tumor burden in mice inoculated with MDA-MB-231 cells
(29, 30). Cyclooxygenase-2 expression in bone-seeking
subclones of MDA-MB-231 cells correlates with increased
production of interleukin-8 (IL-8; ref. 30). IL-8 induces
osteoclast formation and activity independent of the RANK
ligand pathway (31) and can also induce IL-11 (32). IL-11
can act on osteoclasts via RANK ligand (33) and by
regulation of granulocyte macrophage colony-stimulating
factor (34). However, overexpression of IL-11 does not
increase bone metastases in the absence of other prometa-
static factors, such as osteopontin, connective tissue growth
factor, or chemokine receptor 4 (35). IL-11, connective tissue
growth factor, chemokine receptor 4, and MMP-1 are all
up-regulated in the gene signature of breast cancer cells
capable of forming osteolytic bone metastases (35). Osteo-
pontin is a protein secreted by osteoblasts and involved in
bone matrix mineralization (36). Its expression is regulated
by Runx2 (37), which is increased by TGF-h in breast cancer
cells (38). Cancer cells that cause bone metastases often
secrete the proteases MMP-9 and MMP-13, which are
regulated by Runx2 (10, 38), and cathepsin K (39). These
proteases are involved in bone resorption and osteoclast
recruitment (40), and cathepsin K is essential for normal
bone turnover. Cancer cells express a number of osteoblasts
markers, such as osteopontin, bone sialoprotein, and
osteocalcin (8), which are regulated by Runx2 in both
osteoblasts and cancer cells (37, 41, 42).
IGF-I and IGF-II are the most abundant proteins in bone

and important in bone development (for review, ref. 43).

IGF signaling is also important in cancer and metastases; it
promotes transformation and angiogenesis, induces cell
proliferation and invasion, and is antiapoptotic (44). Both
IGFs act through the IGF-IR to maintain cell growth. Their
specific contributions to bone metastases are surprisingly
untested. Different bone-seeking subclones of MDA-MB-
231 cells had altered sensitivity to IGF-I in migration and
anchorage-independent growth assays, perhaps due to
increased expression of IGF-IR compared with parental
cells (45, 46). In biopsies from prostate cancer patients with
bone metastases, IGF-IR was frequently increased, as was
the receptor substrate IRS-1 (47). Stable overexpression of
IGF-IR in neuroblastoma cells increased tumor growth and
osteolysis when the cells were directly injected in the tibia
of mice (48). Similar results were obtained using MDA-
MB-231 cells expressing of a dominant-negative IGF-IR,
which decreased bone metastases (49). When MDA-PCA-
2b prostate cancer cells were injected into human bone
grafts in NOD/SCID mice, neutralizing antibodies against
human IGF-I or mouse or human IGF-II, but not against
mouse IGF-I, decreased development of bone lesions (50).
However, engineered overexpression of IGF-I had no effect
on two models of prostate cancer bone metastases (51). The
development of skeletal metastases depends on the
reactions of the cancer cells to the bone microenvironment,
whose milieu consists of more than growth factors. It is also
characterized by low pO2, low pH, and high Ca2+.

Physical Properties of the Bone Microenvi-
ronment
Hypoxia
Hypoxia is a major contributor to tumor metastasis, regu-

lating secreted products that drive tumor-cell proliferation
and spread. Hypoxia also contributes to resistance to radia-
tion and chemotherapy in primary tumors. Solid tumors
are particularly susceptible to hypoxia because they prolif-
erate rapidly, outgrowing the malformed tumor vascula-
ture, which is unable to meet the increasing metabolic
demands of the expanding tumor.
Bone is a hypoxic microenvironment capable of potenti-

ating tumor metastasis and growth. Hypoxia regulates
normal marrow hematopoiesis and chondrocyte differenti-
ation. The medullary cavity oxygen pressure in humans
is estimated to be 5% O2 (52). Cancer cells capable of
surviving at low oxygen levels can thrive in the hypoxic
bone microenvironment and participate in the vicious cycle
of bone metastasis.
Hypoxic signaling is mediated by hypoxia-inducible

factor-1 (HIF-1; ref. 53). This transcription factor is a
heterodimer of HIF-1a and HIF-1h. HIF-1a expression is
regulated in response to oxygen levels, whereas HIF-1h
is constitutively expressed. Under normoxic conditions,
oxygen-dependent prolyl hydroxylases modify HIF-1a at
specific residues within the oxygen-dependent degradation
domain. Hydroxylated HIF-1a is recognized and targeted
for proteosomal degradation by the von Hippel-Lindau
tumor suppressor, which is a component of an E3
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ubiquitin-protein ligase (54). When oxygen levels are low,
HIF-1a is no longer targeted for degradation by prolyl
hydroxylases and instead, heterodimerizes with HIF-1h.
The HIF-1 heterodimer enters the nucleus where it binds to
hypoxia-response elements in DNA and mediates the
transcription of numerous hypoxia-response genes.
Hypoxic signaling is increased in cancer cells exposed to

low oxygen levels in the primary tumor. Hypoxia-response
genes regulated by HIF-1 include glycolytic enzymes,
glucose transporters, and vascular endothelial growth
factor, which is important for angiogenesis. Other genes
are expressed in a cell-type specific manner, including ones
involved in tissue remodeling/migration/invasion, apo-
ptosis, stress responses, proliferation/differentiation, and
growth factor/cytokine function (55). Many are also
prometastatic, suggesting a role for hypoxia signaling in
the vicious cycle of bone metastasis.
In 13 different human cancers, including lung, breast,

prostate, and colon, HIF-1a was overexpressed in two
thirds of all the regional lymph node and bone metastases
examined, including 69% of metastases versus 29% of
primary tumors among the breast cancers (56). HIF-1a
overexpression was correlated with advanced tumor stage
(57), suggesting that increased HIF-1a is associated with a
more aggressive and metastatic tumor phenotype.
In vitro , HIF-1a overexpression correlated with increased

invasive potential of human prostate cancer cells, as well as
enhanced expression of vimentin, cathepsin D, and MMP-2,
which are important for cell migration and invasion, and
decreased levels of E-cadherin, which is responsible for
maintenance of cell-cell contacts and adhesion (58). Vimen-
tin and E-cadherin are involved in epithelial-mesenchymal
transition early in metastastic progression. Through up-
regulation of these proteins, HIF-1 alters the phenotype of
tumor cells to increase their metastatic capability.
HIF-1a increases the transcription of factors that could

accelerate the vicious cycle of skeletal metastases. MET, a
receptor tyrosine kinase that binds hepatocyte growth
factor, is overexpressed in advanced breast cancer and is
associated with invasion and metastasis. MET expression is
mediated by HIF-1a under hypoxic conditions. HIF-1a and
MET cooverexpression in primary tumor samples from
breast cancer patients who had undergone modified radical
mastectomy was independently correlated with metastasis
and decreased 10-year disease-free survival (59). HIF-1 also
regulates the expression of other factors, including adre-
nomedullin, chemokine receptor 4, and connective tissue
growth factor, with known roles in carcinogenesis and
tumor metastasis (35, 55, 60, 61).
Under normoxic conditions, HIF-1a stabilization is

regulated by numerous growth factors and cytokines
through the phosphatidylinositol-3-kinase/protein kinase
B (Akt) and the mitogen-activated protein kinase path-
ways (62). Growth factors, such as IGFs, fibroblast growth
factor, epidermal growth factor (EGF), and tumor necrosis
factor-a, have been shown to stabilize HIF-1a. Expression
of these factors by tumor cells is associated with enhan-
ced proliferation and tumor spread. Hypoxia and growth

factor signaling pathways may synergistically promote
the vicious cycle of skeletal metastasis.
Several studies have shown crosstalk between hypoxia

and growth factor signaling pathways. In normoxic
conditions, the EGF receptor (EGFR) signaling pathway
activates HIF-1a–mediated transcription of survivin, a
protein which increases apoptotic resistance of human
breast cancer cells, thus contributing to a more aggressive
cancer phenotype (63). Crosstalk also occurs between the
HIF-1a and TGF-h signaling pathways: TGF-h increases
hypoxic signaling by selectively inhibiting prolyl hydrox-
ylase 2 and decreasing HIF-1a degradation (64). As
discussed previously, TGF-h is important in osteolytic
bone metastases, and these results show that TGF-h
potentiates HIF-1 signaling within the hypoxic bone
microenvironment.
As a regulator of tumor progression and metastasis, the

hypoxia signaling pathway is an important chemothera-
peutic target. Inhibiting this pathway may prevent the
development of HIF-mediated resistance to chemotherapy
and radiation therapy. A number of small molecule
inhibitors of hypoxia signaling are under development.
One such inhibitor is 2-methoxyestradiol, a poorly estro-
genic estrogen metabolite and microtubule-depolymerizing
agent with antiangiogenic and antitumorigenic properties
(65). 2-Methoxyestradiol decreases HIF-1a levels and
vascular endothelial growth factor mRNA expression
in vitro and induces apoptosis of tumor cells (66, 67).
2-Methoxyestradiol is currently being evaluated in phases I
and II clinical trials for the treatment of multiple types of
cancer, and more potent analogues with improved anti-
angiogenic and antitumor effects are being developed (68).
Other small molecule antihypoxic agents include inhibitors
of topoisomerase I and II, such as camptothecin and GL331,
and inhibitors of phosphatidylinositol-3-kinase, such as
LY294002 — all of which have been shown to inhibit HIF-
mediated gene transcription (62). Because HIF-1 crosstalks
with multiple signaling pathways, inhibiting hypoxia
signaling alone may be inadequate to halt tumor growth
and spread (69). However, small molecule inhibitors could
be useful in combination with other therapies to halt the
vicious cycle of metastasis.

Acidic pH
Acidosis of the bone microenvironment also potentiates

the vicious cycle of bone metastasis. Extracellular pH is
tightly regulated within bone and has significant effects on
osteoblast and osteoclast function. Extracellular acidifica-
tion results in increased osteoclast resorption pit formation,
with osteoclasts being maximally stimulated at pH levels of
<6.9 (70). Osteoblast mineralization and bone formation is
significantly impaired by acid (71). The combined effect on
osteoclasts and osteoblasts is the release of alkaline bone
mineral from the skeleton, compensating for systemic
acidosis.
Tumor metastasis leads to localized regions of acidosis

within the skeleton (70). Increased glycolysis and lactic acid
production by proliferating cancer cells and decreased
buffering capacity of the interstitial fluid contribute to the
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acidic microenvironment within primary tumors (72). The
acid-mediated tumor invasion hypothesis states that
altered glucose metabolism in cancer cells stimulates cancer
cell proliferation and results in a more invasive tumor
phenotype (73). Acidosis alters cellular dynamics at the
interface between the tumor and normal tissue, promoting
apoptosis in adjacent normal cells and facilitating extracel-
lular matrix degradation through the release of proteolytic
enzymes. Unlike normal cells, cancer cells have compen-
satory mechanisms to allow proliferation and metastasis
even at low extracellular pH and thus are not susceptible to
acid-induced apoptosis.
Hypoxia further promotes acidosis within tumor cells

through HIF-mediated overexpression of glycolytic en-
zymes and increased lactic acid production (74). Together,
hypoxia and pH regulatory mechanisms control survival
and proliferation of tumor cells. Apoptosis of E1a/Ras-
transformed mouse embryo fibroblasts is mediated by
hypoxia-induced acidosis rather than as a direct effect of
hypoxia exposure (75).
Tumor acidosis promotes the release and activation of

proteins, such as cathepsins B, D, and L and MMPs, which
degrade the extracellular matrix and facilitate metastasis
(73). Cathepsin B is a cysteine proteases expressed by
tumor cells, which is activated in an acidic microenviron-
ment and could participate in the vicious cycle of bone
metastasis (76). It is expressed at low levels in primary
prostate tumors; however, bone metastatic lesions express
high levels of activated cathepsin B, suggesting that
protease activity is modulated by interactions between
tumor cells and the bone microenvironment (77).
Hypoxia-mediated acidosis also activates numerous

stress signaling cascades within tumor cells, including the
nuclear factor-nB and activator protein-1 pathways, which
in turn regulate the transcription of prometastatic factors,
such as IL-8, a cytokine important for cell motility,
proliferation, and angiogenesis (78). IL-8 expression is
induced by prolonged hypoxia and decreased intracellular
pH in pancreatic and prostate cancer cells (79). Its
overexpression correlates with increasing tumor grade
and metastasis in many cancers, including breast and
prostate.
Both hypoxia and acidosis have been implicated in

resistance of cancer cells to radiation and chemotherapy.
Extracellular acidity contributes to chemotherapeutic resis-
tance via a pH gradient that prevents the intracellular
accumulation of weakly basic drugs, such as Adriamycin
(74). Tumor acidosis is a direct consequence of hypoxia
exposure. Thus, therapeutic approaches, which target
hypoxia signaling may exert their beneficial effects by
correcting pH in cancer cells, making them more suscep-
tible to conventional radiation and chemotherapy.

Extracellular Calcium
Calcium released from the mineralized bone matrix

contributes to the vicious cycle of metastasis by several
mechanisms. Calcium is the primary inorganic component
of the bone matrix and, in the bone microenvironment,
levels are maintained within a narrow physiologic range

(f1.1-1.3 mmol/L; ref. 80). Active osteoclastic bone
resorption causes extracellular calcium (Ca2+o) levels to rise
up to 8 to 40 mmol/L (81).
Calcium effects are mediated through the extracellular

calcium-sensing receptor (CaSR), a G protein–coupled
receptor, which, in the presence of high Ca2+o, inhibits
cyclic AMP and activates phospholipase C (82). The CaSR
is expressed in normal tissues and is overexpressed in
several types of cancer, including breast and prostate
cancer (83, 84). The CaSR regulates secretion of PTHrP,
whose role in osteolytic bone metastases is discussed
previously (83). In normal mammary epithelium, the CaSr
responds to low Ca2+o by increasing PTHrP, which activates
bone resorption and release of bone matrix calcium. PTHrP
production from these cells is decreased by high Ca2+o or
CaSR agonists (85). Unlike normal mammary epithelial
cells, breast cancer cells secrete increased levels of PTHrP
in response to known agonists of the CaSR: high Ca2+o,
spermine, and neomycin (83). Similar effects were observed
in prostate cancer cells (84). Expression of a dominant-
negative form of the CaSR in prostate cancer cells prevented
Ca2+o-stimulated PTHrP release, whereas TGF-h pretreat-
ment increased basal andCa2+o-stimulated PTHrP (84). Thus,
the vicious cycle of bone metastasis includes contributions
by the CaSR: TGF-h and Ca2+o released during osteolysis
activate the CaSR to increase PTHrP release, perpetuating
osteolysis and bone matrix destruction.
Ca2+o has also been shown to specifically induce prolif-

eration of PC-3 and C4-2B prostate cancer cells known to
metastasize to the skeleton at concentrations of 2.5 mmol/L
but does not affect LNCaP prostate epithelial cells, which
do not form bone metastases (86). This effect is likely
mediated by the CaSR, as knockdown of the CaSR by
shRNA decreased PC-3 cell proliferation in vitro and
inhibited the formation of bone metastases in mice.
Clinically, overexpression of cytoplasmic CaSR in breast
cancer tumor samples is positively correlated with the bone
metastases rather than visceral metastases, suggesting that
the CaSR may be a good potential marker for predicting
bone metastases (87).
The CaSR activates Akt signaling to promote PC-3 cell

attachment in vitro . Similarly, bone matrix calcium may act
through this receptor to help cancer cells localize to and
attach to bone during metastasis. The CaSR also signals in
part through the mitogen-activated protein kinase signaling
pathway to stimulate PTHrP release. Inhibitors of mitogen-
activated protein/extracellular signal-regulated kinase ki-
nase, p38 mitogen-activated protein kinase, protein kinase
C, and c-Jun-NH2 kinase prevented CaSR-stimulated PTHrP
release by HEK293 and H-500 Leydig cancer cells in re-
sponse to high Ca2+o (88, 89). Increased phosphorylation of
EFK1/2, p38 mitogen-activated protein kinase, and SEK1
(upstream of c-Jun-NH2 kinase) was observed in response to
Ca2+o activation of the CaSR (88, 89).
G protein–coupled receptors, of which the CaSR is one,

transactivate tyrosine kinase receptors and activate mito-
gen-activated protein kinase signaling cascades (90). The
CaSR may interact with the EGFR signaling pathway to
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stimulate PTHrP release. High Ca2+o resulted in delayed
phosphorylation of extracellular signal-regulated kinase in
PC-3 cells (91). An inhibitor of the EGFR kinase or an
EGFR-neutralizing antibody prevented extracellular signal-
regulated kinase phosphorylation and reduced PTHrP
secretion, supporting a mechanism whereby the CaSR
transactivates EGFR, resulting in extracellular signal-
regulated kinase phosphorylation and increased PTHrP
release. Such a mechanism may explain the finding that
EGF induced PTHrP in prostatic epithelial cells (92).
Inhibitors of the EGFR, such as gefitinib or PKI166, reduced
osteoclastogenesis (93) and malignant osteolysis, as well as
the growth of cancer cells in bone (94, 95), suggesting that
the EGFR may be an important target in the vicious cycle
of bone metastasis.
Two classes of therapeutic agents targeting the CaSR

have been developed. Calcimimetics, including cinacalcet,
increase the affinity of the CaSR for Ca2+o, which in turn
inhibits release of PTH or PTHrP and leads to lower serum
calcium levels. Calcimimetics have been approved for the
treatment of hyperparathyroidism in end-stage renal
disease and for parathyroid cancer (96). A second class of
drugs which targets the CaSR is the calcilytics. Calcilytic
agents have been proposed as an anabolic therapy for
osteoporosis and act similarly to injectable PTH, though
these drugs have not yet been approved for clinical use
(96). By preventing calcium-stimulated activation of the
CaSR and release of PTHrP by tumor cells, calcimimetics
and calcilytics may interrupt the vicious cycle and are
potentially useful for the prevention and treatment of bone
metastases.

Conclusion
Crosstalk between tumor cells and the bone microenvi-
ronment promotes a vicious cycle of bone metastasis. This
crosstalk occurs via multiple factors and signaling path-
ways. The bone microenvironment contains numerous
physical factors, such as hypoxia, acidosis, and extracel-
lular calcium, and growth factors, like TGF-h, which have
been implicated in this vicious cycle. These factors
activate signaling pathways in cancer cells, promoting a
more aggressive tumor phenotype. Whereas much is
understood about the effects of these factors in cancer
cells at the primary tumor site, continued research is
necessary to further elucidate their role in skeletal
metastasis. Understanding the interactions between tumor
and bone may help to identify potential targets for
chemotherapeutic intervention to halt tumor growth and
bone metastasis.
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