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Abstract
Computational models of cancer chemotherapy have the
potential to streamline clinical trial design, contribute to
the design of rational, tailored treatments, and facilitate
our understanding of experimental results. Mechanistic
models based on functional data from tumor biopsies will
enable physicians to predict response to treatment for a
specific patient, in contrast to statistical models in which
the probability of response for a given patient may differ
substantially from the population average. While micro-
array analyses of gene expression also show promise for
guiding individualized treatments, it may be difficult to
link statistical mining of microarray data with mechanis-
tic, tailored treatments. Furthermore, gene expression
does not identify how drugs should be scheduled. This
review summarizes mechanistic mathematical models
developed to improve the design of chemotherapy
regimens. Mechanistic models that incorporate both
genetic resistance and cell cycle-mediated resistance
during treatment with multiple drugs will be most useful
in designing treatment regimens tailored for individuals.
Because there are already a number of papers that
address the applications of microarray technology, we
will limit our discussion to the contrasts between
mechanistic computational models and microarray tech-
nology, and how these two approaches may complement
one another. (Mol Cancer Ther. 2003;2:1079–1084)

Introduction
A New Strategic View
New anticancer treatment strategies must weave toge-

ther the following aspects: choices of drug combinations
that are tailored for a given patient; early treatment with
cytostatic drugs applied concurrently with cytotoxics; and
mechanistic modeling of cell kill to facilitate the predictive
optimization of individualized treatment regimens. Mech-
anistic modeling serves as a tool that incorporates patient-
specific cell-kinetic parameters, such as proliferative and
apoptotic indices, enabling physicians to predict heteroge-
neous outcomes across patients. Otherwise, physicians
usually regard heterogeneity as noise that dilutes the
power of clinical trials. An alternative avenue of active
anticancer research is microarray technology. While micro-
arrays show great promise for identifying a suite of
mutations characterizing a given tumor, which ultimately
may help to guide the choice of treatments, this technology
is in the exploratory stage of data mining. Although there
are difficulties in collecting and stably preserving RNA and
achieving adequate sample sizes to differentiate truly
significant genes from the substantial noise present in
microarray data, impressive advances have been made in
the development of statistical methodology (1, 2).

Countering Drug Resistance
Genetic resistance and kinetic (cell cycle-mediated)

resistance both influence outcome (3). While genetic
resistance requires treatment with a new, non-cross-
resistant drug, kinetic resistance to a cell cycle phase-
specific drug is reversible when a cell enters the susceptible
phase of the cell cycle. Consequently, cell cycle kinetics of
tumor and normal cells affect response rates and host
toxicity, respectively. Empirically, aspects of cell kinetics,
for example, the quiescent fraction, the S-phase fraction,
and apoptotic rates, have a large influence on prognosis
and response to treatment (4–6). Moreover, individual
variation in cell kinetics can be substantial: cell cycle times
in tumors range from 30 to 60 h; apoptotic indices between
0.1% and 4%; proliferative indices from 1% to 70%; and
S-phase fractions from 1% to 40% (7–9).

Computational Guidance
The complex interactions of cell kinetics, pharmacody-

namics, pharmacokinetics, and drug scheduling can best be
understood and predicted with the aid of a model (10–12).
Mechanistic models generate testable predictions and
identify treatments most likely to improve outcome, and
thus help to limit the number of experiments to be
performed. Finally, formalizing a hypothesis into a com-
putational model that is consistent with many laboratory
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and clinical trial results encourages conceptual thinking
(13). Although some computational approaches to allow
tailoring of dosing to individual patients are currently used
in the clinic, they are not mechanistic, and so they will not
be described in this review. However, because these
methods are already in use, their results may be helpful
for parameter estimation and guiding the application of the
models discussed in this review.

Although even the most complex mathematical models
simplify the actual process being modeled, they serve as
invaluable tools to investigate how changes in basic
assumptions are likely to affect outcomes. Evaluation of
models demands caution, however, as many make too
many simplifications and omit key processes, such as
genetic drug resistance or cell cycle-mediated resistance.

Statistical models describe data, but fail to generate
predictions. Accordingly, one cannot advise a regimen
tailored for an individual patient based on statistical
models. As Goldie (14) observes, ‘‘In rare instances, the
best average treatment may be the poorest option for a
particular patient.’’

Microarrays: Promising, but Patience Needed
Currently, analyses of microarray data fit in the statistical

model category, because methods of both supervised (e.g. ,
neural net) and unsupervised (clustering) learning for
analyzing microarray data do not identify mechanisms or
pathways, but rather statistical associations that are
obscured by noise from processes such as nonspecific
hybridization. High costs per sample for many commer-
cially available gene chips (e.g. , $300� $500 ) and non-
reusability mean that sample sizes are small. This,
combined with the fact that one is calculating thousands
of statistics (gene presence or absence) per sample, mean
that one risks a high false-positive identification of genes as
present. Statistical methods are being developed to deal
with these and other challenges such as data normalization
and choosing an appropriate clustering method (2). For
example, analyses based on clustered groups of genes,
rather than single genes, to interpret biological activity may
allay some of the problems of multiple testing and false-
positive results. Standards for recording and reporting
microarray data also must be agreed on and widely
followed (15). Research that will further an accurate
physical understanding of sequence-specific hybridization
and fluorophore binding will also improve microarray
analysis (16).

In addition, microarray experiments require approxi-
mately 100 mm3 of tissue to extract 10–40 Ag of high-
quality RNA (1). The tissue should be snap-frozen within
30 min of resection and stored at �80jC or lower to
prevent RNA degradation. Changes in some mRNAs have
been measured even a few minutes after surgical
disturbance and devascularization (17). Such stringent
requirements for RNA currently limit the feasibility of
using microarray data as a matter of course in the clinic.

Microarrays allow us to evaluate the expression level or
presence/absence of thousands of genes simultaneously.
Thus, their current value is as a data-mining tool.
Adequate models of gene regulatory networks have yet

to be developed, and it may take some time before
mechanistic , predictive models based on microarray experi-
ments can be used in the clinic (18, 19). Perhaps a more
immediate benefit of microarray technology will be in
prospectively identifying tumors resistant to particular
drugs, allowing alternatives to be used before patients are
needlessly exposed to toxic drugs (20), or in classifying
tumors as to type or level of aggressiveness (21, 22).

In contrast, computational models already exist (10, 12).
Kinetic model input can be obtained rapidly, accurately,
and inexpensively through assays/kits for measuring such
features as proliferative fractions, S-phase fractions, cell
cycle times, and apoptotic indices from tumor biopsies (5,
23), and clinical oncologists often request this information.

Microarrays and mechanistic computational models may
be applied synergistically, so that they complement one
another. For example, key genetic pathways can be
indicated by microarray analyses to be involved in
pathogenesis or drug response. Then detailed computation-
al models of those pathways can be constructed, and in silico
experiments performed to predict the effects of specific
changes in gene expression, or combinations of such
changes. The mechanistic models can be used to design
specific laboratory experiments that will discriminate
between alternative hypotheses regarding gene interac-
tions/regulation. In this way, the advantages of microarrays
in pointing to genes or clusters of genes that are involved in
specific pathways can complement the advantages of
mechanistic computational models for understanding cell
cycle-specific effects of drugs, and together both approaches
may be used to optimize drug scheduling and drug
combinations for a given individual’s genetic profile.

This review will briefly summarize some of the mecha-
nistic computational models for cancer chemotherapy.
Here it is only possible to cover a small subset of the many
models in this field. Most of these models have investigated
the impact of drug scheduling or dosing of a single drug.
Only a few have modeled treatment with multiple drugs.
Most of these models make too many simplifications to be
used in the clinic for tailoring chemotherapy regimes. To
our knowledge, only two models have incorporated
sufficient complexity to potentially be useful in the clinic
for optimizing and individualizing cancer chemotherapy
regimens. These two models include kinetic drug resis-
tance, the evolution of genetic drug resistance, application
of multiple drugs, and treatment with cytostatics (10, 12).

Computational Models
General Issues
Which Toxicity Should One Choose? Initially it may

seem advantageous to simultaneously consider toxicity and
tumor cell kill in a single optimization model. This is the
approach of optimal control and resonance effect models,
which are discussed below. A disadvantage to this
simultaneous optimization, however, is that toxicity to only
one cell population, usually blood stem cells, is modeled.
Actually, neurological, cardiac, gastrointestinal, and/or
other toxicities may limit treatment. These may occur
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simultaneously as disparate functions of schedule and dose
(e.g. , AUC, peak drug concentration, time above a threshold
concentration, dosing rate, cumulative dose, etc.). All
factors cannot be optimized simultaneously. Thus, treat-
ment effects on the tumor should be modeled separately
from, not simultaneously with, host toxicity. This allows
physicians to evaluate the balance of toxicity and tumor
control independently in a given patient who faces unique
health concerns and objectives (i.e. , cure or palliation).
Catch 22: Scheduling for Genetic versus Kinetic Resis-

tance. Many models using various mathematical
approaches predict that continuous infusion is more
effective than short bolus pulses, particularly of cell cycle
phase-specific drugs (12, 24–26). Continuous infusion
addresses kinetic resistance by exposing more cells to the
drug while those cells are in the sensitive phase of the cell
cycle, and minimizes the time for tumor regrowth between
treatments by prolonging drug exposure. Many clinical
trials found that continuous infusion of cell cycle phase-
specific drugs increases response rates or survival (27, 28).
Some models suggest that the schedule modification of
prolonged drug exposure is more effective than dose
escalation, even if genetically resistant cells are present
(12, 29). Clinical trial results also support this prediction
(30, 31).

Prolonged continuous infusion, however, may facilitate
the evolution of drug resistance by gradual processes such
as gene amplification (32). A model of this double bind,
that is, of contrasting pressures of kinetic versus genetic
resistances, predicted that fewer, higher dose-rate, short-
term infusions for cell cycle-nonspecific drugs or many,
lower dose-rate, long-term infusions for cell cycle phase-
specific drugs may maximize the chances of cure (33).

Each of the rates of apoptosis and cell division, not just
the net balance of the two (i.e., the ‘‘growth rate’’ parameter
in many models), must be included in models of cancer
chemotherapy. Both of these processes influence the
response to cell cycle phase-specific chemotherapy and
the rate of evolution of drug resistance. A tumor with a
high proliferative fraction and a high apoptotic index may
respond better to cell cycle phase-specific drugs, but may
also evolve drug resistance sooner, than a tumor with the
same net growth rate but with a low proliferative fraction
and a low apoptotic index. Clinical trial results are
consistent with this logic: patients who have higher
proliferative indices respond better to cell cycle-specific
cytotoxic chemotherapy, but also have higher recurrence
rates and shorter relapse-free survival (6). Prognoses as a
function of apoptotic rates are more complex (23), and it is
likely that complex models that discriminate cell division
and cell death, not only the net balance of the two, are
needed to make quantitative predictions based on the
interaction of apoptotic and proliferative rates for an
individual patient.

Simple Models: Single Drug, Limited (or No) Conside-

ration of Resistance
Dose Response and Scheduling. Commonly, the Hill

model (34) is used to describe dose response curves.
However, it is a statistical model that is neither mechanistic

nor predictive, and provides no insight into how cell cycle
dynamics or exposure time affects the shape of the dose
response (e.g. , slope and saturation point). Several research-
ers developed mechanistic models of exposure time-
dependent dose response after a single exposure (as in cell
culture) for cell cycle-specific and cell cycle-nonspecific
drugs (11, 35, 36). They linked pharmacokinetic models of
drug distribution with simple pharmacodynamic models
distinguishing tumor cells as proliferative (and therefore
drug sensitive) or non-proliferative (and therefore kineti-
cally drug resistant). These models accurately fit in vitro and
in vivo data, and highlight the importance of considering
changes in drug concentration over time (pharmacokinetics)
and the proliferative fraction of the target cell population
(pharmacodynamics).

Many models investigate scheduling and/or dosing of
multiple exposures of a single drug, as occurs in treating
patients. Norton and Simon (37) modeled kinetic resistance
to a cell cycle-specific drug but ignored genetic (biochem-
ical) resistance evolution. They suggested that moderate
early doses followed by later dose intensification would kill
more tumor cells and assure a higher chance of cure than
early intensification or constant doses. Coldman and
Murray (38) took the opposite approach, modeling genetic
drug resistance but not kinetic resistance. Their models
predicted the opposite strategy, that dose intense regimens
of early chemotherapy cycles would be superior because
they would reduce the likelihood of the evolution of drug
resistance and thus increase the probability of cure.

In fact, treatment designs must combat both genetic and
kinetic resistances (39). Nonetheless, most models incorpo-
rate only one of these aspects. Many optimal control models
account for genetic resistance and host toxicity but not cell
cycle phase-specific effects of drugs (24), while resonance
effect models consider cell cycle phase-specific effects and
host toxicity, but not biochemical resistance (40, 41). These
approaches are briefly reviewed below, as are works that
incorporate both genetic and kinetic resistances (10, 12, 42).

(Sub-) Optimal Control. Optimal control theory from
engineering applied to cancer chemotherapy seeks to
maximize tumor control while minimizing toxicity, with a
cost function determining the balance of each factor (26).
Unfortunately, the predictions of various optimal control
models differ depending on the competing maximizations
and minimizations chosen, the selection of which is
ambiguous. Should one aim to maximize normal bone
marrow and also the amount of drug given? This is the
approach taken by Fister and Panetta (43), who predicted
that periodic continuous infusions (lasting 7 days) are
better than the other scenarios that they consider. Or
should one seek to minimize the total cancer mass at the
end of some specified time interval while minimizing the
total drug used? Swierniak et al. (44) took both of the above
approaches, predicting that treatments at periodic intervals
are close to optimal solutions, but that there are many
optimal solutions, both long-term continuous infusions and
periodic short-term infusions or pulses.

Also, equations for optimal control can be difficult to
solve. Consequently, such models employ a suite of
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simplifications to arrive at solutions. To our knowledge,
optimal control models have not simultaneously incorpo-
rated cell cycle phase specificity and evolution of drug
resistance or treatment with multiple drugs.
Dissonance about Resonance. Some researchers optimize

cell cycle phase-specific drug schedules based on a
‘‘resonance effect’’ (40, 41, 45). Periodic drug administrations
by bolus, at intervals lasting an integer multiple of the
mean cell cycle time of normal cells (resonance), are
predicted to limit toxicity without compromising tumor
cell kill. They predict a resonance effect based on the logic
that normal cells in a vulnerable phase of the cell cycle are
killed by the first drug pulse. One cell cycle later, few
normal cells reenter that vulnerable phase, limiting normal
cell kill by subsequent drug pulses. Tumor cells often have
a different mean and a more heterogeneous distribution of
cell cycle times than normal cells, so they will not be
sheltered by the resonance effect. Resonance models
predict that continuous infusion is very toxic.

Although limited in vitro and in vivo evidence exists in
support of the resonance effect (45), no clinical trials have
been designed to test this hypothesis. The facts that many
drugs persist for hours at high levels in the body and that
various toxicity-limiting tissues have different cycling
times would make such a trial challenging to design. One
prediction of the resonance effect contradicted by clinical
trials is for continuous infusion to be more toxic than bolus
doses. In fact, decreased toxicity of continuous infusion
relative to bolus or short infusion is often observed,
sometimes allowing a higher total dose to be used (28,
46). Andersen and Mackey (45) recently developed a more
realistic resonance effect model, including features such as
G0 and apoptosis, and predicted that no optimal schedule
could be found for their example using acute myelogenous
leukemia. No resonance effect models have considered
treatment with multiple drugs.

Complex Models: Multiple Drugs, Genetic, and Kinetic

Resistances
OncoTCap: Advantages and Disadvantages. OncoTCap,

The Oncology Thinking Cap Software version 2.1, is a
software developed by R. S. Day and colleagues at The
University of Pittsburgh Cancer Institute [http://
www.oncotcap.pitt.edu/2000/ (47)] based on a continu-
ous-time, stochastic, birth-death, multitype branching
process model by Day (48). OncoTCap examines the effects
of different drug combinations and schedules, adapting
simpler models by Goldie and Coldman (49). OncoTCap
uses stochastic (probabilistic) dynamics, which are partic-
ularly appropriate when only a small number of cancer
cells are present, and thus captures the random, unpre-
dictable nature of tumor mutations and tumor heterogene-
ity. This software enables one to simulate the treatment
outcome of an individual patient or a patient population, so
that the probability of cure can be predicted. For
exponentially growing tumors (i.e. , those that do not
experience a density-dependent reduction in growth),
OncoTCap also implements a deterministic (as opposed
to a stochastic) solution that may be used to computation-
ally validate the stochastic predictions.

OncoTCap has many advantages. It incorporates me-
tastasis and potential interactions with tumor micro- and
macro-environments such as blood supply and body
organ. In addition, it includes the features of tumor cell
heterogeneity, a quiescent cell population, resistance
evolution, and options to model tumor growth that is
either exponential or decelerating as a tumor becomes
larger (Gompertzian growth). OncoTCap has a graphical
user interface with a wide variety of options that the user
may modify, and a Clinical Trial Wizard is available as an
educational tool for planning clinical trials and exploring
potential outcomes.

OncoTCap has several disadvantages that hinder its
immediate application in the clinic. It uses unrealistic
pharmacodynamics and pharmacokinetics for both drug
activity and concentration. For example, for a drug pulse,
cell kill is assumed to occur immediately on drug
application. Thus, drug half-life, cell cycle phase specificity,
and prolonged, concentration-dependent kill as the drug is
excreted are not incorporated. In addition, the required
inputs for characterizing tumor growth rates are theoret-
ical, and not easy to estimate in the clinic. For example, it is
not clear how one would estimate the ‘‘Gompertz split,’’
which characterizes the reduction in the rate of growth that
can be attributed to a decrease in mitotic rate as opposed to
an increase in cell death rate, for a given patient,
particularly when the tumor is first detected. Consequently,
many required input parameters are difficult to estimate
from tumor biopsies, demanding guesswork by the user. If
these factors can be overcome, OncoTCap may provide
valuable assistance in predicting individual response to
treatment with multiple drugs.

There is little published at this time describing specific
results of OncoTCap, indicating that this software is ripe
for additional generation of predictions. Currently, an
investigation is under way to simulate the optimal duration
of tamoxifen treatment in early breast cancer. The results
published at this point are still in early development, and
indicate that a tamoxifen-stimulated phenotype plays a role
in the time to breast cancer recurrence (50). A prediction
made by the original model on which OncoTCap is based is
the ‘‘Worst Drug Rule’’ (48). This rule states that the
optimal treatment schedules of multiple drugs tend to use
more of the less effective agent and/or to use the less
effective agent earlier in the treatment schedule compared
to the more effective drug. The reasoning is the following:
when a patient receives an alternating treatment and the
tumor recurs, the cause of failure is predicted to be the
growth of cells resistant to the more effective drug but
sensitive to the ‘‘worst’’ drug.
Kinetically Tailored Treatment—KITT: Mechanistic

and Predictive. A model called kinetically tailored treat-
ment, or KITT, incorporates the complex interactions of
proliferative and apoptotic rates on tumor growth and
evolution, the differential response to cell cycle phase-
specific, cell cycle phase-nonspecific, and cytostatic drugs
(which may be given concurrently according to different
schedules), and the evolution of drug resistance (12). KITT
aims to tailor chemotherapy regimens for individuals based
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on their tumor cell kinetics. It uses a system of deterministic
differential equations. The evolution of resistance is
modeled both via incremental processes like gene ampli-
fication and via mutations of large effect like changes in a
target enzyme. It simulates the accumulation, or clonal
dominance, of resistant cells over susceptible cells through
the course of treatment with multiple drugs. KITT also
incorporates sub-models to capture realistic drug pharma-
cokinetics and pharmacodynamics, time-dependent dose
response, and intratumor heterogeneity.

KITT uses input parameters specific to a given patient’s
tumor that can be measured from tumor biopsies: apoptotic
index; proliferative fraction; S-phase fraction; cell cycle
time; and drug resistance. All of these features can be
feasibly and relatively inexpensively measured (5, 23), and
are often requested by clinical oncologists. These input
variables are preferable to transition rates or ‘‘growth rate’’
and ‘‘size plateau’’ which are difficult to estimate and are
required by many of the models discussed above.

These kinetic parameters also capture and summarize
the outcome of many interacting mutations, the suite of
which probably occurs uniquely in every patient. This
observation points to another difficulty inherent in using
microarray data to predictively design treatments for the
clinic: First, a meaningful grouping of patients based on
their amalgam of mutations will be difficult. Second, the
sample size for any particular assemblage of mutations
will be so small that statistically showing that one
treatment results in a survival advantage over another
for a specific mutation-based grouping of patients may be
difficult.

Results of the KITT model are consistent with published
outcomes of clinical trials. However, more testing is
needed, particularly in assessing data from individual
patients in which all the necessary input variables (listed
above) are known. Predictions of KITT indicate that
including cytostatic drugs early in treatment and concur-
rently with cytotoxic drugs substantially increases the
probability of cure and prolongs survival. This result
concurs with suggestions that the way in which clinical
trials of new cytostatic, or ‘‘target-based’’ drugs, are
performed must be rethought (51–53).

KITT predictions also suggest that altering drug sched-
uling may be more effective but not necessarily more toxic
than dose escalation. In addition, drug combinations
predicted to be more effective in a patient with a high
proliferative index may differ from those for a patient
whose tumor has a low proliferative index. This model
produces results consistent with outcomes of clinical trials
investigating the interaction of cell cycle kinetics and the
alternating versus sequential scheduling of CMF plus
doxorubicin chemotherapy (54). Ultimately, it is hoped
that this software will assist in the design of individually
tailored treatments.

Conclusion
Computational tools show promise for tailoring cancer

treatments for individuals. Such tools exist and the
necessary input data can be feasibly collected from assays

on tumor biopsies. OncoTCap and KITT, the most
promising models that have been developed for predicting
outcomes, must still be validated in the clinic. These
models help elucidate complex interactions among multi-
ple drugs, tumor cell kinetics, and resistance evolution.
Microarrays, while promising in the long term, still must
overcome substantial obstacles before they can be used to
identify individualized treatment protocols.
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