












Figure 4.

Apoptosis in RIP-Tag2 tumors 5 days after vaccinia virus variants. A and B, Staining for apoptosis (activated caspase-3, red) and blood vessels (CD31, green).
A, Confocal microscopic images show little apoptosis after vehicle, widespread apoptosis after reference virus VV-GFP, and even more extensive apoptosis
after combination virusVV-A34/IL2v.B,Widespread apoptosis after VV-A34/IL2v.C,Activated caspase-3 in tumors of eachmouse after virus or vehicle. Values after
VV-GFP or A34K151E substitution virus VV-A34 were similar to one another but significantly greater than after vehicle. By comparison, values after VV-A34/IL2v or
VV-GMCSF were significantly greater than after the other viruses. D, Fluorescence microscopic images of tumor after VV-A34/IL2v compare focal staining for
vaccinia (green) to widespread staining for activated caspase-3 (red) in adjacent sections (white dotted line outlines tumor border). E, Staining for vaccinia (green
bars) and activated caspase-3 (red bars) after vehicle and five virus variants show consistently larger amounts of apoptosis than vaccinia infection, where the ratios
ranged from 6 for VV-GFP, to 16 for VV-A34/IL2v, to 143 for VV-GMCSF. ANOVA: P < 0.05 compared with vehicle� , VV-GFP#, or VV-IL2v†. Vehicle (N¼ 18), VV-GFP
(N ¼ 7), VV-A34 (N ¼ 11), VV-IL2v (N ¼ 10), VV-A34/IL2v (N ¼ 8), VV-GMCSF (N ¼ 8). Scale bar, 200 mm in all images.
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Viral properties accompanying robust antitumor activity
We sought to identify properties that could explain similarly robust

antitumor activities despite different genetic modifications of viruses
VV-A34/IL2v and VV-GMCSF by comparing changes in serum
cytokines and tumor gene expression related to tumor cell killing and
immune activation.

Serum cytokines
Serum IL2 levels were much higher after VV-A34/IL2v, and serum

GM-CSF was much higher after VV-GMCSF (Fig. 5A and B), as
expected for these cytokine-expressing viruses. Serum anti-
inflammatory IL10 and proinflammatory/antitumor TNF-a were
increased after both viruses, but IL10 was greater after VV-A34/IL2v,
and TNF-a was greater after VV-GMCSF (Fig. 5C and D). Serum
IFNg and IL12 heterodimer IL12p70 were also increased after both
viruses, but the increases were significant only after VV-A34/IL2v
(Fig. 5E and F). IL-1b, IL4, and IL5 were significantly increased after
VV-A34/IL2v, and IL6 was increased after VV-GMCSF (Supplemen-
tary Table S2). Serum levels of type I interferons IFNa and IFNb after
VV-A34/IL2v or VV-GMCSF were not significantly above baseline at
5 days (Fig. 5G, Supplementary Table S2), consistent with other
reports at this time point (43). Similarly, expression of IFNa gene
(Ifna1) and its receptor (Ifnar1) was not increased in tumors after
VV-A34/IL2v or VV-GMCSF at 5 days (Supplementary Table S1).

Other readouts
Mice treated with vehicle had a mean body weight gain of 0.4%

during the 5-day experiment (Fig. 5H). Mice that received VV-A34/
IL2v had a 2.8% increase in body weight, but mice given VV-GMCSF
had a 0.9%weight loss, whichwas small but significantly different from
the VV-A34/IL2v group (Fig. 5H). Increased spleen weight at the end
of the experiment, reflecting splenomegaly that accompanies vaccinia
virus infection (44), was found after both viruses and was greater after
VV-GMCSF (Fig. 5I).

Gene expression in tumors
Many of the 770 immuno-oncology genes assessed by the Nano-

String Mouse PanCancer IO 360 Panel had greater expression in
tumors at 5 days after VV-A34/IL2v or VV-GMCSF compared with
vehicle. The overall expression was significantly higher after VV-
GMCSF than afterVV-A34/IL2v (Fig. 6A andB).However, distinctive
similarities and differences between the two viruses were revealed by
analysis of gene subcategories encoding proteins related to apoptosis
and cytotoxicity, chemokines, cytokines, endothelial cell adhesion, and
immune cell adhesion (Fig. 6C–F; Supplementary Figs. S3 and S4A-
S4E; Supplementary Tables S1 and S3-S6).

For the 81 apoptosis and cytotoxicity genes, expression was signif-
icantly greater for 26 after VV-A34/IL2v, 20 after VV-GMCSF, 15 after
both viruses, and overall was greater after VV-A34/IL2v than afterVV-
GMCSF (Fig. 6C; Supplementary Table S3). However, themost highly
expressed genes in this category, including granzyme A (Gzma),
granzyme B (Gzmb), Fas ligand (Fasl), perforin 1 (Prf1), and killer
cell lectin-like receptor genes Klrd1 and Klrk1, underwent similarly
large increases after both viruses (Fig. 6D; Supplementary Figs. S3E
and S4C). Expression of 7 genes, including TRAIL (Tnfsf10), was
significantly greater after VV-A34/IL2v, and expression of caspase 8
(Casp8), toll-like receptor 4 (Tlr4), and receptor-interacting serine/
threonine kinase 3 (Ripk3), a marker of necroptosis (45), was greater
after VV-GMCSF (Supplementary Table S3).

Overall expression of 94 genes encoding cytokines, chemokines, and
related proteins was similar after both viruses, but this proved decep-

tive (Fig. 6E; Supplementary Table S4). Only 15 genes in this category
were significantly upregulated after both viruses, but 23 were greater
after VV-A34/IL2v and 33 were greater after VV-GMCSF. Genes
upregulated after both viruses included IL2 receptor alpha, beta, and
gamma chains (Il2ra, Il2rb, Il2rg) and chemokines Ccl5, Ccr5, and
Cxcr3 related to T-cell trafficking (Supplementary Fig. S4D; ref. 46).
Lymphotoxin B (Ltb) expression was also increased after both viruses
(Supplementary Table S1). Genes that had greater expression after
VV-A34/IL2v included lymphocyte trafficking chemokines Ccl1,
Cxcl9, and Cxcl10 (Supplementary Fig. S4D; ref. 46). Those with
greater expression after VV-GMCSF included GM-CSF receptor beta
subunit (Csf2rb) and leukocyte recruitment chemokines Ccr2, Ccl22,
Csf2rb, and Ccl17 that formed tall peaks in rank-order plots (Fig. 6F;
Supplementary Fig. S4D; refs. 47, 48).

The 28 genes encoding endothelial cell adhesion proteins gave
insight into endothelial cell-immune cell interactions involved
in antitumor activity (47, 49). Although VV-A34/IL2v and VV-
GMCSF promoted equivalent CD8þ T-cell influx into tumors, overall
expression of genes in this category was greater after VV-GMCSF
(Supplementary Figs. S3A and S3B and S4A). Expression of eight
genes increased significantly after VV-GMCSF, four after VV-A34/
IL2v, and four after both viruses (Supplementary Table S5). Intercel-
lular adhesion molecule 1 (Icam1) and integrin subunits Itgal, Itga4,
and Itgb2were upregulated after both viruses, but the increase in Itga4
subunit of integrina4b1 (VLA-4, very late antigen-4) was greater after
VV-GMCSF, and Vcam1 and increases in integrin alpha chains Itgax
(CD11c) and Itgae (CD103) were significant only after VV-GMCSF
(Supplementary Fig. S4E).

Expression of 52 genes encoding immune cell adhesion proteinswas
significantly greater overall after VV-GMCSF (Supplementary Figs.
S3C and S3D, S4B). Expression of 30 genes in this category increased
significantly after VV-GMCSF, 22 after VV-A34/IL2v, and 20 after
both viruses (Supplementary Table S6). Consistent with the robust
recruitment of CD8þ T cells to tumors, CD8 antigen alpha and beta
chains (Cd8a, Cd8b1) had greater than eightfold increases after both
viruses (Supplementary Tables S1 and S6).

VV-GMCSF also induced strikingly higher expression in tumors of
multiple neutrophil-associated genes, including calgranulin A/B
(S100a8/a9) and granulocyte stimulating factor receptor (Csf3r; Sup-
plementary Fig. S4F). Counts of neutrophils identified by S100A8þ

staining confirmed that neutrophils were significantly more abundant
in tumor after VV-GMCSF (Supplementary Fig. S4G and S4H).

Discussion
This study compared the initial antitumor activity of five vaccinia

virus variants constructed from the same Western Reserve vaccinia
backbone with different genetic modifications (Fig. 1). To enable side-
by-side comparisons, the viruses were examined under standardized
conditions in a mouse tumor model known to be immunologically
“cold” at baseline and to be responsive to oncolytic vaccinia viruses.
After intravenous administration of the viruses, vaccinia infection was
limited to focal patches of tumors and was absent in normal tissue. In
contrast, antitumor activity, evidenced by tumor vascular pruning,
influx of CD8þ T cells and NK cells, and tumor cell apoptosis, was
much more widespread, but the magnitude differed among the five
viruses. Effects of viruses expressing mIL2v alone (VV-IL2v) or
bearing the A34K151E substitution (VV-A34) were largely similar to
the reference virus (VV-GFP). However, tumor cell killing was sig-
nificantly greater after viruses that expressed mGM-CSF (VV-
GMCSF) or mIL2v together with A34K151E substitution, B18R viral
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gene deletion, and other changes (VV-A34/IL2v). Analysis of gene
expression and serum cytokines indicated similarities consistent with
equivalent antitumor activities, but accompanying differences revealed
mechanistic dissimilarities of the two viruses.

Approach for comparing antitumor activities
Experiments were designed to determine the relative contributions

of single and multiple genetic changes in vaccinia viruses to antitumor
activity. Viral variants were derived from the same Western Reserve

Figure 5.

Serum cytokines (pg/mL) and spleen and body weights of RIP-Tag2 mice at 5 days after vehicle, VV-A34/IL2v, or VV-GMCSF. A and B, Elevated levels of IL2 after
VV-A34/IL2v (A) and GM-CSF after VV-GMCSF (B) fit with expression of these cytokines by the respective viruses. C–G, Serum IL10 (C), TNFa (D), IFNg (E), and
IL12p/70 (F) were increased after one or both viruses, but serum type I IFNs, IFNa (G, top) and IFNb (G, bottom)were similar to vehicle after both viruses (values for
these and other cytokines are in Supplementary Table S2). ANOVA: P < 0.05 compared with vehicle� (N¼ 11–24), VV-GMCSF† (N¼ 14–15), or VV-A34/IL2v# (N¼ 12–
27). H, Percent body weight gain (mean� SEM) over 5-day experiment was greater for mice after VV-A34/IL2v (N¼ 22) than after VV-GMCSF (N¼ 18), but did not
differ frommice that received vehicle (N¼ 22). Student’s t test: P < 0.05 compared with VV-GMCSF†. I, Spleen weight after VV-A34/IL2v (N¼ 20) was greater than
after vehicle (N ¼ 20) but less than after VV-GMCSF (N ¼ 18). ANOVA: P < 0.05 compared with vehicle� or VV-A34/IL2v#.
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backbone, administered in the same dose, intravenous route, and
model of spontaneous tumors, and assessed by the same panel of
readouts. The RIP-Tag2 mouse model of pancreatic neuroendocrine
tumors has been shown to be predictive of clinical success of thera-
peutics (39, 50, 51). Measurements of initial antitumor activity were

made at 5 days, when vaccinia infection, CD8þ T-cell influx, and
tumor cell killing peaked (24). Although these initial responses are not
necessarily indicative of long-term outcome, the approach revealed
clear differences in the contributions of the genetic variants to anti-
tumor activity. Informative next steps will be to build on these findings

Figure 6.

Gene expression profiles in RIP-Tag2 tumors 5 days after VV-A34/IL2v (red) or VV-GMCSF (blue) relative to vehicle. A and B, Expression of 770 immuno-oncology
pathway genes after the two viruses compared as groups (A) and as heatmaps that showmean expression of genes converted into Z-scores (B).C andD, Expression
of 81 apoptosis and cytotoxicity genes (Supplementary Table S3) compared as groups (C) and ranked from greatest to least ratio of VV-A34/IL2v to vehicle (D, left),
with the same rank order used for the genes after VV-GMCSF (D, right). Value for granzyme A (Gzma) inD after VV-A34/IL2v (23.33) or VV-GMCSF (13.91) exceeded
the y-axis maximum of 12 and is truncated. E and F, Expression of 94 cytokine, chemokine, and related genes (Supplementary Table S4) compared as groups (E) and
ranked (F) as in C and D. High values for Ccr2, Ccl22, Csf2rb, and Ccl17 after VV-GMCSF are labeled (F, right). Wilcoxon signed-rank test: #, P < 0.05 for genes
compared as groups. NS, not significant. Error bars show SEM. Vehicle (N ¼ 5), VV-A34/IL2v (N ¼ 5), 4 VV-GMCSF (N ¼ 4). Horizontal dotted line marks value for
vehicle group normalized to 1.0. Expression analyzed by NanoString Mouse PanCancer IO 360 Panel.
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by using similar approaches to assess responses in other tumormodels
and at other time points and to extend the mechanistic understanding
by using additional readouts.

Widespread tumor cell killing despite focal tumor infection
Vaccinia viral infection in tumors, assessed by IHC staining, was

patchy, differed little among the viruses, and was consistently less
extensive than tumor cell killing. Infection after vaccinia virus VV-A34
bearing the A34K151E substitution, which increases EEV production
after infection of cultured cells (6, 52), was similar to the reference virus
(VV-GFP) that lacked this modification. The lack of greater spreading
of infection by vaccinia virus with the A34K151E mutation contrasts
with the behavior of such viruses reported for cultured cells (6) and
other tumor models (10, 11). More widespread infection has been
reported in implanted tumors at 1 day after intravenous injection of a
vaccinia virus strain that bears the A34K151E substitution (10), raising
the question of timing of peak infection. Efficacy in a model of
peritoneal carcinomatosis after intraperitoneal injection of virus (11)
may not be predictive of spontaneous tumors after by intravenous
administration. The survival advantage inmicewith implanted tumors
attributed to viruses with the A34K151E substitution (10, 11) deserves
further study in spontaneous tumormodels after intravenous delivery.
Nonetheless, importantly, our studies revealed that the extent of
vaccinia infection was not predictive of overall antitumor activity
at 5 days, which instead was more closely linked to CD8þ T-cell
recruitment.

The finding of greater antitumor activity after viruses expressing
mGM-CSF or mIL2v in combination with other modifications differs
from a previous report of equivalent effects at 5 days after vaccinia
viruses that expressed human, mouse, or no GM-CSF in the RIP-Tag2
model (24). This apparent discrepancy could reflect changes in the
latter viruses during mouse adaptation or differences in the Western
Reserve viral backbone or viral constructs. The differences highlight
the rationale and importance of deriving all five viral variants from the
same viral backbone to enable meaningful side-by-side comparisons.

Vascular pruning, CD8þ T-cell influx, and tumor cell killing
Pruning of the tumor vasculature, a well-documented effect of

oncolytic vaccinia viruses (20, 24, 40), occurred after all five viruses
but was greatest after VV-A34/IL2v and VV-GMCSF. Reduced vas-
cularity has been linked to necrosis in some tumors (20, 40) but cannot
fully explain the robust antitumor of effects of vaccinia viruses (24).

Dependency of widespread tumor cell killing by vaccinia viruses on
CD8þ T-cell recruitment was shown by CD8þ T-cell depletion, which
resulted in narrowing of apoptosis to regions of vaccinia virus infection
in tumors (24).

CD8þ T cells are sparse in RIP-Tag2 tumors at baseline (24) but
were recruited to tumors by all five viruses. CD8þ T-cell recruitment
was similar after the reference virus (VV-GFP) and viruses with the
single A34K151E substitution (VV-A34) or mIL2v expression (VV-
IL2v), but was greater after viruses VV-GMCSF and VV-A34/IL2v.
Although other immune cells were recruited with CD8þ cells into
tumors, influx of CD8þ cells was much greater than CD4þ cells or NK
cells, and Foxp3þ Tregs did not change.

Consistent with the essential contribution of CD8þ T cells to
widespread tumor cell killing after vaccina virus administered intra-
venously (24), the amount of CD8þ T-cell influx had a significant
positive correlation with the amount of activated caspase-3 staining in
tumors. NK cells, which were largely restricted to sites of vaccinia
infection at 5 days, appear not to have a major contribution to the
widespread tumor cell killing.

IL2v expression (VV-IL2v) as a single modification did not amplify
tumor cell killing, but together with other modifications (VV-A34/
IL2v) resulted in significantly greater antitumor activity. Expression of
mGM-CSF (VV-GMCSF) led to similarly robust antitumor activity.

Similarities of the most efficacious viruses
Tumor gene expression profiling and serum cytokine measure-

ments provided insights into mechanisms that contributed to
the robust antitumor activities of viruses VV-A34/IL2v and
VV-GMCSF. Both viruses increased expression of genes associated
with CD8þ T-cell–mediated tumor cell killing, including granzyme
A, granzyme B, perforin1, and Fas ligand. Granzymes from CD8þ

T cells have lethal effects after entering cells through pores formed
by perforin1 (53, 54). Granzyme B triggers apoptosis through
activation of caspase-3 cascades, whereas granzyme A acts in a
caspase-independent manner (53–55).

Both viruses also increased expression of vascular adhesion mole-
cules involved in leukocyte trafficking into tumors. Icam1upregulation
is particularly important because of the large influx of CD8þ T cells
into RIP-Tag2 tumors. Endothelial cell Icam1 expression is required
for entry of activated antigen-specific T cells into these tumors (56).
Both viruses were also accompanied by upregulation of alpha-L and
beta-2 integrin subunits (Itgal and Itgb2) of LFA-1 (leukocyte function
associated antigen-1), the receptor for ICAM-1-mediated leukocyte
transmigration (47, 57).

Differences between the most efficacious viruses
Similarities in gene expression were accompanied by striking

differences between the two viruses. VV-A34/IL2v was followed
by higher expression of death receptor ligand TRAIL (Tnfsf10)
and CXCR3 ligands CXCL9 and CXCL10 in tumors and by higher
serum levels of IL2, IFNg , IL10, and heterodimeric IL12 (IL12p70),
which promote CD8þ T-cell activation, recruitment, and
cytotoxicity (58–61). However, serum IFNa and expression of Ifna1
and Ifnar1 genes in tumors after VV-A34/IL2v were similar to VV-
GMCSF or vehicle. Serum IFNa is reported to be elevated at 7 days
after intratumoral injection of vaccinia virus, but the level at 5 days
is not significantly greater than baseline (43). These findings bring
into question the contribution of host IFNa activity amplification
by viral B18R gene deletion (14, 15) to the robust antitumor action
of VV-A34/IL2v at 5 days in this model.

VV-GMCSF led to higher tumor expression of Vcam1, toll-like
receptor 4Tlr4, necroptosis inducerRipk3 (45, 54), andmany genes for
cytokine/chemokine ligands and receptors involved in leukocyte
trafficking (IL16, Ccl9, Ccl17, Cxcl16, Ccr2, Csf1r, Csf2rb, Csf3r).
VV-GMCSF also not only increased serum GM-CSF but also serum
TNFa, which kills cancer cells directly and increasesVcam1 expression
and immune cell influx (62, 63). Another distinctive feature of VV-
GMCSF was greater neutrophil recruitment, a known effect of GM-
CSF (64). Neutrophils contribute to the antitumor action of GM-CSF
expressing measles virus (65) but have uncertain effects after GM-
CSF–expressing vaccinia virus. The contribution of mechanistic dif-
ferences in CD8þ T-cell recruitment to robust tumor cell killing by
VV-A34/IL2v and VV-GMCSF deserves further study by selective
inhibition or deletion of leukocyte recruitment factors, use of tumor
models with genetically altered immune responses, and single-cell
analysis of gene expression.

Tolerability
All vaccinia virus variants studied were well tolerated over 5 days

after intravenous administration. This finding is important because
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wild-type IL2 has dose-limiting toxicity. In one report, 60% of mice
that received vaccinia virus expressing wild-type IL2 by intravenous
injection lost more than 20% body weight and required euthanasia by
day 5 (33). Similarly, mice that received vaccinia virus expressing a
soluble form of IL2 had serum IL2 levels of 22,000 pg/mL and 80%
mortality by 5 days (19). These toxicities are attributed to binding of
wild-type IL2 to the alpha subunit of IL2 receptor. By comparison,
mice that received intravenous injection of VV-A34/IL2v, which
expressed IL2v with attenuated binding to the alpha subunit (34),
had serum IL2 levels averaging 564 pg/mL, gained weight, and had
100% survival. Serum IL2 levels in these mice evidently reflected
viral cytokine expression, because IL2 levels in mice that received
VV-GMCSF, which did not express IL2, were similar to vehicle-treated
mice.

In summary, this side-by-side comparison revealed marked differ-
ences among five vaccinia viruses engineered with different genetic
modifications reported to increase cell killing. Standardized compar-
ison by a panel of readouts identified two viruses with especially robust
antitumor activity after intavenous delivery; one expressed GM-CSF
(VV-GMCSF) and the other expressed an IL2 variant (VV-A34/IL2v)
together with the A34K151E substitution and B18R viral gene deletion.
The viruses promoted widespread influx of CD8þT cells accompanied
by strong upregulation of cytotoxicity genes and extensive apoptosis in
tumors, but NK cell recruitment was limited to focal sites of vaccinia
infection in tumors, and Treg recruitment was suppressed. Despite the
similarities, VV-A34/IL2v resulted in greater tumor expression of
death receptor ligand TRAIL and higher serum IL2 and IFNg , whereas
VV-GMCSF led to greater expression of leukocyte recruitment cyto-
kines and vascular adhesion molecules, higher serum GM-CSF and
TNFa, and more neutrophil recruitment. Together, this standardized
comparison of vaccinia virus variants enabled identification of genetic
modifications that amplify tumor cell killing. Antitumor activity of
oncolytic viruses can be further advanced by extending this approach
to other modifications of the virus, treatment regimens, and tumor
models.
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