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Abstract
Although gathered as continuous data, expression
measurements from gene microarrays may be
quantized before downstream analysis and modeling.
This is especially true for modeling gene prediction and
genetic regulatory networks. Coarse quantization
results in lower computational requirements, lower
data requirements for model inference, and easier
conceptualization. This paper proposes a mixture
model for binarization. For each gene, the model,
composed of a sum of two distributions, is fit to
expression data for that gene, and data points are
binarized according to the model. The mixture model
is based on the assumption of multiplicative up-
regulation. The proposed method is compared with
mean and median binarization by comparing
classification performance based on the binary data
from the different methods. Classification is performed
for simulated data generated from a microarray model
studied previously and for cancer data arising from two
studies involving hereditary breast cancer and small,
round blue-cell tumors of childhood.

Introduction
It is a general principle that a system should be modeled at
the lowest level of complexity that permits the accomplish-
ment of the purposes for which the model is being devel-
oped. Lower levels of model complexity mean less compu-
tation, lower data requirements for model identification, and
greater ease of conceptualization. In a sense, this is an
engineering form of Occam’s razor in which the pragmatics
of the problem imply some minimal level of necessary com-
plexity. The issue of complexity reduction is particularly sa-
lient for the development of prediction models and genetic

regulatory models using microarray data, because the num-
ber of genes is very large and the number of samples very
small. Modeling involves numerous goals, including predic-
tion of targets based on pathways, characterization of dis-
ease states, and the design of optimal time-dependent
dosing regimens (1). For gene-expression-based models,
various modeling decisions must be made based on ones
goals, computational power, and data abundance: the set of
genes to be included in the model, the degree of complexity
allowed for functional relations between genes within the
model, and the quantization of expression levels.

Regarding quantization, the subject of this paper, perhaps
the most well-studied genetic regulatory network model is
the Boolean network (2–4). As the name implies, this model
uses binary quantization in which a gene is either ON (ex-
pression level equals 1) or OFF (expression level equals 0).
The intent of such a coarse-grained model is not to serve as
an architecture for biochemical pathways, but rather to give
qualitative insight into multivariate, dynamical gene interac-
tion, to provide a mathematical structure to study this dy-
namical behavior at the level of logical switching, and to
design therapeutic strategies based on the dynamical be-
havior of the network when the ON-OFF paradigm is suffi-
cient. Application of Occam’s razor is implicit in the study of
dynamical behavior and the design of therapies in the con-
text of binary quantization; indeed, both are valid to the
extent that they can be pragmatically described in a binary
framework. In fact, the Boolean model has provided concep-
tual insights into the behavior of genetic regulatory networks
(5–7). The Boolean-network model, which is deterministic,
has been extended recently to a stochastic framework that
allows for different functional relationships and perturbations
between states. These stochastic networks are called “prob-
abilistic Boolean networks” (8). A probabilistic Boolean net-
work maintains the rule-based structure of a Boolean net-
work, whereas allowing for uncertainty. Two studies have
demonstrated that intervention can be addressed within the
context of probabilistic Boolean networks (9, 10), and a third
has considered optimal time-dependent external control
based on dynamic programming (11). Even should the nec-
essary technologies for diagnosis, monitoring, and therapy
for these kinds of model-based strategies become practi-
cally feasible, their successful use would still depend on
appropriate binarization of continuous data. The issue of
binarization has been addressed in some detail in a recent
paper, and we refer to it for a more in-depth discussion of
binarization issues (12).

The approach we take in this paper is to apply a binariza-
tion procedure based on a multiplicative model for expres-
sion up-regulation. The expression level of a gene varies
across a set of microarrays, and in the context of a binary
quantization is either ON or OFF for the various samples
yielding the microarrays. Taken as a collection, the meas-
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urements for a particular gene compose a distribution of
values, and we shall model that distribution as a mixture of
two distributions, one corresponding to lack of up-regulation
and the other to up-regulation. The parameters of these two
distributions will be estimated from the expression data for
the gene, and then data will be quantized according to the
modeled distributions. The mixture model depends on
whether one is using ratios or the intensities directly. We
focus on ratios, and comment on how the procedure applies
to straight intensity data with a simpler model.

Materials and Methods
Mixture Model. The mixture model used for binarization is
based on the assumption of multiplicative up-regulation. For
a particular gene, g, we assume that its values across the set
of microarrays for which it is not up-regulated are described
by a normal random variable U of which the mean is the
nominal value of g in these samples. The model has a mul-
tiplicative factor K � 1 such that the values of g in the
up-regulated samples are governed by the random variable
KU, which is also normal because U is normal. Assuming a
two-channel cDNA microarray, the values of the reference
channel are modeled by a random variable B. Taking logs,
there are two possibilities. For samples in which g is not
up-regulated, we get:

log
U
B

� log U � log B. (A)

For an up-regulated sample, we get:

log
KU
B

� log K � log U � log B. (B)

If we make the simplifying assumption that B is not random,
then the distribution of log KU/B is simply a shift of the
distribution of log U/B and both possess a distribution that is
the log of a normal distribution. Hence, across the samples,
the logs of the ratios will appear as a mixture of two log-of-
normal (not lognormal) distributions.

On the basis of the preceding considerations, we postulate
a log-of-normal mixture model for the observations of a
particular gene across a set of microarrays. We assume that
the logs follow the mixture model

X � �
k�1

Q

ck ��(�k, �k
2 ), (C)

where X is the log of the ratio, �� denotes the log-of-a-
normal distribution having density

�(X; �k, �k
2 ) ��

2eX

�2��k

exp��
[eX � �k]

2

2� k
2 �, (D)

and ck,�k and �k
2 are the weights, means, and variances,

respectively, of the mixture model. Q is the number of quan-
tization levels, which in our case is Q � 2, but could be
different were we to model more levels of multiplicative up-
regulation. Estimation of the model parameters is explained
in “Appendix.” Fig. 1 shows a mixture of two log-of-normal
distributions.

Binarization based on the log-of-normal mixture model is
achieved by thresholding. Without loss of generality, assume
�1 � �2. The log of a ratio X is quantized by:

q(X) � �0, X � T,

1, X 	 T,

with T ��
�� 1 � �� 1 � �� 2 � �� 2

2
,

(E)

where for i � 1, 2,

�� i �� �
��

�

X�(X; �i, �i
2)dX

��
0

� 2
�2��i

exp��
z2

2�ln(�i � �i z)dz

and �i
2

�� �
��

�

(X � �� i)
2�(X; �i, � i

2)dX.

(F)

Because closed forms do not exist for the preceding inte-
grals, they are evaluated by Monte Carlo methods.

Were we to use direct intensities instead of ratios, then we
would not have quotients and the not-up-regulated and reg-
ulated cases would simply involve a normal random variable
U and a second normal random variable KU, respectively.
Hence, we would apply a Gaussian mixture model.

Testing Binarization Performance Using a Simulation
Model. We test the performance of MMB3 using a model-
based simulation and compare it to using the mean and
median of the samples for each gene, denoted by “Mean”
(12) and “Median” (12, 13), respectively. The Mean method is
based on a threshold T (i.e., replacing the T in E) that is the
mean of the intensities of each gene, and the Median method

3 The abbreviations used are: MMB, mixture model binarization; SRBCT,
small, round blue-cell tumor; NB, neuroblastoma; RMS, rhabdomyo-
sarcoma.

Fig. 1. A mixture of two log-of-normal distributions.
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is based on a threshold T that is the median of the intensities
of each gene. Then the intensity of this gene is quantized to
1 if the intensity exceeds T, and it is 0 otherwise. The latter
two methods are simple but effective if there is sufficient
separation in the mixture.

The simulated data are generated by a parameterized ran-
dom signal model (14). It is assumed that the n genes on the
m microarrays have the mean expression levels I1, I2, . . . , In,
with Ii � 100 � 
i, where 
i follows an exponential distribution
with mean 3000. The model assumes that the intensities Ui1,
Ui2, . . . , Uim for a specific gene gi follow a normal distribution
�(Ii, (�Ii )

2), where � is a fixed coefficient of variation. Here we
set � � 0.2, which is realistic. With the inclusion of normally
distributed additive noise Nij, observed intensities are given
by:

Zij � Uij � Nij, i, � 1, . . . , n, j � 1, . . . , m, (G)

for samples in which gene gi is not up-regulated, and

Zij � KUij � Nij, i, � 1, . . . , n, j � 1, . . . , m, (H)

when gene gi is up-regulated. The model assumes that the
additive noise varies from microarray to microarray, with
Nij��(0,�i

2), where �i��(�a, �a
2). Here we set �a � 30 and �a

� 10. To complete the ratio model, we assume the reference
channel has normally distributed values Bij with mean equal
to the mean, �I, of the intensity means and SD ��I. In
essence, this means that we are assuming a uniform refer-
ence probe across all of the genes, and the mean probe
intensity is normalized to the mean intensity of the expres-
sion means. Other reference models could be used, for in-
stance, assuming each gene to have its own probe.

We test binarization performance by comparing the effects
of the different methods on classification. On the basis of the
simulation model, we take the log

Xij � log
Zij

Bij
, i, � 1, . . . , n, j � 1, . . . , m (I)

quantize the log to obtain q(Xij), and then attempt to perform
classification of the up-regulated and not-up-regulated sam-
ples based on gene expression. The testing principle is that
binarization yielding good classification is a satisfactory bi-
narization (at least for classification purposes). For classifi-
cation we use a recently proposed method involving
Bayesian variable selection in conjunction with a probit re-
gression model to relate the gene expression with the class
(15). This method has performed well on labeled data from
hereditary breast cancer, and we will be able to compare
those earlier results with those obtained from binary expres-
sion data.

Considering the high computational cost of the Bayesian
gene selection, we use the principle that the smaller the sum
of squares within groups and the larger the sum of squares
between groups, the better the classification performance.
Hence, we take the ratio of the between-group to within-
group sum of squares and determine a threshold so that we
only keep those genes for which the ratio exceeds the
threshold. The leave-one-out method is used to estimate
classification errors.

Subsequent to the simulation, we consider tumor classifi-
cation using two different published data sets. Once again
we are interested in which binarization method yields the
best classification rate. It will be seen that MMB has no errors
for both data sets. Not only does this show the worth of using
the mixture model (which is our main intent), but it also lends
support to a proposition put forth by Shmulevich and Zhang
(12) that binary data can often perform important data anal-
ysis tasks. There, the authors demonstrate the ability of
binary data to form meaningful clusters; here, the experi-
ments demonstrate the ability of binary data to perform
successful classification.

The cancer data will be normalized to account for variation
between microarrays. For the jth array we take the log
transform of the ratios t1j,t2j, . . , s,tnj to obtain log tij, for
i � 1, 2, . . . , n. The mean, mj, of the log-transformed ratios
for the jth array is computed, and we define the normalized
ratio according to the equation

log t�ij �� log tij � mj (J)

for i � 1, 2, . . . , n. The normalized ratios are used for
classification.

The sensitivity of the Bayesian-variable-selection method
was examined in the original study by adding synthetic
Gaussian noise to the data (15). Here we will check sensitivity
using only actual data by considering how the binarization
methods perform when the data are not normalized for mi-
croarray-induced variation. This has the effect of making the
classification more difficult because it tends to increase the
dispersion of expression measurements for each gene.

Results and Discussions
Simulation Study. The Bayesian selection algorithm ranks a
gene according to the percentage of times it appears among
the posterior samples generated by the algorithm (15). The
five strongest (highest ranked) genes are used for classifica-
tion for each binarization method being tested. These will
differ according to the method. In each case, the five strong-
est genes are used in the probit classification to classify the
up-regulated samples. The average recognition accuracies,
based on 50 simulations, are shown in Table 1 for different
up-regulation factors. There is little difference for large K, but
when K is small, the mixture-model method significantly
outperforms the Mean and Median methods. Because clas-
sification accuracy depends on K in the up-regulation model,
this means that the mixture-model approach should help for
more difficult classification problems.

Hereditary Breast Cancer Data. First we consider he-
reditary breast cancer data, which can be downloaded from
the web page of the original paper (16). In that paper, cDNA

Table 1 Recognition accuracy (%)

K MMB Median Mean

1.5 83.74 78.41 78.17
1.8 87.53 84.54 83.65
2.0 89.53 87.54 85.94
2.5 96.89 96.82 95.05
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microarrays are used in conjunction with classification algo-
rithms to show the feasibility of using differences in global
gene expression profiles to separate BRCA1 and BRCA2
mutation-positive breast cancers. Twenty-two tumor sam-
ples from 21 patients are examined: 7 BRCA1, 8 BRCA2, and
7 sporadic. There are 3226 genes for each tumor sample.
After binarization, we use the probit regression classifier with
Bayesian gene selection to classify BRCA1 versus BRCA2
and sporadic.

Table 2 gives the leave-one-out error counts for the three
binarization methods being tested and the four experiments
under consideration, the two cancers with normalized and
non-normalized data. The 5 top-ranked genes under
Bayesian variable selection are used for classification for
each binarization method.

Tables 3 through 5 give the top 10 scoring genes found by
Bayesian variable selection for MMB, Median, and Mean,
respectively, when the data has been normalized. Using the
top 5 genes for classification for each binarization method,
MMB yields no errors, whereas both Mean and Median result
in one error each. Given that there are 22 microarrays, this
represents a 5% improvement using MMB. This is signifi-
cant, especially because MMB yields no errors at all.

By comparing the lists in Tables 3 through 5 with the list of
the top 10 scoring genes in the original paper (15), shown in
Table 6, we see that even with the compression of binariza-
tion, Bayesian selection may still find a number of similar
significant genes. The top 10 scoring genes using MMB with
normalized data includes 3 of the genes on the original list, all
3 being in the original top 5. Included among the 3 are TOB1
and phosphofructonkinase. Neither Mean nor Median has
any of the original top 10 among their respective top 10.

For the non-normalized data, we see from Table 2 that the
performance of both MMB and Mean remain the same, with
MMB still perfect, but Median results in three errors, which is
very poor given that MMB has no errors.

Small Round Blue-Cell Tumor Data. Now we apply bi-
narization and probit regression classification with Bayesian
feature selection to a published data set for SRBCTs of
childhood, which includes NB, RMS, non-Hodgkin’s lym-
phoma, and the Ewing family of tumors (17). We classify the
rhabdomysosarcoma and NB tumors. The data set for the
two cancers is composed of 2308 genes and 35 samples, 23
samples for RMS, and 12 samples for NB.

Tables 7 through 9 give the 10 strongest genes using
Bayesian selection with MMB, Median, and Mean, respec-
tively. For the top 5 genes on each list, the classification, and

Table 4 Strongest genes selected from the quantized breast cancer
data using the Median method

No. CloneID Gene description

1 812227 Solute carrier family 9 (sodium/hydrogen exchanger),
isoform 1

2 35865 Annexin A6
3 204299 Replication protein A3 (14kD)
4 809981 Glutathione peroxidase 4 (phospholipid

hydroperoxidase)
5 245198 KIAA0130 gene product
6 126412 Androgen receptor associated protein 54
7 48406 Hydroxysteroid (17-) dehydrogenase 4
8 712848 Mitogen-activated protein-kinase activating death

domain
9 814595 Protein kinase C binding protein 1

10 825577 Steroidogenic acute regulatory protein related

Table 5 Strongest genes selected from the quantized breast cancer
data using the Mean method

No. CloneID Gene description

1 768370 Tissue inhibitor of metalloproteinase 3
2 290871 Integrin, � 3 (antigen CD49C, � 3 subunit of VLA-3

receptor)
3 83210 Complement component 8,  polypeptide
4 812227 Solute carrier family 9, isoform 1
5 204299 Replication protein A3 (14kD)
6 814595 Protein kinase C binding protein 1
7 825577 Steroidogenic acute regulatory protein related
8 126650 ESTs
9 139354 ESTs

10 809981 Glutathione peroxidase 4 (phospholipid
hydroperoxidase)

Table 6 Strongest genes listed in [15]

No. CloneID Gene description

1 897781 Keratin 8
2 823940 Transducer of ERBB2, 1 (TOB1)
3 26184 Phosphofructokinase, platelet
4 840702 Selenophosphate synthetase; Human selenium

donor protein
5 376516 Cell division cycle 4-like
6 47542 Small nuclear ribonucleoprotein D1

polypeptide (16kD)
7 366647 Butyrate response factor 1 (epidermal growth

factor-response factor 1)
8 293104 Phytanoyl-CoA hydroxylase (Refsum disease)
9 28012 O-linked N-acetylglucosamine (GlcNAc)

transferase
10 212198 Tumor protein p53-binding protein, 2

Table 2 Recognition accuracy (no. of errors) for two cancer data sets

MMB Mean Median

Breast cancer data with normalization 0 1 1
Breast cancer data without normalization 0 1 3
SRBCT with normalization 0 0 1
SRBCT without normalization 0 4 3

Table 3 Strongest genes selected from the quantized breast cancer
data using the MMB method

No. CloneID Gene description

1 26184 Phosphofructokinase, platelet
2 44180 �-2-macroglobulin
3 309583 ESTs
4 30502 Reticulon 1
5 812227 Solute carrier family 9 (sodium/hydrogen exchanger),

isoform 1
6 376516 Cell division cycle 4-like
7 137638 ESTs
8 823940 Transducer of ERBB2, 1 (TOB1)
9 204897 Phospholipase C, � 2 (phosphatidylinositol-specific)

10 839736 Crystallin, � B
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the recognition accuracies are shown in Table 2. Again, MMB
yields no errors. Cadherin 2, which tops the significant gene
list for MMB, is identified as an important gene in the original
SRBCT study (17). In fact, it can perfectly classify RMS and
non-Hodgkin’s lymphoma by itself using the binary data.
Even with perfect single-gene classification possible, Median
still produces one error, although Mean does yield perfect
classification, with cadherin 2 at the top of its list.

The situation is very different for the non-normalized data.
Again, MMB identifies cadherin 2 as the strongest gene and
produces no errors. However, both Mean and Median per-
form poorly, with four and three errors, respectively.

Appendix
This appendix describes parameter estimation for the log-
of-normal mixture model. First, the samples are partitioned
into Q clusters using fuzzy C-means clustering, and then
initial parameters are estimated using the standard vector
quantization method. We then estimate the parameters in C
using the expectation-maximization algorithm by iterating
the following steps:

�k(X) �
ck�(X; �k, �k

2 )

�
k�1

K

ck�(X; �k, �k
2)

, for all X � 	i, (A1)

k � �
X�	i

�k(X), (A2)

ck � k��
j�1

K

j, (A3)

�k � �
X�	i

[�k(X)eX]/k, (A4)

�k
2 � �

X�	i

�k(X)[eX � �k]
2/k, (A5)

	i denotes the observations of gene i.
We note that, if Q were not fixed at Q � 2 for binary

quantization, we could find an optimal number of distribu-
tions in the model via the minimum description length prin-
ciple by building a binary tree with Q leaves, each represent-
ing a distribution in the mixture model (18).
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