Preclinical Activity of HER2-Selective Tyrosine Kinase Inhibitor Tucatinib as a Single Agent or in Combination with Trastuzumab or Docetaxel in Solid Tumor Models

Anita Kulukian1, Patrice Lee2, Janelle Taylor1, Robert Rosler3, Peter de Vries3, Daniel Watson1, Andres Forero-Torres1, and Scott Peterson1

ABSTRACT

HER2 is a transmembrane tyrosine kinase receptor that mediates cell growth, differentiation, and survival. HER2 is overexpressed in approximately 20% of breast cancers and in subsets of gastric, colorectal, and esophageal cancers. Both antibody and small-molecule drugs that target HER2 and block its tyrosine kinase activity are effective in treating HER2-driven cancers. In this article, we describe the preclinical properties of tucatinib, an orally available, reversible HER2-targeted small-molecule tyrosine kinase inhibitor. In both biochemical and cell signaling experiments, tucatinib inhibits HER2 kinase activity with single-digit nanomolar potency and provides exceptional selectivity for HER2 compared with the related receptor tyrosine kinase EGFR, with a >1,000-fold enhancement in potency for HER2 in cell signaling assays. Tucatinib potently inhibits signal transduction downstream of HER2 and HER3 through the MAPK and PI3K/AKT pathways and is selectively cytotoxic in HER2-amplified breast cancer cell lines in vitro. In vivo, tucatinib is active in multiple HER2+ tumor models as a single agent and shows enhanced antitumor activity in combination with trastuzumab or docetaxel, resulting in improved rates of partial and complete tumor regression. These preclinical data, taken together with the phase-I tucatinib clinical trial results demonstrating preliminary safety and activity, establish the unique pharmacologic properties of tucatinib and underscore the rationale for investigating its utility in HER2+ cancers.

Graphical Abstract: http://mct.aacrjournals.org/content/molcanther/19/4/976/F1.large.jpg.

The activity of these receptors in tissues is regulated by ligand binding, which drives receptor dimerization (homodimers or heterodimers) and elicitation of downstream signaling via the activation of the C-terminal tyrosine kinase domain (2, 3). Although HER family proteins are structurally similar, HER2 lacks a ligand-binding site on its extracellular domain and has no known activating ligand, while HER3 displays extremely low or nonexistent protein kinase activity (11). As such, both HER2 and HER3 rely upon dimerization partners for active signaling, often forming heterodimers with each other (2, 3). Activation of the kinase activity of the HER RTKs results in the transphosphorylation of intracellular domains within homodimeric or heterodimeric complexes, leading to the scaffolding of adaptor protein networks and stimulation of downstream effectors, including activation of the MAPK and PI3K pathways (2, 3). HER2 is the preferred dimerization partner with other EGFR subfamily members, such as HER3, and subverts cellular signaling when overexpressed in tumor cells, resulting in constitutive activation of mitogenic and prosurvival signaling (2, 3, 12–14).

Significant progress has been made in treating HER2+ disease, particularly in breast cancer where multiple HER2-targeted drugs have been developed that have significantly prolonged the life of patients, particularly those with early-stage HER2+ breast cancer (3, 10, 15–18). However, up to a quarter of all patients treated with anti-HER2 therapy in the adjuvant setting relapse (15–18), underscoring the need for new drugs designed to treat HER2-driven malignancies in the later-stage setting. Currently, approved treatments for patients with HER2+ breast cancer include mAb therapies, such as trastuzumab and...
Tucatinib Activity in Preclinical HER2+ Solid Tumor Models

Materials and Methods

Biochemical assays
HER2 biochemical assays were performed using HER2 aa 679–1255 produced as an N-terminal GST fusion protein (Proquinate #015). Assays contained 16.7 nmol/L HER2 enzyme and 0.2 μg/mL poly (Glu-Tyr) E4Y1 peptide substrate (Sigma). Assays were performed in 50 mmol/L HEPES, pH 7.5, 20 mmol/L MgCl2, 0.5 mmol/L DTT, and 0.01% Tween using 22 μmol/L ATP. Kinase activity was determined after 4-hour incubation at 25°C using ADP-Glo reagent (Promega). EGFR biochemical assays were performed using EGFR aa 668–1091 produced as an N-terminal GST fusion protein (SignalChem #E10-112G). Assays contained 6 nmol/L enzyme and 0.2 μg/mL substrate peptide poly (Glu-Tyr), E4Y1. Assays were performed in 50 mmol/L HEPES, pH 7.5, 20 mmol/L MgCl2, 5 mmol/L MnCl2, 0.5 mmol/L DTT, and 0.01% Tween using 14.8 μmol/L ATP. Kinase activity was determined after 2-hour incubation at 25°C using ADP-Glo reagent.

IC50 values for kinase inhibition were determined by fitting ADP-Glo assay data using a nonlinear 4-parameter variable slope formula (GraphPad Prism). Tucatinib potency was determined using data from a 12-point serial dilution (3-fold dilutions) of drug ranging from 0.00017 to 30 μmol/L. Lapatinib potency was determined using data from a 16-point serial dilution (2-fold dilutions) of drug ranging from 0.0000339 to 6 μmol/L. Neratinib potency was determined using data from a 10-point serial dilution (3-fold dilutions) of drug ranging from 0.000508 to 10 μmol/L.

Kinase-inhibitory activity profiling screen
Tucatinib-inhibitory activity against 223 kinases was analyzed using the KinaseProfiler service (Millipore). Compounds were run in duplicate at a concentration of ATP near the Km for each individual kinase according to the manufacturer’s specifications. Tucatinib activity across this panel of kinases is represented by a kinase tree illustration (Cell Signaling Technology), which was created using the KinMap web-based tool (www.kinhub.org/kinmap; ref. 29). Tucatinib activity was assessed at 1 and 10 μmol/L.

Phosphorylation analysis
HER2 and EGFR
BT-474 and A431 cells (1.5 × 10⁶ cells in a 24-well) were seeded overnight and treated with increasing concentrations of tucatinib (0.1–10,000 nmol/L) per well for 2 hours. Samples were run with two replicates. Purified EGF (Cell Signaling Technology) was added to A431 cells for a final concentration of 10 ng/mL for 10 minutes prior to harvest. Lysates were prepared with buffer (supplied) containing protease and phosphatase inhibitors, and samples were processed using PathScan Sandwich ELISA kit (Cell Signaling Technology) according to manufacturer’s protocol. Assays were performed for total HER2 (Cell Signaling Technology, catalog no. 7310), phospho-HER2 (pan-Tyr, Cell Signaling Technology, catalog no. 7968), total EGFR (Cell Signaling Technology, catalog no. 7250), and phospho-EGFR (pan-Tyr, Cell Signaling Technology, catalog no. 7911). Phosphorylated protein levels were normalized to total protein levels. Analysis was performed within GraphPad Prism software, with IC50 values generated from best-fit curves log(inhibitor) versus response—4-parameter variable slope formula. Errors bars represent SD.

HER2, HER3, MEK, ERK, and AKT phosphorylation assays
BT-474 cells (30,000 per 96-well) were seeded overnight and treated with increasing concentrations of tucatinib for 2 hours at 37°C. Lysates were collected and phosphorylation of respective proteins was analyzed with phospho-ERK 1/2, phospho-MEK1, and phospho-AKT MapMate kits (Millipore) while phospho-HER2 and phospho-HER3 were detected by a custom phospho-RTK panel (Millipore) according to the manufacturer’s protocol. Samples were run on a Luminex LX200 instrument (R&D Systems) using xPONENT software.

Cell lines
BT-474 and A431 cells were obtained from ATCC in 2018 and 2013, respectively. Cell lines were demonstrated to be free of Mycoplasma by PCR evaluation and were authenticated by marker analysis prior to banking (completed by Idexx Bioanalytics). Cells were maintained in culture for a maximum of 7 weeks (7–15 passages).

Quantitative flow cytometry analysis of cell surface receptor density
HER2 and EGFR cell surface levels were determined using quantitative flow cytometry–based QH assay kit (Agilent Dako, catalog no. K0078) executed according to manufacturer’s protocol. Cells were stained with anti-HER2 antibody (R&D Systems, catalog no. MAB1129) and anti-EGFR antibody (Abcam, catalog no. ab30) for quantification.

Cytotoxicity assays
BT-474 (4,000 cells per 96-well) and A431 (5,000 cells per 96-well) cells were seeded overnight in duplicate and treated with increasing concentrations of tucatinib (0.15–10,000 nmol/L). Cell viability was measured at 96 hours using a CellTiter-Glo (CTG) Luminescent Cell
Viability assay (Promega) following manufacturer’s protocol. Data were analyzed in GraphPad Prism, and EC₅₀ values were generated from best-fit curves. Cytotoxicity against the panel of breast cancer cell lines were run in similar format and are described in greater detail in Supplementary Methods.

Caspase-3/7 apoptosis assays

BT-474 cells (50,000 per well) were seeded overnight and then treated with increasing concentrations of tucatinib (0.2–1,000 nmol/L) and trastuzumab (150 µg/mL; equivalent to 1 µmol/L) for 18 hours at 37°C. Caspase-Glo 3/7 reagent and buffer (100 µL/well) was added and after 30-minute incubation, caspase-3/7 activity was quantified on a BMG PolarStar Luminator (BMG LABTECH).

Xenograft models

Cell line-derived (CDX) breast (BT-474) and gastric (NCI-N87) cancer cells were implanted subcutaneously into the flanks of female immunocompromised mice. Animals were treated with tucatinib (25, 50, or 100 mg/kg orally, every day), trastuzumab (20 mg/kg, intraperitoneally, every 3 days), docetaxel (10 mg/kg, intravenously, once weekly), or vehicle (30% Captisol, orally, everyday). Patient-derived (PDX) tumor fragments from solid tumors (breast, gastric, colorectal, and esophageal) were implanted subcutaneously into the flanks of immunocompromised mice. Mice were treated with tucatinib (50 mg/kg, orally, twice a day), trastuzumab (20 mg/kg, intraperitoneally, every 3 days or once weekly), tucatinib + trastuzumab, or vehicles (30% Captisol, orally, every day; PBS, intraperitoneally, twice a week). Animals were followed to the designated end of each experiment. Additional details are described in the Supplementary Methods. All in vivo studies adhered to Institutional Animal Care and Use Committee guidelines.

Statistical analysis

Data in xenograft studies are expressed as the mean ± SE. Statistical analyses were performed using data up to the last day that tumor volumes were measured for all groups. Statistical comparisons of tumor volumes in the efficacy studies were conducted using one-way ANOVA followed by Tukey multiple comparisons test to compare between all groups.

Tucatinib preparation

4-(1,2,4-triazolo[1,5-a]pyridin-7-yl)-3-methylaniline was prepared at Array Biopharma or Cascadian Therapeutics according to the following process description: step 1: 2-Amino-4-hydroxy pyridine hydrochloride is treated in a stepwise fashion with N,N-dimethylformamide dimethyl acetal followed by hydroxylamine. Hydrochloride is treated in a stepwise fashion with N,N-dimethylformimamide (90%). Step 2: (E)-N’-(2-cyano-4-methylphenyl)-N,N-dimethylformimidamide (90%). Step 3: 4-(1,2,4-triazolo[1,5-a]pyridin-7-yl)-3-methylaniline was prepared at Array Biopharma or Cascadian Therapeutics according to the following process description: step 1: 2-Amino-4-hydroxy pyridine hydrochloride is treated in a stepwise fashion with N,N-dimethylformimidamide dimethyl acetal in a mixture of methanol and methyl-tert-butyl ether at 40°C to yield (E)-N’-(2-cyano-4-nitrophenyl)-N,N-dimethylformimidamide (95%). Step 2: (E)-N’-(2-cyano-4-nitrophenyl)-N,N-dimethylformimidamide in THF is hydrogenated with 10% Pd/C at 35°C. Solvent swap to IPA is performed to provide (E)-N’-(4-amino-2-cyanophenyl)-N,N-dimethylformimidamide (90%). Step 3: (E)-N’-(4-amino-2-cyanophenyl)-N,N-dimethylformimidamide in THF is charged to a solution of 1,1-thiocarboxyldimidazole in THF at 14°C. 2-amino-2-methyl-1-propanol in THF is charged and then the solvent is swapped to IPA to isolate (E)-N’-(2-Cyano-4-(3-(1-hydroxy-2-methylprop-2-yl)thio)ureido)phenyl)-N,N-dimethylformimidamide (80%)

Tucatinib, (N4-(1,2,4-triazolo[1,5-a]pyridin-7-yl)-3-methylphenyl)-N6-(4,4-dimethyl-4,5-dihydroxazol-2-yl)quinazoline-4,6-diamine was synthesized according to the processes described in the United States Patent Application Number US20170136022A1. Step 1: (E)-N’-(2-Cyano-4-(1-hydroxy-2-methylprop-2-yl)thio)ureido)phenyl)-N,N-dimethylformimidamide was coupled with 4-(1,2,4-triazolo[1,5-a]pyridin-7-yl)-3-methylaniline in isopropyl acetate to provide (E)-N’-(2-Cyano-4-methylphenyl)-N,N-dimethylformimidamide (92%). N4-(1,2,4-triazolo[1,5-a]pyridin-7-yl)-3-methylphenyl)-N6-(4,4-dimethyl-4,5-dihydroxazol-2-yl)quinazoline-4,6-diamine (92%).

Material used in tumor models was manufactured to GMP specifications. MS(ESI): m/z 481 (M + H⁺); 1HNMRI (DMSO-d₆): δ (ppm) 1.31 (s, 6H), 2.21 (s, 3H), 4.08 (s, 2H), 6.83 (d, 2.59 Hz, 1H), 7.00 (dd, 7.43, 2.59 Hz, 1H), 7.67 (d, 1H), 7.67 (d, 1H), 7.76 (br, 1H), 7.18 (d, 8.73 Hz, 1H), 7.87 (d, 8.73 Hz, 1H), 7.91 (s, 1H), 8.03 (s, br, 1H), 8.35 (s, 1H), 8.5 (s, 1H), 8.89 (d, 1H), 9.15 (s, 1H), 13CNMR (DMSO-d₆): δ (ppm) 16.3 (CH₃), 27.3 (2CH₃), 56.6 (C), 78.3 (CH₂), 98.2 (Ar-C), 108.0 (Ar-C), 116.4 (Ar-C), 121.9 (Ar-C), 122.1 (Ar-C), 125.6 (Ar-C), 128.7 (Ar-C), 130.4 (Ar-C), 131.1 (Ar-C), 138.1 (Ar-C), 146.1 (Ar-C), 147.9 (Ar-C), 151.9 (Ar-C), 152.8 (Ar-C), 155.2 (Ar-C), 156.3 (C), 157.6 (Ar-C), 160.4 (Ar-C). HPLC purity 99.67%.

Results

Tucatinib is a potent and selective HER2 kinase inhibitor

Tucatinib was initially identified via a small-molecule discovery effort focused on HER2 and EGFR TKIs. On the basis of its chemical structure, which is conserved with other TKIs that contain a quinazoline core including lapatinib, erlotinib, and gefitinib (Fig. 1A), tucatinib is expected to bind to the ATP pocket of HER2 as a competitive, reversible inhibitor. However, unlike the related HER2-targeted TKI lapatinib (23), tucatinib demonstrates selectivity for HER2 compared with EGFR. In a kinase assay, the half maximal inhibitory constant...
(IC_{50}) of tucatinib with HER2 was 6.9 nmol/L, >50-fold lower than that for EGFR, which showed an IC_{50} of 449 nmol/L (Fig. 1B). Similarly, tucatinib demonstrated reduced potency in a HER4 biochemical assay relative to HER2, with an IC_{50} of 310 nmol/L. Consistent with published data (22, 23), the IC_{50} values for lapatinib and neratinib for HER2 and EGFR did not show HER2-selective kinase inhibition (Fig. 1B). A biochemical screen of 223 kinases confirmed tucatinib selectivity within the EGFR kinase family, with minimal inhibition of other kinases (Fig. 1C). Inhibition of non-EGFR kinases in the screen was limited with no kinase demonstrating more than 50% inhibition at a concentration of 1 μmol/L tucatinib and 7 kinases (KIT, EphA1, EphA2, Flt4, Lck, MERTK, PKD1) demonstrating more than 50% inhibition at a concentration of 10 μmol/L tucatinib.

Tucatinib selectively inhibits HER2 signaling activity and cell proliferation in HER2-driven breast cancer cell lines

To determine the potency of tucatinib in blocking HER2 phosphorylation in tumor cells, phosphorylation assays were performed in vitro using BT-474 (breast cancer) and A431 (skin cancer) cells. These cell lines were chosen for evaluating tucatinib’s cellular HER2 and EGFR activity based on the observation that BT-474 cells due to genomic amplification of the HER2 gene, resulting in high-level expression of HER2 protein on the cell surface (30), and that A431 cells overexpress EGFR due to genomic amplification of the EGFR gene (31). We confirmed these results by measuring the cell surface density of HER2 and EGFR using quantitative flow cytometry (Fig. 2A; Supplementary Table S1). In cell signaling assays, tucatinib potently inhibited phosphorylation of HER2 in BT-474 cells (IC_{50} = 7 nmol/L).
but showed minimal inhibition of EGFR phosphorylation in A431 cells (IC\textsubscript{50} > 10,000 nmol/L; Fig. 2B). Tucatinib treatment also strongly inhibited BT-474 cell proliferation (IC\textsubscript{50} = 33 nmol/L) but had a much less potent effect on A431 cell proliferation, exhibiting an IC\textsubscript{50} value nearly 500-fold higher (IC\textsubscript{50} = 16,471 nmol/L; Fig. 2C). Similarly, tucatinib showed minimal activity in HER2-negative breast cancer cell lines (IC\textsubscript{50} range, 4,938 to >25,000 nmol/L), whereas it demonstrated exponentially increasing potency in HER2+ breast cancer cell lines as HER2 surface receptor density increased (IC\textsubscript{50} range, 23–431 nmol/L; Fig. 2D; Supplementary Table S1).

When compared directly with lapatinib or neratinib, only tucatinib demonstrated selectivity for HER2 compared with EGFR (Supplementary Fig. S1). In BT-474 cells, tucatinib inhibited HER2 phosphorylation with an IC\textsubscript{50} of 7 nmol/L, which was similar to neratinib (IC\textsubscript{50} = 2 nmol/L) and more potent than lapatinib (IC\textsubscript{50} = 46 nmol/L; Supplementary Fig. S1). In contrast, tucatinib showed no appreciable inhibition of EGFR phosphorylation in A431 cells when dosed up to 1,000 nmol/L, whereas both neratinib (IC\textsubscript{50} = 21 nmol/L) and lapatinib (IC\textsubscript{50} = 36 nmol/L) potently inhibited EGFR phosphorylation (Supplementary Fig. S1). Similarly, in NCI-N87 HER2+ gastric cells, tucatinib inhibited HER2 phosphorylation with an IC\textsubscript{50} of 1.9 nmol/L, whereas lapatinib (IC\textsubscript{50} = 22.7 nmol/L) and neratinib (IC\textsubscript{50} = 7.4 nmol/L) showed limited activity.
cancer cells, tucatinib potently inhibited HER2 phosphorylation (IC_{50} = 4 nmol/L) but produced only a modest reduction in EGFR phosphorylation at 1,000 nmol/L. In contrast, lapatinib and neratinib both inhibited HER2 and EGFR phosphorylation in NCI-N87 cells with IC_{50} values of 40 and 12 nmol/L, respectively.

Tucatinib + trastuzumab combinations show enhanced inhibition of HER2 signaling activity

HER2 signaling is mediated through activation of other EGFR subfamily members and several downstream effector pathways including MAPK/ERK and PI3K–AKT (12). Treatment of BT-474 cells with tucatinib inhibited phosphorylation of both HER2 and HER3 (Figs. 2B and 3A), a preferred dimerization partner of HER2 (2, 6). In addition, treatment of BT-474 cells with tucatinib inhibited phosphorylation of the downstream effector proteins MEK1 (S222), ERK1/2 (T185/Y187), and AKT (S473; Fig. 3A) with IC_{50} values in the same range as HER2 inhibition. Trastuzumab binds to the extracellular domain of HER2, resulting in the inhibition of HER2/HER2 homodimerization, inhibition of downstream signaling through the PI3K–AKT pathway, and suppression of tumor cell proliferation (3, 32). On the basis of differing mechanisms of action by which each treatment inhibits HER2, we hypothesized that combination treatment of tucatinib + trastuzumab may lead to enhanced inhibition of HER2 downstream signaling activity. Treatment of BT-474 cells with tucatinib alone resulted in a dose-dependent reduction of AKT phosphorylation. Treatment of BT-474 cells with 150 μg/mL trastuzumab alone also reduced AKT phosphorylation, and when combined with increasing concentrations of tucatinib, resulted in further diminution of AKT phosphorylation (Fig. 3B). Consistent with increased inhibition of AKT phosphorylation, the combination of tucatinib + trastuzumab resulted in a 2-fold increase in caspase-3/7 activity (Fig. 3C). Overall, the above data show that tucatinib is a highly selective and potent HER2 inhibitor with strong anticancer cellular effects that are enhanced by combination treatment with trastuzumab.

Tucatinib exhibits activity alone or in combination with trastuzumab or docetaxel in CDX xenograft models of HER2+ cancer

We investigated the ability of tucatinib to prevent tumor cell growth in vivo in HER2+ breast and gastric cancer CDX xenograft models. Female immunocompromised mice implanted with BT-474 cells were treated with tucatinib and evaluated for response. Mice treated with tucatinib exhibited tumor growth delay at doses of 25 or 50 mg/kg tucatinib administered orally every day. This effect was similar to mice

Figure 3.

Tucatinib + trastuzumab additively inhibit HER2 signaling activity and induce apoptosis in HER2-driven breast cancer cell line. *A,* Inhibition of HER2 and HER2 effector signaling. Phosphorylation of target proteins, including total tyrosine phosphorylated HER2 or HER3, phospho-ERK1/2 (T185/Y187), phospho-MEK1 (S222), and phospho-AKT (S473) was quantified. *B,* Additive inhibition of HER2 with tucatinib + trastuzumab (Tras) combination. Phosphorylation of phospho-AKT (S473) was quantified in BT-474 cells treated with tucatinib or tucatinib + trastuzumab and reported as mean fluorescence units (MFI). *C,* Tucatinib- and trastuzumab-mediated apoptosis. Caspase-3/7 activity was quantified from duplicate samples using the Caspase-Glo assay in BT-474 cells treated with tucatinib or tucatinib + trastuzumab and reported as relative light units (RLU) ± SEM.
treated with trastuzumab monotherapy (Fig. 4A). In contrast, mean tumor volume (MTV) increased >4-fold in mice treated with vehicle (Fig. 4A).

We then investigated the activity of tucatinib combined with docetaxel, a cytotoxic microtubule-targeted drug commonly used in patients with metastatic breast cancer (MBC; ref. 33). Using the BT-474 model, tumor-bearing mice treated with docetaxel exhibited tumor growth delay compared with the vehicle group. Mice treated with tucatinib monotherapy exhibited a similar reduction in tumor growth (Fig. 4B). When combined, tucatinib + docetaxel were significantly more active than either drug alone (P < 0.0001; Fig. 4B).

Given that tucatinib and trastuzumab were both individually effective at reducing tumor growth as single agents in the BT-474 breast cancer model (Fig. 4A), we next investigated whether tucatinib + trastuzumab would result in further tumor growth inhibition compared with monotherapy with either agent alone. In an independent experiment, tucatinib monotherapy again resulted in tumor growth inhibition that was similar to trastuzumab monotherapy (Fig. 4C).

The combination of tucatinib + trastuzumab exhibited enhanced antitumor effects (Fig. 4C), resulting in 10 complete tumor regressions and 1 partial tumor regression in the group of 12 treated mice (Fig. 4C; Table 1). The treatment effect of the combination of tucatinib and trastuzumab was significant when compared with tucatinib alone (P < 0.0001) or trastuzumab alone (P < 0.0001). Overall, these data suggest that tucatinib is active against HER2+ breast tumors as both monotherapy and in combination with two standard-of-care therapies.

In addition to the BT-474 model, tucatinib was also evaluated in an NCI-N87 HER2+ gastric cancer cell line tumor model. In immunocompromised mice implanted with NCI-N87 cells, tumor growth was inhibited by tucatinib and included 4 partial tumor regressions (Fig. 4D). Mice treated with trastuzumab also exhibited a reduction in tumor growth, but no partial regressions (Fig. 4D). Mice treated with tucatinib + trastuzumab had an even greater antitumor response with higher rates of tumor regression noted (Fig. 4D; Table 1). These results were significant when compared with either tucatinib alone (P = 0.0015) or compared with trastuzumab alone (P < 0.0001). Collectively, these data suggest that tucatinib, alone and in combination with trastuzumab, effectively decreases in vivo tumor growth in the NCI-N87 gastric cancer model.

Tucatinib exhibits in vivo activity alone or in combination with trastuzumab in HER2+ PDX models of breast, gastric, colorectal, and esophageal cancer

To further investigate the preclinical efficacy of tucatinib, PDX models of HER2+ solid tumors derived from breast, gastric, colorectal, and esophageal cancers were tested. For each model, PDX tumor samples were chosen based on verified HER2 gene amplification (Supplementary Table S2), and tucatinib was evaluated alone or in combination with trastuzumab and compared with trastuzumab as a single agent.

Tucatinib as a single agent demonstrated activity in 3 breast (Fig. 5A), 3 gastric (Fig. 5B), 3 colorectal cancer PDX models (Fig. 5C), and 2 esophageal PDX models (Fig. 5D); %TGI values are

Figure 4.
Tucatinib monotherapy or in combination with trastuzumab or docetaxel reduces tumor volume in HER2+ breast and gastric CDX xenograft models. CDX xenograft models were developed from HER2+ BT-474 breast carcinoma cells (A–C) and NCI-N87 gastric carcinoma cells (D) and implanted subcutaneously into immunocompromised mice. Animals (n = 12) were treated with increasing doses of tucatinib at the indicated doses for 21 days or with trastuzumab as monotherapy, as indicated, for 21 days. Animals (n = 12) were treated with tucatinib, docetaxel, the combination of tucatinib + docetaxel, or vehicle, as indicated, for 21 days. Animals were treated with tucatinib, trastuzumab, the combination of tucatinib + trastuzumab, or vehicle as indicated, for 21 days. Tumor volumes were measured at select timepoints throughout the experiment. Data are reported as MTV ± SEM. PO, orally; QD, every day; QW, once weekly; IP, intraperitoneally.
In vivo efficacy of tucatinib as monotherapy or in combination with trastuzumab in various tumor models.

Tumor response rate

Percent tumor growth inhibition (%TGI)

Table 1

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Animals per arm (0)</th>
<th>Tumor response rate</th>
<th>Number of days of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-474 Breast carcinoma CDX</td>
<td>86</td>
<td>0 PR; 4 CR</td>
<td>21</td>
</tr>
<tr>
<td>NC-Inh67 Breast carcinoma CDX</td>
<td>87</td>
<td>0 PR; 2 CR</td>
<td>21</td>
</tr>
<tr>
<td>CTG-0383 Colorectal carcinoma PDX</td>
<td>98</td>
<td>0 PR; 6 CR</td>
<td>28</td>
</tr>
<tr>
<td>CTG-0784 Colorectal carcinoma PDX</td>
<td>50</td>
<td>0 PR; 10 PR</td>
<td>28</td>
</tr>
<tr>
<td>CTG-0137 Esophageal carcinoma PDX</td>
<td>49</td>
<td>0 PR; 6 CR</td>
<td>10</td>
</tr>
<tr>
<td>CTG-0138 Esophageal carcinoma PDX</td>
<td>69</td>
<td>0 PR; 9 CR</td>
<td>28</td>
</tr>
<tr>
<td>GXA-3038 Gastric carcinoma PDX</td>
<td>110</td>
<td>0 PR; 5 CR</td>
<td>10</td>
</tr>
<tr>
<td>GXA-3054 Gastric carcinoma PDX</td>
<td>65</td>
<td>3 PR; 7 CR</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: %TGI was calculated as \(\frac{1 - (MTV \text{ in treatment group on day } X - MTV \text{ in treatment group on day } 0)/(MTV \text{ in vehicle group on day } X - MTV \text{ in vehicle group on day } 0) \times 100 \). %TGI was typically calculated 0 to 2 days after the last day of tucatinib dosing, except for BT-474, CTG-0137, and CTG-0708 where %TGI was calculated on day 14, 15, and 24, respectively, due to rapid tumor growth in the vehicle group and animal sacri-

Discussion

The advent of HER2-targeted therapies has resulted in a dramatic improvement in the survival of patients with HER2+ breast cancer. In addition to breast cancer, other HER2+ cancers, including gastric and colorectal, have been shown to respond to combination therapies that include HER2-targeted agents (5, 9, 10, 34). However, despite the effectiveness of these therapeutic strategies, there remains a need for new HER2-targeted therapies. The data presented here demonstrate that tucatinib is a novel, highly selective, and potent HER2-targeted TKI that exhibits activity in a variety of HER2+ cancer models.

Biochemical assays demonstrate that tucatinib is a selective inhibitor of HER2 enzymatic activity, with reduced potency against EGFR.
This property distinguishes tucatinib from other HER2-targeted TKIs, including lapatinib and neratinib, which are potent inhibitors of both HER2 and EGFR (22, 23). In a broad kinome screen, it was shown that tucatinib potently targets only members of the EGFR RTK family when tested at drug concentrations that are 100- to 1,000-fold the biochemical IC₅₀ value for HER2 kinase inhibition. Similar selectivity for the EGFR kinase family was demonstrated with lapatinib, a structurally similar kinase inhibitor, but the HER2/EGFR inhibitor neratinib

Figure 5.
Tucatinib monotherapy or in combination with trastuzumab significantly reduces tumor volume in HER2⁺ breast, gastric, colorectal, and esophageal PDX xenograft models. PDX xenograft models were developed from HER2⁺ breast (A), gastric (B), colorectal (C), and esophageal cancers. D. Tumor fragments implanted subcutaneously into the flank of female nude mice. Animals were treated with tucatinib (50 mg/kg, orally, twice a day), trastuzumab (20 mg/kg, intraperitoneally, every 3 days [gastric, colorectal, and esophageal] or once weekly [breast]), the combination of tucatinib + trastuzumab, or vehicle. Dosing continued for 28 days and tumor volume measurements were followed for up to 60 days after treatment initiation. Tumor volumes were measured at select timepoints throughout the experiment. Data are reported as MTV ± SEM.
demonstrated a much higher degree of promiscuity in kinase profiling, which may be a property of the covalent-binding mechanism of action (35).

The biological relevance of the HER2 selectivity of tucatinib was demonstrated when measured using tumor-derived cell lines containing HER2 or EGFR amplification. In HER2-amplified BT-474 cells, tucatinib blocked HER2 phosphorylation with an IC_{50} of 7 nmol/L, but at drug concentrations up to 10 µmol/L, there was no reduction in EGFR phosphorylation in EGFR-amplified A431 cells. This result was distinct from both lapatinib and neratinib, which potently inhibited both HER2 and EGFR phosphorylation in these two cell lines. Similar results were demonstrated using the NCI-N87 HER2+ gastric cancer cell line, with tucatinib producing potent inhibition of HER2 phosphorylation with only a modest reduction in EGFR phosphorylation at 1 µmol/L drug. In contrast, lapatinib and neratinib potently inhibited both HER2 and EGFR phosphorylation in the NCI-N87 line. These results are consistent with published data on lapatinib and neratinib. For example, lapatinib showed equivalent potency for inhibiting HER2 and EGFR in enzymatic and cell signaling assays and demonstrated similar potencies in blocking proliferation of either BT-474 or A431 cells in vitro (22). Likewise, neratinib also demonstrates similar inhibitory potencies in enzymatic assays comparing HER2 and EGFR, and in cell signaling assays for HER2 (BT-474 cells) and EGFR (A431 cells; ref. 23).

The enhancement in the relative potency for HER2 compared with EGFR in cell signaling assays (>1,000-fold) compared with enzymatic assays (<50-fold) may reflect differences in the structure of the ATP-binding pocket of the kinase domain of fully processed and plasma membrane–localized enzymes compared with the recombinant proteins used in enzymatic assays. Differences in enzymatic and cellular potencies within the EGFR family have been observed previously. Characterization of the covalent HER2 inhibitor TAS0728 showed only a 5-fold difference in IC_{50} values between HER2 and EGFR in biochemical assays using recombinant material, but cellular HER2 (SK-BR-3 cells) and EGFR (A431 cells) assays showed much greater selectivity for the inhibition of HER2 compared with EGFR (36). Consistent with the increased potency for HER2 inhibition in signaling assays, TAS0728 also showed a more potent IC_{50} value for BT-474 cells (3.6 nmol/L) than for A431 cells (450 nmol/L) in proliferation assays (36).

The capacity of tucatinib to block HER2 phosphorylation in the BT-474 cells is associated with potent inhibition of cell proliferation. The half-maximal tucatinib concentrations for HER2 kinase inhibition were proportional to the cytotoxic IC_{50} value. Likewise, the reduced cytotoxicity IC_{50} value in A431 cells is consistent with the lack of EGFR kinase inhibition observed in these cells. The selectivity of tucatinib for HER2 is further supported by the data showing that the cytotoxic activity of tucatinib correlated with HER2 expression levels in a panel of breast cancer cell lines; only HER2-amplified cell lines showed a high degree of sensitivity to tucatinib.

The ability of tucatinib to potently inhibit cell proliferation in HER2+ breast cancer cell lines is consistent with the cell signaling data that demonstrate the inhibition of key prosurvival and mitogenic signaling, including a blockade of HER3 phosphorylation, inhibition of AKT phosphorylation at serine 473, and inhibition of phosphorylation of ERK1/2 at threonine 185 and 187, and MEK1 at serine 222. The combination of tucatinib + trastuzumab resulted in more complete inhibition of AKT phosphorylation and enhanced apoptosis in BT-474 cells. These data are consistent with recently published results (37) and suggest that the complementary action of tucatinib + trastuzumab on HER2 signaling results in a more effective blockade of cell survival signaling.

There is strong evidence for single-agent antitumor activity of tucatinib across a variety of HER2+ tumor models. In multiple tumor models, tucatinib alone resulted in tumor regressions. These data are consistent with the findings from the phase-I clinical trial results with tucatinib as a single agent, where it was demonstrated that in patients with HER2+ solid tumors (n = 35), tucatinib produced an objective response rate (ORR) of 9% (19); in an expansion cohort of patients with HER2+ MBC (n = 22) treated with higher doses of tucatinib, the ORR was 14%, all of which were PRs (19).

The increased activity of dual targeting of HER2, either through combinations of two different HER2-targeted antibodies or by use of a HER2-targeted antibody and TKI, has been shown to improve outcomes in preclinical studies and in patients with HER2+ cancers (10, 38). In this study, the combinatorial activity of tucatinib + trastuzumab also produced improved antitumor activity in vivo in HER2+ CDX and PDX xenograft models of breast, gastric, colorectal, and esophageal cancers. Overall, there were substantially more partial and complete tumor regressions induced by tucatinib + trastuzumab combination therapy compared with either single agent alone. Across the CDX and PDX models, there were 25 complete tumor regressions; induced by the combination of tucatinib + trastuzumab, compared with 3 generated by tucatinib and 3 by trastuzumab alone. The overall regression rate for tucatinib in these studies was 26%, with a 15% regression rate for trastuzumab and a 66% regression rate for the combination of both agents.

These preclinical data support the contention that tucatinib is a potent HER2-selective TKI and that the subsequent downregulation of HER2 signal can drive robust antitumor activity across multiple models of HER2+ cancer. In particular, these results highlight the utility of combining tucatinib + trastuzumab, which may translate to produce enhanced clinical activity. These preclinical results and early clinical data support the hypothesis that selective inhibition of HER2 activity by tucatinib, in the absence of EGFR inhibition, can be an effective therapeutic approach in HER2+ cancers. This is an important point since currently available small-molecule TKI therapies for HER2+ breast cancer are equipotent HER2 and EGFR inhibitors, and are associated with skin and gastrointestinal toxicities that may reduce patient quality-of-life (24, 25, 39–43). Although EGFR is expressed in HER2+ cancers (44), the role of EGFR expression in the outcome of metastatic patients treated with trastuzumab regimens is unclear (45). Similarly, the therapeutic benefit of inhibiting EGFR in HER2+ MBC has not been clearly defined. For example, in a phase I–II study of the combination of trastuzumab and gefitinib (an EGFR-targeted TKI) in HER2+ MBC, 250 or 500 mg/day doses of gefitinib were tested together with trastuzumab (46). All patients treated with the 500 mg/day dose of gefitinib developed grade 3/4 gastrointestinal toxicity and that dose combination was deemed beyond the MTD. At the tolerated dose of 250 mg/day, there was an ORR of 9% and a clinical benefit rate of 28%. An interim analysis of this trial indicated that the 250 mg gefitinib/trastuzumab combination did not merit further testing. These data also suggest that the potent inhibition of EGFR with dual EGFR/HER2 inhibitors could reduce drug tolerability and potentially restrict HER2 target saturation.

In summary, we have demonstrated that tucatinib is a potent and highly selective HER2 kinase inhibitor with increased selectivity for HER2 compared with earlier-generation HER2-targeted TKIs such as lapatinib and neratinib. Pharmacologic data from both in vitro and in vivo studies demonstrate that tucatinib has antitumor activity, both as a single agent and in combination with either...
tucatinib plus trastuzumab and capecitabine to placebo plus trastuzumab and capecitabine was recently reported (47). The results of this trial demonstrated the addition of tucatinib to trastuzumab and capecitabine resulted in better progression-free survival and overall survival outcomes in patients with heavily pretreated HER2-positive MBC, including those with brain metastases. These clinical results, together with the preclinical data described in this article, support the clinical evaluation of tucatinib in additional HER2+ cancers, including colorectal, esophageal, and gastric cancers.

Disclosure of Potential Conflicts of Interest

A. Kulukian is a senior scientist and has ownership interest (including patents) in Seattle Genetics. P. Lee is a vice president, pharmacology/toxicology at Array BioPharma. J. Taylor is a staff scientist and has ownership interest (including patents) at Seattle Genetics. A. Forero-Torres is an executive medical director at Seattle Genetics. S. Peterson is a vice president, reports receiving a commercial research grant, and has ownership interest (including patents) in Seattle Genetics. No potential conflicts of interest were disclosed by the other authors.

References

Tucatinib Activity in Preclinical HER2⁺ Solid Tumor Models

Molecular Cancer Therapeutics

Preclinical Activity of HER2-Selective Tyrosine Kinase Inhibitor Tucatinib as a Single Agent or in Combination with Trastuzumab or Docetaxel in Solid Tumor Models

Updated version
Access the most recent version of this article at:
http://mct.aacrjournals.org/content/19/4/976

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2020/08/14/19.4.976.DC1

Visual Overview
A diagrammatic summary of the major findings and biological implications:
http://mct.aacrjournals.org/content/19/4/976/F1.large.jpg

Cited articles
This article cites 44 articles, 14 of which you can access for free at:
http://mct.aacrjournals.org/content/19/4/976.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/19/4/976.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/19/4/976.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.

Downloaded from mct.aacrjournals.org on August 7, 2021. © 2020 American Association for Cancer Research.