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B02 and AZD1775 Potentiate Cell Killing in HNSCC

Figure 3.

Synergistic interaction of BO2 and AZD1775 is mediated in part through forced activation of CDK1 and inhibition of Chk1 associated with impaired Rad51-mediated
homologous recombination repair in HNSCC cells. PCI13-G245D and UM-SCC-47 cells were treated with BO2, AZD1775, or in combination for 16, 48, 72 hours and
protein lysates were subjected to Western blot analysis with antibodies as indicated. A, Levels of phosphorylation of Chk1(S345), CDK1 (Y15), YH2AX (S139), RPA32,
total p21, Rad51, Chkl, CDK1, RRM2. The presence of PARP-1 cleavage as marker of apoptosis is shown. The B-actin served as loading control. B, PCI13-G245D and
UM-SCC-47 cells were treated with DMSO and drugs as indicated for 16 hours and then subject to DNA fiber analysis to quantify mean replication fork speed (rate).
Lower speed indicates higher degree of replication stress. Scale bar, 10 um. Data are mean 4 SD. C, Annexin/PI-positive staining (percentage of dead cells)
confirming induction of apoptosis in these cells following treatment with BO2 and AZD1775. Unsynchronized PCI13-G245D and UM-SCC-47 cells were treated with
B02, AZD1775 alone, or in combination for various time points as indicated and subjected to cell-cycle analysis. NT (no treatment) control. D, Percentage of cell-cycle
distribution determined by flow cytometry was presented as bar graphs. An increase in S-phase and sub G; fractions indicative of replicative stress and cumulative
apoptosis, respectively, were observed over time. Data shown are representative of three independent experiments. *, P < 0.0007; single treatment compared with
combination treatment for cell-cycle phases as indicated.
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caused accumulation of cells in S-phase (34.27%) and G,-M phase
(40.15%) at 24 hours compared with untreated control (S: 17.84%,
G,-M: 25.97%), B02 (S: 23.39%; G,-M: 35.71%), or AZD1775
(S: 19.07%, G,—M: 32.17%) alone, respectively (Fig. 3C). In addition,
drug combination decreased the cell number in the G; phase and
subsequently increased the sub-G; population at 48 hours (Fig. 3C).
Likewise, 24 hours of B02 and AZD1775 treatment induced slightly the
$(26.99%,20.21%) and G,—M (27.38%, 43.23%) cell-cycle phase arrest
in HPV-positive HNSCC (UM-SCC-47, UM-SCC-104) cells, respec-
tively, compared with untreated control (S: 20.24%, G,-M: 23.09%),
B02 (S: 11.42%; G,-M: 38.31%), or AZD1775 (S: 18.49%, G,-M:
61.51%) alone, respectively (Fig. 3C; Supplementary Fig. S3C). How-
ever, at 48 and 72 hours combination treatment, cell number in these
phases gradually declined because proportion of cells went into
apoptosis as revealed by increased sub-G; fractions (UM-SCC-47,
3540% and 27.90%; UM-SCC-104, 10.06% and 18.48%,
respectively; Fig. 3C; Supplementary Fig. S3C). Collectively, these
data suggest that the interactions between replicative stress and
impaired homologous DNA recombination repair during cell-cycle
transition are likely involved in synergism observed with Rad51 and
Weel inhibitors in HNSCC cells.

B02 synergizes with AZD1775 and radiation in vivo in an
orthotopic mouse model of oral tongue cancer

Recently, we have shown that the 3D cell culture systems are reliable
models for monitoring cell growth and drug testing. This is due to their
evident advantages in providing more physiologically relevant phe-
notypes similar to that in vivo (29, 41). Therefore, HPV-positive
HNSCC (MDA-HN-2C) cells established in our laboratory (29) were
grown in 3D collagen culture and treated with physiologically relevant
doses of B02 and AZD1775 as indicated previously. The H&E staining
of the 3D organoids is shown in Fig. 4A. The cell death was monitored
in the 3D culture organoids at day 5 following treatment with the drugs
using the in vivo TUNEL assay. The TUNEL-positive staining was
significantly increased in the 3D culture organoids treated with B02
and AZD1775, indicative of apoptosis (Fig. 4A and B), and consistent
with 2D in vitro data.

On the basis of results obtained from the 2D in vitro and the 3D
organoids, the effect of B02, AZD1775 either alone or in combination,
was assessed in an orthotopic nude mouse model injected with HPV-
negative mutant TP53 (PCI-13-G245D) and HPV-positive (UM-SCC-
47) HNSCC cell lines in the tongue. Surprisingly, B02 (50 mg/kg, L.P.,
3 times a week) or AZD1775 (35 mg/kg, orally, 5 times a week) alone or
in combination had little effects on tumor growth in mice bearing
tumors with PCI-13-G245D cells (Fig. 4C; Supplementary Fig. S6).
These results suggest that the synergism seen with the combination
in vitro in the HPV-negative HNSCC cells does not extrapolate to
in vivo. The B02 or AZD1775 alone resulted in modest effects on tumor
growth (P <0.101, P < 0.059, respectively) compared with untreated
controls (Fig. 4D; Supplementary Fig. $6). Combination of these drugs
significantly inhibited oral tumor growth, when compared with
AZD1775 alone (P = 0.0264), B02 alone (P = 0.0043), or vehicle-
treated group (P < 0.0001) in mice bearing UM-SCC-47 cells (Fig. 4D;
Supplementary Fig. S6). Furthermore, combined treatment with B02
and AZD1775 improved animal survival compared with animals in the
untreated control and single treatment groups (Fig. 4E). None of the
mice in the single or combination treatment arms showed more than
10% body weight loss or any signs of drug toxicity (Fig. 4F), suggesting
that the combination of drugs is well tolerated during the study. Initial
experiments to demonstrate B02 could sensitize HPV-positive
HNSCC cell lines to radiation (XRT) were not interpretable because

1264 Mol Cancer Ther; 20(7) July 2021

these cells were inherently too sensitive to 2 Gy radiation in vitro (data
not shown). However, the radiosensitizing potential of BO2 was readily
apparent in vitro in the HPV-negative HN31 cells (Fig. 4G and H).
Significant cell killing was achieved with 2 Gy XRT combined with B02
(1 or 2 umo/L) compared with 2 Gy XRT or either concentration of
B02 alone (P < 0.0001 for all comparisons). In the orthotopic tongue
tumor model with HPV-negative HN31, XRT alone caused tumor
growth delay (Fig. 4I) and modest increase in mouse survival (Fig. 4]).
However, combination of B02 and XRT led to tumor growth inhibition
(P =0.024) and significant increase in survival time (P = 0.007; Fig. 41
and J) compared with untreated mice. Furthermore, addition of B02 to
radiation was well tolerated with no obvious weight loss observed in all
mice tested (Fig. 4K).

Association of higher RAD51 expression with poor overall
survival in patients with HPV-positive HNSCC

Recent report has shown that KRAS-mutant lung cancer cells are
highly dependent on RAD5I for survival and depletion of RAD51
resulted in enhanced DNA double-strand breaks, defective colony
formation, and cell death (42). Therefore, it is possible that HNSCC
tumor cells can upregulate RAD51 expression to facilitate DNA
damage repair and increase their survival. This cancer dependency
could confer cell lethality when the Rad51 gene is severely inhibited.
Therefore, we analyzed the RAD51 mRNA expression levels in the
HNSCC TCGA patient cohort. The patients with HPV-positive
HNSCC (n = 71) showed higher levels of RAD51 (8.84 £ 0.60 -
mean/SD; P < 0.0001) than the patients with HPV-negative HNSCC
(n = 449; 8.27 £ 0.71 - mean/SD; Fig. 5A and B). Moreover, patients
with HPV-positive HNSCC with higher expression of RADS51
showed a tendency of lower survival (Fig. 5C, P = 0.071). Similarly,
HPV-positive samples showed increased levels of WEE1 (10.540.71-
mean/SD; P < 0.0001) compared with HPV-negative samples
(9.77£0.71; Fig. 5D and E). Interestingly, patients with higher expres-
sion levels of WEE1 showed better survival compared with patients
with lower levels of WEEL1 (Fig. 5F, P = 0.002). Taken together, these
data suggest that Rad51 represents a potential drug target in patients
with head and neck cancer with HPV infection. In most cases, patients
with head and neck cancer from TCGA are not treated the same. This
may influence the survival outcomes, and therefore uniformly treated
cohorts are required to confirm these results.

HPV-positive head and neck tumors differentially express
hundreds of genes involved in DNA repair, processing, and
maintenance

It is well established that HPV-positive tumors are dependent on the
E6 and E7 oncogenes for survival, and these oncogenes drive expres-
sion of many DDR genes. Expression of such genes can potentially
make these genomic subtypes of cancers vulnerable to drugs targeting
replication stress and DNA damage repair. Therefore, we examined
differential expression of DDR genes by performing unsupervised
hierarchical clustering of HNSCC TCGA samples based on RNA
expression of genes obtained from GO searches. Clustering of 279
DDR genes was presented in the heatmap (Fig. 6) and in Supple-
mentary Table S1. The analysis conclusively showed that more than
90% of HPV-positive tumors grouped together in their own cluster and
overexpressed the same genes, indicating remarkable homogeneity.
Similar results were obtained in a panel of 73 HNSCC cell lines and 10
cervical squamous cell carcinoma lines with known HPV status
(Supplementary Fig. S7). The majority of HPV-positive cell lines
clustered together, regardless of cancer type. Two HPV-positive cell
lines that did not, contained a virus strain different from HPV-16 or
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Figure 4.

B02 synergizes with AZD1775 and radiation in vivo in an orthotopic mouse model of oral tongue cancer. A, Hematoxylin and eosin (H&E) and TUNEL-positive staining
determined at day 5in the 3D culture organoids made from HPV-positive HNSCC (MDA-HN-2C) cells following treatment with equivalent physiologic dose of BO2 and
AZD1775 for 5 days as described in Methods. B, quantification of the positive TUNEL staining shown in A. C and D, Tumor growth curves in orthotopic mouse model
oral tongues bearing HNSCC (PCI13-G245D and UM-SCC-47) cells following treatment with BO2 (50 mg/kg), AZD1775 (35 mg/kg) either alone or in combination as
described in methods. E and F, Kaplan-Meier analysis for survival and relative body weight loss during the treatment in UM-SCC-47 tumor-bearing mice. Each
treatment group contains 9-10 mice. G, Representative clonogenic survival images of HPV-negative HNSCC (HN31) cells pretreated with BO2 two hours before
radiation (XRT) as indicated. H, Percentage of surviving colonies normalized to untreated control. Combinations of BO2 plus XRT caused more tumor cell death than
XRT or BO2 alone. I, Tumor growth curves in orthotopic mouse model oral tongues bearing HN31cells following treatment with BO2, fractionated radiation dose
(5 Gy), and in combination as described in Materials and Methods. J and K, Kaplan-Meier analysis for survival and relative body weight loss during the treatment
with BO2 and radiation in HN31 tumor-bearing mice, respectively. Each treatment group contains 5-6 mice. All in vivo data were expressed as + SEM and

P values < 0.05 were considered significant.
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Figure 5.

Higher RAD51 expression is associated with poor overall survival in patients with HPV-positive HNSCC. A, Violin plot represents RAD51log2 transformed expression
among 520 HNSCC according to HPV status. B, RAD5] gene expression range among HPV-positive HNSCC samples evaluated. C, Kaplan-Meier plot shows a trend
toward worse survival rates among HPV-positive HNSCC with higher RAD51 expression. D, Violin plot represents WEET1 log, transformed expression among 520
HNSCC according to HPV status. E, WEE1 gene expression range among HPV-positive HNSCC samples evaluated. F, Kaplan-Meier plot shows worse survival among

HPV-positive HNSCC with lower WEE1 expression.

HPV-18, are shown. Our analysis demonstrated an identifiable set of
DNA replication and DDR genes upregulated in HPV-positive patient
tumors

Discussion

It is well established that an intact DDR coupled with efficient
homologous recombination is essential for detecting and repairing
DNA breaks and maintaining genome stability in normal cells (43).
Furthermore, if the DNA damage is extensive and cannot be repaired,
mitotic slippage can also result in mitotic catastrophe and/or induction
of apoptosis (43). Importantly, induction of replication stress can be
exploited for tumor cell killing and therefore has been described as an
Achilles’ heel of cancer (44). In recent years, targeting Rad51, a protein
involved in homologous recombination repair, has become an area of
intense investigation. In this study, we demonstrated that HPV-
positive HNSCC cell lines were much more sensitive to B02 treatment
compared with HPV-negative ones in vitro, suggesting that suscep-
tibility to RAD51 inhibition is linked to the biology of HPV oncogenic
drivers E6 and/or E7. Park and colleagues have demonstrated that E7
expression increases the levels of Rad51 and delays radiation-induced
DNA damage repair both in vitro and in vivo in HPV-positive HNSCC
cells (45). On the basis of this study and our data, we envision that the
HPV-positive tumors become more dependent on a regulatory feed-
back loop involving E7/Rb/E2F1/cyclin D1/Rad51 genes axis to tolerate
the DNA damge and replication stress and continue to survive.
Consequently, inhibition of Rad5 can disrupt this feedback loop
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dependency in these tumors. Our data provide evidence that Rad51
inhibition causes loss of oncogenic signaling through reduction in the
E7 expression in HPV-positive tumor cells. However, it is not clear
how this inhibitory effect occurs. Therefore, future experiments are
required to examine whether Rad51 inhibition directly blocks E6/E7
mRNA transcription and/or protein translation in these cells. Fur-
thermore, in this study, we present evidence that direct genetic ablation
of E7 is sufficient and/or required for B02-mediated antitumor effects
in HPV-positive cells. Expression of E6 and E7 oncogenes can induce
chronic oncogene-induced replication stress and dysregulate DDR,
which make them more susceptible to drugs that target replication
stress and homologous recombination repair. This possibility is sup-
ported by our data presented in Fig. 6 and recent reports which
demonstrate that expression of E6 and E7 is sufficient to induce
reactive oxygen species (ROS) generation and induce DNA damage
in cervical and head and neck cancer cells (46, 47).

Mechanistically, we further provide evidence that B02 and
AZD1775 interact synergistically to induce DNA damage, replication
stress, and impaired Rad51-mediated HR through activation of CDK1
and decreased Chkl phosphorylation, resulting in aberrant mitosis
associated with apoptotic cell death. It is unclear how B02 inhibits
Chk1 phosphorylation. Recent study has demonstrated that depletion
of RAD51 with siRNA decreases Chkl protein level in esophageal
cancer cells, suggesting that RAD51 can act as an upstream regulator
and positively controls the expression of Chkl (48). Taken together,
these data suggest that inhibition of Chkl may be directly linked to
Rad51 inhibition and it is unlikely due to off-target effects of the drug.

MOLECULAR CANCER THERAPEUTICS

Downloaded from mct.aacrjournals.org on September 16, 2021. © 2021 American Association for Cancer Research.


http://mct.aacrjournals.org/

Published OnlineFirst May 4, 2021; DOI: 10.1158/1535-7163.MCT-20-0252

Figure 6.
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HPV-positive head and neck tumors differentially express
hundreds of genes involved in DNA repair, processing,
and maintenance. HNSCC TCGA samples were subjected
to unsupervised hierarchical based on RNA expression of
279 DDR genes obtained from Gene Ontology searches.
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It is possible that B02 inhibits Chk1 phosphorylation through direct
inhibition of its upstream activator, the ATR kinase. Future experi-
ment is required to confirm this possibility in HNSCC cells. In
addition, both B02 and AZD1775 led to decreased RRM2 in a
time-dependent manner, suggesting exhaustion of available deoxyr-
ibonucleoside triphosphate (ANTP) pools for replication. The drug
combination resulted in greatest RRM2 inhibition. During DNA
replication, if the amount of nucleotides or components of the
replication machinery are not in adequate supply or properly assem-
bled to complete replication, the cells become “stressed” and this is
manifested by stalling of replication forks, creating synthetic lethality
with DNA-damaging agents (49). Furthermore, Weel inhibition with
AZD1775 has been shown to confer synthetic lethality in H3K36me3-
deficient cancer cells by instigating dNTP starvation and replication
stress (50). Consistent with previous report, a marked increase in the
p21 protein levels was also observed in all cell lines tested with B02
treatment, suggesting growth arrest through regulation of the G,-S
cell-cycle transition (39). This mechanistic interaction between
RAD51 and p21 will be further investigated in future experiments.
In our study, it is not clear how B02 treatment induces p21 in TP53-
mutant HNSCC cells. Preliminary data showed that B02 significantly
increased the p21 mRNA levels in HPV-positive (UM-SCC-47) cells
(unpublished observation). Future experiment is needed to test wheth-
er B02 induces p21 at the transcriptional level in the TP53-mutant cells.

In the HPV+HNSCC cells, the combination treatment caused a
slight increase in number of cells entering the S-and G,~M phases and
proportion of cells arrested in the sub-G; phase indicating cell death.

AACRJournals.org

We do not know exactly in which cell-cycle phase this death occurs.
We think that the cells are going through replication stress and perhaps
dying through apoptosis within the S-phase. Consistent with this, we
previously demonstrated with live-cell imaging that death through
apoptosis could take place within S-phase during cell cycle in HNSCC
following treatment with drugs that elicit replication stress (38). Future
experiments will be required to explore this possibility. Interestingly,
unlike the HPV-negative HNSCC, combination of B02 and AZD1775
causes significant tumor growth inhibition in vivo in HPV-positive
HNSCC tumor bearing mice and significantly improved median
survival. This may be related to HPV-positive tumors having more
in vivo endogenous replication stress (ERS) owing to transformation
by E6 and E7 oncogenes. In this case, if the tumors have more ERS, then
two things happen. First, these tumors become more dependent on
protein or genes that protect them from replication stress such as
Rad51. Second, these tumors will be more sensitive to drugs that cause
even more ERS such as the Weel inhibitor. Because all the HNSCC cell
lines tested have demonstrated comparable levels of Rad51 and Weel
expression, the enhanced sensitivity to B2 monotherapy or in com-
bination with AZD1775 can not be entirely explained by the expression
of these proteins. Our data suggest that the biomarker for the drug
combination response in HPV-positive cells is likely the high expres-
sion level of the DNA damage and replication stress gene signature,
and Rad51 is one gene that is present in that signature. Because our
data show that BO2 can radiosensitize the HPV-negative head and neck
tumors both in vitro and in vivo, we plan to compare current standard-
of-care cisplatin plus radiation to BO2 plus radiation particularly in the
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HPV-tumors with high levels of Rad51 expression. It will also be
important to determine whether integration of RAD51 inhibition into
chemo-radiation algorithms can allow us to substitute a less toxic and
potentially equally effective agent for HPV-positive HNSCC.

In summary, we provide evidence that HPV-positive HNSCC
tumor cells are very sensitive to B02 as single agent and in combination
with AZD1775 in vitro and in vivo. Our data implicate that the HPV-
positive tumors may have adapted to become more dependent on their
DDR genes for survival and to avoid replication stress. Taken together,
our findings argue that a strategy aimed at simultaneous targeting of
Rad51 and Weel function may represent an effective therapeutic
strategy for killing high-risk head and neck cancer.
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