MOLECULAR CANCER THERAPEUTICS

TABLE OF CONTENTS

HIGHLIGHTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Selected Articles from This Issue</td>
<td></td>
</tr>
</tbody>
</table>

REVIEW

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Targeting PIM Kinases to Overcome Therapeutic Resistance in Cancer</td>
<td>Rachel K. Toth and Noel A. Warfel</td>
</tr>
</tbody>
</table>

SMALL MOLECULE THERAPEUTICS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Targeting Oncogene mRNA Translation in B-Cell Malignancies with eFT226, a Potent and Selective Inhibitor of elf4A</td>
<td>Peggy A. Thompson, Boreth Eam, Nathan P. Young, Sarah Fish, Joan Chen, Maria Barrera, Haleigh Howard, Eric Sung, Ana Parra, Jocelyn Staunton, Gary G. Chiang, Adina Gerson-Gurwitz, Christopher J. Wegerski, Andres Nevarez, Jeff Clarine, Samuel Sperry, Alan Xiang, Christian Nilewski, Garrick K. Packard, Theodore Michels, Chinh Tran, Paul A. Sprengeler, Justin T. Ernst, Siegfried H. Reich, and Kevin R. Webster</td>
</tr>
<tr>
<td>64</td>
<td>Reprogramming of Nucleotide Metabolism Mediates Synergy between Epigenetic Therapy and MAP Kinase Inhibition</td>
<td>Tatiana Shorstova, Jie Su, Tiejun Zhao, Michael Dahabieh, Matthew Leibovitch, Mariana De Sa Tavares Russo, Daina Avizonis, Shivshankari Rajkumar, Ian R. Watson, Sonia V. del Rincón, Wilson H. Miller Jr, William D. Foulkes, and Michael Witcher</td>
</tr>
<tr>
<td>76</td>
<td>Disruption of SND1-MTDH Interaction by a High Affinity Peptide Results in SND1 Degradation and Cytotoxicity to Breast Cancer Cells In Vitro and In Vivo</td>
<td>Peng Li, Yunjiao He, Teng Chen, Kit-Ying Choy, Tsun Sing Chow, Iris L.K. Wong, Xinqing Yang, Wenqin Sun, Xiaochun Su, Tak-Hang Chan, and Larry M.C. Chow</td>
</tr>
<tr>
<td>85</td>
<td>Targeting Dormant Ovarian Cancer Cells In Vitro and in an In Vivo Mouse Model of Platinum Resistance</td>
<td>Zhiqing Huang, Eiji Kondoh, Zachary R. Visco, Tsukasa Baba, Noriomi Matsumura, Emma Dolan, Regina S. Whitaker, Ikuo Konishi, Shingo Fujii, Andrew Berchuck, and Susan K. Murphy</td>
</tr>
</tbody>
</table>

v

Downloaded from mct.aacrjournals.org on August 5, 2021. © 2021 American Association for Cancer Research.
TABLE OF CONTENTS

LARGE MOLECULE THERAPEUTICS

96 Selective Tumor Cell Apoptosis and Tumor Regression in CDH17-Positive Colorectal Cancer Models using BI 905711, a Novel Liver-Sparing TRAILR2 Agonist
Juan Manuel García-Martínez, Shirley Wang, Cordula Weishaupl, Andreas Wernitznig, Paolo Chetta, Catarina Pinto, Jason Ho, Darrin Dutcher, Philip N. Gorman, Rachel Kroe-Barrett, Joerg Rinnenthal, Craig Giragossian, Maria Antonietta Impagnatiello, Iluigi Tirapu, Frank Hilberg, Norbert Kraut, Mark Pearson, and Klaus Peter Kuenkele

109 TriTACs, a Novel Class of T-Cell-Engaging Protein Constructs Designed for the Treatment of Solid Tumors

121 Restoration of T-cell Effector Function, Depletion of Tregs, and Direct Killing of Tumor Cells: The Multiple Mechanisms of Action of a-TIGIT Antagonist Antibodies

COMPANION DIAGNOSTIC, PHARMACOGENOMIC, AND CANCER BIOMARKERS

132 Circulating Tumor Cells and Biomarker Modulation with Olaratumab Monotherapy Followed by Olaratumab plus Doxorubicin: Phase Ib Study in Patients with Soft-Tissue Sarcoma

142 HLA Polymorphisms Are Associated with Treatment-Free Remission Following Discontinuation of Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia
Hiroshi Ureshino, Takero Shindo, Hidenori Tanaka, Hiro Saji, and Shinya Kimura

CANCER BIOLOGY AND TRANSLATIONAL STUDIES

150 Heat Shock Protein-90 Inhibition Alters Activation of Pancreatic Stellate Cells and Enhances the Efficacy of PD-1 Blockade in Pancreatic Cancer
Yuchen Zhang, Michael B. Ware, Mohammad Y. Zaidi, Amanda N. Ruggieri, Brian M. Olson, Hannah Komar, Matthew R. Farren, Ganji Purnachandra Nagaraju, Chao Zhang, Zhengjia Chen, Juan M. Sarmiento, Rafi Ahmed, Shishir K. Maithel, Bassel F. El-Rayes, and Gregory B. Lesinski

161 PLK1 and NOTCH Positively Correlate in Melanoma and Their Combined Inhibition Results in Synergistic Modulations of Key Melanoma Pathways
Shengqin Su, Gagan Chhabra, Mary A. Ndiaye, Chandra K. Singh, Ting Ye, Wei Huang, Colin N. Dewey, Vijayasardhuri Setaluri, and Nihal Ahmed

173 Recombinant Orthopoxvirus Primes Colon Cancer for Antitumor and Antiviral Immunity
Sang-In Kim, Anthony K. Park, Shiyambu Chaurasiya, Seonah Kang, Jianming Lu, Annie Yang, Venkatesh Sivanandan, Zifang Zhang, Yanghee Woo, Saul J. Priceman, Yuman Fong, and Susanne G. Warner

183 The Landscape of Glycogen Synthase Kinase-3 Beta Genomic Alterations in Cancer
Brittany A. Borden, Yasmine Baca, Joanne Xiu, Fabio Tavora, Ira Winer, Benjamin A. Weinberg, Ari M. Vanderwalde, Sourat Darabi, W. Michael Korn, Andrew P. Mazar, Francis J. Giles, Lorin Crawford, Howard Safran, Wafik S. El-Deiry, and Benedicto A. Carneiro

191 IOX1 Suppresses Wnt Target Gene Transcription and Colorectal Cancer Tumorigenesis through Inhibition of KDM3 Histone Demethylases
Rosalie G. Hoyle, Huiqun Wang, Yana Cen, Yan Zhang, and Jiong Li

MODELS AND TECHNOLOGIES

203 Antibody Co-Administration Can Improve Systemic and Local Distribution of Antibody–Drug Conjugates to Increase In Vivo Efficacy
Jose F. Ponte, Leanne Lanieri, Eshta Khera, Rassol Laleau, Olga Ab, Christopher Esplin, Neeraj Kohli, Bahar Matin, Yulius Setiady, Michael L. Miller, Thomas A. Keating, Ravi Chari, Jan Pinkas, Richard Gregory, and Greg M. Thurber

213 Acknowledgement to Reviewers

AC Icon indicates AuthorChoice
For more information please visit www.aacrjournals.org
In this issue, Su, Chhabra, and colleagues demonstrate that PLK1, a mitotic regulator, and NOTCH1, a protein involved in cell fate determination, are positively correlated in melanoma and associated with patient survival. Further, combined inhibition of PLK1 and NOTCH1 was found to result in synergistic anti-proliferative effects. The cover image represents a tissue core from an in-house human melanoma tissue microarray containing multiple cases of melanomas and benign nevi. The cores were stained for S100 (green), PLK1 (red), NOTCH1 (orange), and DAPI (blue), followed by a multispectral quantitative fluorescence imaging analysis using Vectra scanner coupled with Nuance and InForm software. Read the full article on page 161.