Regulation of Vinca alkaloid-induced apoptosis by NF-κB/IκB pathway in human tumor cells

Yi Huang,1 Yong Fang,1,2 Jinmin Wu,2 Jennifer M. Dziadyk,1 Xueming Zhu,1 Meihua Sui,1 and Weimin Fan1,2

1 Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC and 2 Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China

Abstract
Antimicrotubule Vinca alkaloids, such as vinblastine and vincristine, interfere with the dynamics of microtubules and have shown significant cell killing activity in a variety of tumor cells through induction of apoptosis. The mechanism by which Vinca alkaloids induce apoptosis is not entirely clear. In this study, we found that glucocorticoids inhibit Vinca alkaloid-induced apoptosis without affecting G2-M arrest in human breast cancer BCap37 cells and human epidermoid tumor KB cells, suggesting that Vinca alkaloid-induced apoptosis may occur via a pathway independent of cell cycle arrest. Further analyses indicated that Vinca alkaloids cause significant degradation of IκBα, which in turn results in nuclear factor-κB (NF-κB) activation. Transfection of antisense IκBα in BCap37 cells sensitizes Vinca alkaloid-induced apoptosis. Moreover, in vitro kinase assays show that the activity of IκB kinase (IKK) was activated by Vinca alkaloids and was not affected by glucocorticoids. Stable transfection of dominant-negative deletional mutant IκBα, which is insensitive to IKK-mediated phosphorylation and degradation, resulted in the inhibition of Vinca alkaloid-induced NF-κB activation and reduced sensitivity of tumor cells to Vinca alkaloid-induced apoptosis. These findings suggest that the NF-κB/IκB signaling pathway may contribute to the mediation of Vinca alkaloid-induced apoptosis in human tumor cells. [Mol Cancer Ther. 2004;3(3):271–277]

Introduction
The Vinca alkaloid antimicrotubule agents, including vinblastine and vincristine, have been widely used as clinical anticancer agents for the treatment of leukemia, lymphomas, and some solid tumors (1). Unlike other classes of antimicrotubule agents such as taxanes, Vinca alkaloids induce the destabilization of polymerized tubulin by blocking the region involved in tubulin dimer attachment, thus preventing polymerization of microtubules (2). It has generally been believed that the antitumor effects of Vinca alkaloids mainly depend on interference with the normal function of microtubules and blockage of cell cycle progression in the G2-M phase. In recent years, several laboratories demonstrated that, at clinically relevant concentrations, Vinca alkaloids are able to induce apoptotic cell death in several solid tumor cells (2, 3).

Previous studies have revealed that glucocorticoids could selectively inhibit paclitaxel-induced apoptotic cell death but did not affect the ability of paclitaxel to induce microtubule bundling and mitotic arrest (4, 5). This phenomenon suggested that antimicrotubule agent-induced apoptosis might take place via a separate pathway independent of cell cycle arrest. Further studies demonstrated that paclitaxel and glucocorticoids possess opposite regulatory effects on IκBα degradation and activation of nuclear factor-κB (NF-κB; Ref. 6). NF-κB, a member of Rel transcription factor family, and its specific intracellular inhibitor, IκBα, participate in the mediation or regulation of many biological processes including inflammation, immune response, cell proliferation, and apoptotic cell death (7, 8). NF-κB normally resides in the cytoplasm as an inactivated form by forming a complex with its inhibitory protein IκBα. On certain stimuli, IκBα is rapidly phosphorylated and degraded, allowing NF-κB to translocate to the nucleus, where it participates in transcriptional regulation of numerous genes (8, 9). A key player in this cascade of events is the IκB kinase complex (IKKα and IKKβ), which is responsible for the phosphorylation and degradation of IκBα (10). In recent years, increasing evidence indicates that activation of NF-κB plays an important role in coordinating the control of apoptotic cell death, which either promotes or inhibits apoptosis, depending on different apoptotic stimuli and cell types (9, 11–15).

In this study, through characterization of the inhibitory effect of glucocorticoids on vinblastine- and vincristine-induced apoptosis in human breast cancer BCap37 cells and human epidermoid tumor KB cells, we obtained evidence that Vinca alkaloids cause the degradation of IκBα, which in turn promotes nuclear translocation and activation of NF-κB. We also found that glucocorticoids inhibit Vinca alkaloid-induced apoptosis via antagonizing the ability of Vinca alkaloids in the activation of NF-κB. These findings suggest that the NF-κB/IκB signaling pathway plays an important role in the mediation of Vinca alkaloid-induced tumor cell apoptosis.

Materials and Methods
Drugs and Cell Culture
Vinblastine and vincristine were purchased from Sigma Chemical Co. (St. Louis, MO) and dissolved in 100% DMSO.
to make a stock solution with various concentrations. Triamcinolone acetonide (TA) was also purchased from Sigma Chemical and dissolved in 100% ethanol as 10⁻² to 10⁻³ M stock solution. Wild-type breast tumor BCap37 cells, stable BCap37 cells transfected with antisense IκBα (6) and mutant IκBα (16), and human epidermoid tumor KB cells were cultured in RPMI 1640 (Mediatech, Herndon, VA) supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin (Hyclone Laboratories, Logan, UT).

Preparation of Glutathione S-Transferase-IκBα Fusion Protein

pGEX-IκBα fusion protein expression vectors were constructed by subcloning IκBα cDNA restriction enzyme fragments from pCR2.1-IκBα vectors. Glutathione S-transferase (GST)-IκBα fusion proteins were purified from *Escherichia coli* cells transformed with pGEX-IκBα expression vectors by using glutathione-agarose affinity chromatography (Amersham Biosciences, Piscataway, NJ).

Determination of Internucleosomal DNA Fragmentation

After incubation with the various concentrations of drug, ~1 × 10⁶ cells were harvested and suspended in lysis buffer ([5 mM Tris-HCl (pH 8.0), 20 mM EDTA, and 0.5% (v/v) Triton X-100]) for 20 min on ice. The remaining steps for DNA fragmentation were performed as described previously (6). DNA samples were analyzed by electrophoresis on a 1.2% agarose gel containing ethidium bromide (0.2 μg/ml) and visualized under UV illumination.

Western Blotting

After cells were treated with the various concentrations of drugs, cellular proteins were isolated and fractionated on a 12.5% SDS-PAGE gel and transferred to polyvinylidene difluoride (PVDF) membranes using the methods as described previously (6). The membranes were incubated with anti-IκBα or anti-IKKα primary antibodies (1:2000; Santa Cruz Biotechnology, Santa Cruz, CA). The membranes were then incubated with peroxidase-conjugated secondary antibody (1:5000; ImmunoResearch, West Grove, PA) followed by enhanced chemiluminescence staining system (Amersham Bioscience, Inc.). β-actin proteins were used to normalize protein loading.

Flow Cytometry Analysis

Cells were treated with various increasing concentration of drugs for 48 h and then harvested and fixed in 70% ethanol in PBS. After washing in rinse buffer (0.5% BSA, 0.1% Triton X-100 in PBS) twice, cells were incubated in PBS containing RNase (50 μg/ml), EDTA (0.1 M), and propidium iodide (50 μg/ml) at room temperature for 1 h. Cell cycle distribution was determined using a Coulter Epics V instrument (Coulter Corp., Fullerton, CA) with an argon laser set to excite at 488 nm. The results were analyzed using Elite 4.0 software (Phoenix Flow System, San Diego, CA).

Light Microscope Examination

The cytospin preparations and light microscope examination were performed as described previously (17). Briefly, cells were platted and treated with 100 nM vinblastine or vincristine with or without TA treatment. After 48 h of culture, cells were harvested by trypsinization and washed with PBS twice. About 5–10 × 10⁵ cells were used for cytospin preparation. Slides were air-dried and fixed in methanol for 5 min prior to Wright-Giemsa staining. The DNA contents of G₂-M phase of cells were counted under bright-field microscopy. Data presented represent three independent experiments.

MTT Assays

Growth inhibition was assessed by using MTT assays as described previously (16). Briefly, 2 × 10⁵ cells/well were plated in 96-well dishes and treated with the various drug regimes for the indicated times. All of the experiments were plated in triplicate and the results of assays were presented as means ± SD.

Immunoprecipitation and IKK Assays

Cells were washed twice in PBS buffer and resuspended in 500 μl of immunoprecipitation lysis buffer ([50 mM Tris-HCl (pH 7.6), 150 mM NaCl, 10% glycerol, 1% NP40, 5 mM EDTA, 1 mM DTT, 100 mM NaF, 2 mM sodium pyrophosphate, 2 mM sodium orthovanadate, 1 mM phenylmethylsulfonyl fluoride (PMSF), 10 μg/ml of aprotinin, and leupeptin] and stored on ice for 20 min before centrifugation (14,000 × g, 20 min, 4°C). IKK complex was immunoprecipitated by incubation for 2 h at 4°C with IKKa rabbit polyclonal antibodies (Santa Cruz Biotechnology) bound to protein A-Sepharose (Pharmacia/Biotek). The immunoprecipitates were washed twice with immunoprecipitation buffer and twice with kinase buffer ([20 mM HEPES (pH 7.4), 20 mM β-glycerophosphate, 20 mM MgCl₂, 2 mM DTT, and 0.1 mM sodium orthovanadate]). The kinase assays were initiated by the addition of GST-IκBα fusion protein (1 mg) and [γ⁻³²P] ATP (10 Ci/mmoll). Reaction mixtures were incubated for 30 min at 30°C and stopped by the addition of 2× SDS-PAGE sample buffer. The phosphorylation of the IκBα proteins was examined by SDS-PAGE followed by autoradiography.

Nuclear Extraction Preparation and Electrophoretic Mobility Shift Assays

After BCap37 cells were transfected with empty pcDNA3 vectors or mutant IκBα, cells were treated with different concentrations of vinblastine or vincristine for 24 h, harvested, and resuspended in 1 ml of hypotonic lysis buffer ([10 mM HEPES (pH 7.8), 10 mM KCl, 2 mM MgCl₂, 1 mM DTT, 0.1 mM EDTA, and 0.1 mM PMSF]). Cells were then incubated on ice for 15 min. Ten-percent NP40 (25 μl) was then added and vigorously mixed and centrifuged. The nuclear pellets were suspended in 50 μl of extraction buffer (50 mM KCl, 300 mM NaCl, 0.1 mM EDTA, 1 mM DTT, 0.1 mM PMSF, and 10% glycerol), mixed for 20 min, and centrifuged at 12,000 × g for 20 min to produce supernatant containing nuclear proteins. Protein concentrations were determined using the Bio-Rad DC Protein Assay (Bio-Rad, San Diego, CA). Electrophoretic mobility shift assays (EMSAs) were performed using ³²P-labeled double-stranded oligonucleotide probes, which contain a specific consensus sequence (5'-AGTTGAGGGGAGTTTCCCAGGC-3');
Santa Cruz Biotechnology) recognized by NF-κB. Probes were labeled with T4 polynucleotide kinase (Promega, Madison, WI) and [γ-32P]ATP and purified using G-25 spin columns (Amersham Bioscience). The remaining steps for EMSAs were performed as described previously (16).

Statistical Analysis

The Student’s *t* test was used to determine the statistical differences between various experimental and control groups. *P* < 0.01 was considered significant.

Results

Glucocorticoids Inhibit *Vinca* Alkaloid-Induced Apoptosis in BCap37 and KB Cells

An important hallmark of apoptotic cell death is the fragmentation of genomic DNA into integer multiples of 180-bp units, producing a characteristic ladder on agarose gel electrophoresis. To examine the cytotoxicity of *Vinca* alkaloids to tumor cells as well as the possible effects of glucocorticoids on antitumor activity of *Vinca* alkaloids, human breast tumor BCap37 and epidermoid tumor KB cells were treated with a variety of concentrations of vinblastine and vincristine with or without pretreatment of glucocorticoids followed by internucleosomal DNA fragmentation assays. As shown in Fig. 1, DNA fragmentation ladders were clearly observed following treatment of BCap37 cells and KB cells with 20 nM or higher concentrations of vinblastine and vincristine. These results demonstrate that BCap37 and KB cells are sensitive to *Vinca* alkaloid-induced apoptosis. However, when the tumor cells were pretreated with glucocorticoids (10⁻⁷ M TA) for 24 h, *Vinca* alkaloid-induced DNA fragmentation was dramatically inhibited in both BCap37 and KB cells. This result suggests that glucocorticoids inhibit *Vinca* alkaloid-induced apoptosis in human tumor cell lines.

Glucocorticoids Do Not Affect *Vinca* Alkaloid-Induced Mitotic Arrest

To determine the possible influence of glucocorticoids on *Vinca* alkaloid-induced mitotic arrest, a cytospin method was used by which we examined the exact number of mitotically arrested cells. The results in Fig. 2 show that the percentage of mitotically arrested cells (with clear condensed chromosomes) due to *Vinca* alkaloid treatment at 24 h were essentially the same in the absence (61% for vinblastine, 58% for vincristine) or presence (57% for vinblastine, 60% for vincristine) of glucocorticoids. These results clearly suggest that glucocorticoids selectively inhibit *Vinca* alkaloid-induced apoptosis but do not affect the effect of *Vinca* alkaloids on cell cycle arrest. Similar results were also observed in the KB cell line (data not shown).

Vinca Alkaloids and Glucocorticoids Possess Different Regulatory Effects on IκBα

Our previous studies revealed that paclitaxel induces protein degradation of IκBα, the cytoplasmic inhibitor of NF-κB in both BCap37 and KB cells (6). To examine whether *Vinca* alkaloids also affect IκBα, BCap37 cells were treated with different concentrations of vinblastine or vincristine. As shown in Fig. 3, both agents caused significant degradation of IκBα. Further, we determined that pretreatment of glucocorticoids could prevent the degradation of IκBα induced by either vinblastine or vincristine in BCap37 cells. This result implies that glucocorticoids might inhibit *Vinca* alkaloid-induced apoptosis by interfering with the activation of NF-κB/IκB pathway.

Glucocorticoids Do Not Affect *Vinca* Alkaloid-Stimulated IKK Activation

Recent studies have revealed that signal-induced serine phosphorylation and degradation of IκBα are primarily mediated by activation of IKK complex (18). To determine whether IKK is involved in *Vinca* alkaloid-mediated IκBα degradation and NF-κB activation, endogenous IKK activity assays were performed. BCap37 cells were treated with 100 nM vinblastine and vincristine with or without the pretreatment of glucocorticoids. Cell extracts were immunoprecipitated by using antibody against IKKα. IKK activities were measured by using GST-IκBα protein as the substrate. The results show that phosphorylations of GST-IκBα protein were remarkably stimulated by vinblastine or vincristine (Fig. 4, A and B). However, glucocorticoids did not affect *Vinca* alkaloid-stimulated phosphorylation of GST-IκBα protein (Fig. 4C). These results indicated that activation of IKK may play a critical role in the *Vinca* alkaloid-induced IκBα degradation, while glucocorticoid-inhibited NF-κB activation is more likely due to the up-regulation of IκBα protein rather than the inhibition of IKK activity.

Suppression of IκBα Sensitizes *Vinca* Alkaloid-Induced Apoptosis

To further investigate if IKK-mediated IκBα degradation plays an important role in the regulation of alkaloid-induced apoptosis, we examined the cytotoxic effects of vinblastine and vincristine in BCap37 IκBα-ANT5 cell line.
that was transfected with antisense IκBα (6). DNA fragmentation assays show that IκBα-ANT5 cells treated with a series of concentrations of vinblastine (1–10 nM) or vincristine (1–10 nM) exhibited increasing sensitivity in comparison with the BCap37 cells transfected with empty pcDNA3 vectors (Fig. 5A). The minimum concentrations of vinblastine and vincristine required for induction of the typical fragmented DNA ladders in the control cells were about 10 nM, while DNA fragments were detected when antisense IκBα transfectants were treated with as low as 1 nM vinblastine or vincristine. Subsequently, comparison of Vinca alkaloid cytotoxicity on transfectants was analyzed by MTT assay. As shown in Fig. 5B, BCap37 cells transfected with antisense IκBα at different doses of treatment are more susceptible to Vinca alkaloid cytotoxicity than empty vector transfectants. These results indicate that introduction of antisense IκBα increases the sensitivity of tumor cells in response to Vinca alkaloid-induced apoptosis.

Mutant IκBα Lacking Ser32 and Ser36 Suppresses Vinca Alkaloid-Induced NF-κB Activation

Proteolytic degradation of IκBα is essential for activation of NF-κB (9, 19). Previous studies have revealed that the degradation of IκBα protein is mainly due to the inducible phosphorylation of IκBα at Ser32 and Ser36 by IκBα kinase complex (20–22). To further confirm that Vinca alkaloids down-regulate IκBα through induction of IκBα phosphorylation and degradation, we constructed a mutant IκBα expression vector by deleting 36 amino acids, including Ser32 and Ser36, from the NH2 terminus of the IκBα gene. Such a mutant IκBα protein cannot be degraded by the IκBα kinase complex but still possesses the ability to bind to NF-κB through its interior domain and functions as a supersuppressor of NF-κB molecules (20, 23). As shown in Fig. 6, BCap37 cells with stable transfection of this mutant IκBα molecules (20, 23). As shown in Fig. 6, BCap37 cells with stable transfection of this mutant IκBα expressed a smaller size of deletional mutant IκBα protein, which was not degraded by vinblastine or vincristine. Furthermore, we examined the effect of mutant IκBα on Vinca alkaloid-induced DNA binding activity of NF-κB. By EMSAs, an increased level of DNA binding activity of NF-κB was clearly detected in empty vector-transfected BCap37 cells exposed to Vinca alkaloids, but this elevated DNA binding activity of NF-κB by Vinca alkaloids was markedly inhibited in the cells transfectected with the mutant IκBα (Fig. 7). These findings demonstrated that the mutant IκBα could interfere with Vinca alkaloid-induced NF-κB activation.

Figure 2. Glucocorticoids do not affect mitotic arrest induced by Vinca alkaloids. Cells were exposed to 100 nM vinblastine (Vinb.) and vincristine (Vinc.) with or without pretreatment of glucocorticoids (Gluco.) for 24 h before they were harvested for preparation of cytospin slides as described in Materials and Methods. Three hundred cells/slide were counted and only those cells with typical morphological features of condensed chromosomes were identified as mitotically arrested cells. Columns, mean percentage of mitotic cells (independent experiments performed in triplicate); bars, SD.

Figure 3. Vinca alkaloids and glucocorticoids possess opposite effects on IκBα. BCap37 cells were incubated with different concentrations of vinblastine (Vinb.) or vincristine (Vinc.) for 24 h with or without pretreatment of glucocorticoids (10−7 M TA, 24 h; Gluco.). Equal amounts of cellular proteins (50 μg/lane) were fractionated on a 12.5% SDS-PAGE gel and transferred to PVDF membranes followed by immunoblotting with anti-IκBα polyclonal antibody. β-actin proteins were blotted as a control.

Figure 4. Effects of Vinca alkaloids and glucocorticoids on IKK activity. BCap37 cells were treated with the indicated concentrations of vinblastine (Vinb.) or vincristine (Vinc.) for 24 h with or without pretreatment of glucocorticoids (10−7 M TA, 24 h; Gluco.). IKK complex was immunoprecipitated with an anti-IKKα antibody, and the immune complex was subjected to in vitro kinase assay (KA) using GST-IκBα fusion protein as the substrate. Following SDS-PAGE, the portion of the gel containing the substrate was dried and processed for autoradiography. The portion containing IKK was analyzed by Western blotting for IKKα protein.
alkaloid-induced apoptosis. These results indicate that the introduction of the dominant-negative mutant I\(\beta\)B altered the sensitivity of tumor cells to Vinca alkaloid-induced apoptosis without affecting the apoptosis induced by paclitaxel, a member of the taxane class of antimicrotubule agent (4, 5). Paclitaxel and Vinca alkaloids possess different antimicrotubule mechanisms, but both classes of drugs disrupt the normal structure and function of cellular microtubules and cause mitotic arrest. Thus, the inhibitory action of glucocorticoids on apoptosis induced by those antimicrotubule agents may have broad significance and share a similar molecular mechanism.

It has been reported that the regulation of antimicrotubule-induced apoptosis may involve several genes in various signal pathways, such as the Bcl-2 family, p53, p21, Fas/Fas ligand, caspase family, Myc, etc. (25–27). However, many questions need to be clarified further as to the exact role of these proteins or signaling pathways in the regulation of apoptosis. In our previous studies, we discovered that paclitaxel significantly down-regulated I\(\beta\)B, the cytoplasmic inhibitor of NF-\(\kappa\)B, which in turn promoted NF-\(\kappa\)B translocation to the nucleus and its DNA binding activity. In the present study, we demonstrated that Vinca alkaloids have similar regulatory effects on the NF-\(\kappa\)B/I\(\beta\)B cascade, which include degradation of I\(\beta\)B protein and activation of NF-\(\kappa\)B (Figs. 3 and 7). Further, by in vitro IKK assay, IKK activities were found to be significantly stimulated by vincristine or vinblastine (Fig. 4A), suggesting that IKK might be the common target of different kinds of antimicrotubule agents. Meanwhile,

Discussion

The Vinca alkaloids vinblastine and vincristine have been successfully used in cancer chemotherapy for the treatment of different types of tumors (24). Their mechanism of action involves disruption of the dynamic reorganization of the microtubule network, resulting in aberrant mitotic formation. Thus, cells are unable to transverse successfully from metaphase to anaphase. Ultimately, the prolonged mitotic arrest in many types of tumor cells leads to apoptotic cell death. However, the mechanism by which Vinca alkaloids induce apoptotic cell death in tumor cells is not entirely clear.

In this study, pretreatment with glucocorticoids inhibited Vinca alkaloid-induced apoptosis without affecting the G2-M phase arrest caused by Vinca alkaloids (Fig. 1), suggesting that glucocorticoids may interrupt the specific downstream events of Vinca alkaloid-induced mitotic arrest. Another possibility is that Vinca alkaloid-induced apoptosis may occur via a pathway independent of mitotic arrest. It has been observed that glucocorticoids selectively inhibited apoptotic cell death induced by paclitaxel, a member of the taxane class of antimicrotubule agent (4, 5). Paclitaxel and Vinca alkaloids possess different antimicrotubule mechanisms, but both classes of drugs disrupt the normal structure and function of cellular microtubules and cause mitotic arrest. Thus, the inhibitory action of glucocorticoids on apoptosis induced by those antimicrotubule agents may have broad significance and share a similar molecular mechanism.

![Figure 5. Transfection with antisense I\(\beta\)B sensitizes Vinca alkaloid-induced apoptosis.](image)

Figure 5. Transfection with antisense I\(\beta\)B sensitizes Vinca alkaloid-induced apoptosis. BCap37 cells transfected with vector (pcDNA3) only and antisense I\(\beta\)B (I\(\beta\)B-ANT5) were incubated with the indicated concentrations of vinblastine (Vinb.) or vincristine (Vinc.) for 48 h. A, DNA fragmentation assays. Cells were harvested and fragmented DNA was analyzed by electrophoresis in 1.2% agarose gel containing 0.1% ethidium bromide. B, MTT assays. Points, mean of three separate experiments; bars, SD. There is a statistically significant difference between antisense I\(\beta\)B-transfected cells and vector-transfected cells treated by Vinca alkaloids (\(P < 0.01\), Student’s \(t\) test).

Figure 6. Vinca alkaloids do not degrade mutant I\(\beta\)B. Equal amounts of cellular proteins (50 \(\mu\)g/lane) from wild-type BCap37 cells (WT), cells transfected with empty pcDNA3 vector (Vector), and cells transfected with mutant I\(\beta\)B (Mutant I\(\beta\)B) treated with different concentrations of vinblastine (A) and vincristine (B) for 24 h were fractionated on 12.5% SDS-PAGE gel and transferred to PVDF membranes followed by immunoblotting with anti-I\(\beta\)B polyclonal antibody. \(\beta\)-actin protein was used as a control.
The results indicated that BCap37 cells transfected with the previously established antisense NF-κB IκBα both stimulate apoptosis and different cell types (28). To determine the role of NF-κB in the modulation of apoptosis is not entirely clear. However, it has been reported that the activation of NF-κB is able to induce or block apoptosis depending on different stimuli and different cell types (28). To determine the role of activation of NF-κB in Vinca alkaloid-induced apoptosis, we used the previously established antisense IκBα-transfected BCap37 cell line IκBα-ANT5 (6) as a study model. The results indicated that BCap37 cells transfected with antisense IκBα significantly increased their sensitivity to Vinca alkaloid-induced apoptosis (Fig. 5). Because exogenous antisense IκBα blocks the inhibitory binding of endogenous IκBα to NF-κB, this finding implies that Vinca alkaloids may induce apoptotic cell death through the activation of the NF-κB/IκBα signaling pathway.

 Furthermore, to investigate the mechanism by which Vinca alkaloids activate NF-κB, we constructed a mutant IκBα expression vector in which a NH2-terminal fragment containing Ser32 and Ser36 was deleted. Based on current knowledge, the degradation of IκBα is mainly a result of the inducible phosphorylation of Ser32 and Ser36. Deletion or substitution of these two amino acids with other residues has been reported to prevent IκBα from signal-induced phosphorylation (20, 23). Through stable transfection of this mutant IκBα into wild-type BCap37 cells, we demonstrated that the mutant IκBα protein was insensitive to IKK-mediated phosphorylation and degradation but still possessed the ability to interact with cytoplasmic NF-κB and inhibit Vinca alkaloid-induced NF-κB activation (Figs. 6 and 7). Meanwhile, the results from flow cytometric assays and MTT assay revealed that the expression of the mutant IκBα significantly inhibited Vinca alkaloid-induced apoptotic cell death (Fig. 8). These findings further suggest that blockage of NF-κB activation by the mutant IκBα disrupts the signaling pathway leading to Vinca alkaloid-induced apoptotic cell death. Furthermore, because glucocorticoids antagonize Vinca alkaloid-induced IκBα degradation through similar mechanism as mutant IκBα, it also suggests that glucocorticoids inhibit Vinca alkaloid-induced apoptosis through inhibiting NF-κB activation. Based on these experimental results, the activation of NF-κB likely plays the role of promoter in Vinca alkaloid-induced apoptosis. It is currently unclear how the activated NF-κB triggers the apoptotic machinery. NF-κB has been revealed to regulate the transcription of more than 150 target genes (29). Many of these NF-κB target genes are believed to be proapoptotic genes, such as Fas/Apo-1 ligand (FasL), ICE, c-myc, and p53 (13, 30–32). NF-κB may mediate Vinca alkaloid-induced apoptosis through the regulation of the activities of specific genes that eventually trigger the downstream signaling pathway, leading to apoptotic cell death in tumor cells.

In summary, through characterization of the inhibitory effect of glucocorticoids on Vinca alkaloid-induced apoptosis in BCap37 and KB cells, we found that Vinca alkaloids...
may induce apoptotic cell death through activation of NF-\(\kappa\)B/I\(\kappa\)B signaling pathway. On contrary, glucocorticoids inhibit Vinca alkaloid-induced apoptosis without affecting Vinca alkaloid-induced cell cycle arrest through up-regulating I\(\kappa\)Bo, which antagonizes NF-\(\kappa\)B activation. These findings suggest that the NF-\(\kappa\)B/I\(\kappa\)B signaling pathway may contribute to the mediation of Vinca alkaloid-induced apoptosis in human breast cancer cells.

References

Molecular Cancer Therapeutics

Regulation of *Vinca* alkaloid-induced apoptosis by NF-κB/IκB pathway in human tumor cells

Yi Huang, Yong Fang, Jinmin Wu, et al.

Updated version
Access the most recent version of this article at:
http://mct.aacrjournals.org/content/3/3/271

Cited articles
This article cites 29 articles, 17 of which you can access for free at:
http://mct.aacrjournals.org/content/3/3/271.full#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/3/3/271.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://mct.aacrjournals.org/content/3/3/271.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.