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Figure 2.

The FGFR2–KIAA1598 fusion induces morphologic changes. Fixed NIH3T3 (A), MMNK-1 (B), and 293T (C) cells expressing the fusion (FK) or the fusion with a
secondary mutation (FK p.E565A and FK p.L617M) were stained with actin (green), cortactin (blue), and DAPI (red) to visualize differences in cell morphology.
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to other FGFR inhibitors seen in patients after FGFR inhibition
(Table 1; Supplementary Fig. S2).

The presence of the FGFR p.E565A and p.L617M SNVs decreased
sensitivity to FGFR inhibition, anywhere from 2- to 1,000-fold.
Specifically, the p.L617M mutation demonstrated varying degrees of
resistance depending on both the inhibitor and cell line used. The
p.E565Amutation conferred the greatest degree of resistance across all
cell lines and inhibitors tested. Furthermore, FGFR2 p.E565A has been
described previously as a recurrent acquired secondary resistance
mutation in response to infigratinib therapy (16). However, the effect
of this secondary resistance mutation on FGFR signaling has not been
fully described.

Upregulation of PI3K/Akt/mTOR pathway in resistant cells
To characterize the signal transduction pathways involved in

resistance to FGFR inhibition, we performed RPPA analysis on
NIH3T3 empty, FK WT, and FK p.E565A cells. Using an FDR of
0.05, we identified proteins differentially expressed in FK WT com-
pared with control cells and FK p.E565A compared with control cells
(Fig. 3A and B). We identified that phosphorylated ribosomal protein
S6 (RPS6) involved in PI3K/AKT/mTOR signaling was the most
upregulated protein in FK WT (Fig. 3A) and FK p.E565A
(Fig. 3B) cells relative to empty control. We next used STRING (30)
to assess known and predicted protein–protein interactions within
these differentially expressed protein sets. This analysis revealed
activation of the PI3K/AKT signaling pathway in FK WT cells with
an FDR of 0.00618 (Fig. 3C). In FK p.E565A cells, there was further
potentiation of the PI3K/AKT pathway with an FDR of 1.96e-19 along
with activation of the mTOR pathway with an FDR of 1.08e-17
(Fig. 3D). These findings were subsequently confirmed with Western
blot analysis inNIH3T3 cells revealing upregulation of phospho-RPS6,
phospho-AKT, and phospho-mTOR in both FKWT and FK p.E565A
cells (Fig. 3E).

Treatment with the mTOR inhibitor, INK128, resensitizes
resistant cells to FGFR inhibition

Having demonstrated upregulation of the PI3K/AKT/mTOR sig-
naling pathway in FGFR-inhibitor–resistant FK p.E565A cells, we next
sought to determine whether treatment with an mTOR inhibitor
would enhance sensitivity to FGFR inhibitors. Sapanisertib (INK128,
MLN0128, or TAK-228), is a highly potent, orally active mTOR kinase
inhibitor that is currently in phase I and phase II clinical trials for solid
tumors (31). We assessed the impact of INK128 on FGFR inhibitor
(infigratinib, AZD4547, erdafitinib, or ponatinib) sensitivity (Fig. 4A).

CalcuSyn was used to calculate a CI for each combination of drug
concentrations (25 in total, Fig. 4A). On the basis of the CI value, the
two drugs being evaluated were classified as synergistic (CI < 1),
additive (CI ¼ 1), or antagonistic (CI > 1). Combination of INK128
with all FGFR inhibitors demonstrated highly synergistic effects in FK
p.E565A cells (Fig. 4B). We next extended these studies to cells
harboring the second resistance mutation of interest, p.L617M, and
found that combination of INK128 and FGFR inhibition yielded
mildly synergistic effects (Fig. 4B). Average combination indexes for
fraction affected (Fa) values greater than 0.1 are summarized
in Fig. 4C. These data warrant further investigation of the addition
of an mTOR inhibitor after initial progression with FGFR-targeted
therapy.

Discussion
Through our case study of a patient with intrahepatic cholangio-

carcinoma, we identified two FGFR2 kinase domain mutations, p.
E565A and p.L617M, associated with acquired resistance to the
selective FGFR inhibitor infigratinib. Interestingly, only one of these
mutations, FGFR2 p.E565A, was identified through sequencing of a
tumor biopsy collected from a progressing liver lesion; however,
ctDNA captured this mutation as well as a second mutation, FGFR2
p.L617M. These findings warrant further investigation into the use of
ctDNA clinically to serially monitor early acquired resistance in
patients receiving FGFR inhibitors. Using in vitro cell line models,
we characterized the sensitivity of the FGFR2–KIAA1598 (FK) fusion
with each of these secondary mutations to ATP-competitive, covalent,
and nonselective FGFR inhibitors. Taken collectively, our findings
suggest that these mutations confer resistance to FGFR inhibition, but
remain sensitive to the nonselective FGFR inhibitor ponatinib. In
addition, we identified the upregulation of the PI3K/AKT/mTOR
signaling pathway in resistant cells and demonstrated that combining
FGFR and mTOR inhibitors may be used to desensitize cells to FGFR
resistance.

Tumor heterogeneity associated with acquired drug resistance
remains a major barrier in the long-term clinical use of targeted
therapies in patients with cancer (32). This heterogeneity includes
but is not limited to differences in the genetic, epigenetic, and tumor
microenvironment composition of tumors within the same tissue and
between different tissue sites of the same patient (33–35). To date, the
genomic evaluation of acquired drug resistance has been largely
limited to tumor biopsies. Unfortunately, tumor biopsies pose several
limitations including risk and cost to patients, restricted access to

Table 1. The FGFR2 p.E565A and p.L617M mutations confer resistance to infigratinib and other FGFR inhibitors.

IC50 (nmol/L) values
Infigratinib AZD4547 Erdafitinib TAS120 Ponatinib Dovitinib

NIH3T3 FK WT 1 (18.24) 1 (36.22) 1 (5.16) 1 (6.89) 1 (54.83) 1 (489.78)
FK p.E565A 27 (490.91) 42 (1,510.08) 20 (105.68) 5 (32.14) 0.36 (19.72) 4 (1,936.42)
FK p.L617M 126 (2,296.15) 59 (2,152.78) 28 (144.88) 0.177 (1.22) 14 (762.08) 3 (1,674.94)

293T FK WT 1 (4.04) 1 (7.80) 1 (0.52) 1 (1.35) 1 (9.57) 1 (161.81)
FK p.E565A 44 (176.39) 84 (656.15) 65 (33.65) 11 (14.32) 0.48 (4.55) 8 (1,253.14)
FK p.L617M 12 (48.98) 10 (76.74) 31 (15.96) 3 (4.59) 0.40 (3.87) 6 (990.83)

MMNK-1 FK WT 1 (44.98) 1 (4.08) 1 (0.66) 1 (0.20) 1 (22.59) 1 (77,983.01)
FK p.E565A 578 (26,001.60) 257 (1,049.54) 15 (10) Ambiguous (>5,000) 17 (387.26) 0.03 (2,344.23)
FK p.L617M 213 (9,594.01) 3 (10.69) 17 (10.94) 4 (0.74) 2 (44.16) 2151 (>5,000)

Note: Bold numbers represent fold change of inhibitor concentrations relative to FK WT. Nanomolar IC50 values are listed in parentheses for each inhibitor and
condition. Values represent mean � SEM of three independent experiments with six replicates per condition.
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Figure 3.

The PI3K/AKT/mTOR signaling pathway is upregulated in fusion and resistant cells. A, Heatmap illustrates proteins from RPPA that were differentially expressed in
FKWT relative to vector control (Empty) with an FDR of 0.05. B,Heatmap illustrates proteins from RPPA that were differentially expressed in FK p.E565A relative to
vector control (Empty) with an FDR of 0.05. C, The STRING program was used to assess known and predicted protein–protein interactions within the differentially
expressed proteins in FKWT cells. The PI3K/AKT pathway was identified with an FDR of 0.00618. D, The STRING programwas used to assess known and predicted
protein–protein interactions within the differentially expressed proteins in FK p.E565A cells. The PI3K/AKT pathway andmTOR pathways were identified with FDRs
of 1.96e-19 and of 1.08e-17, respectively. E, Western blot analysis to confirm RPPA data in NIH3T3 cells.
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Figure 4.

Combination of FGFR inhibitorswith themTOR inhibitor, INK128, reveals synergistic effects in resistant cell lines.A,Experimental design for drug combination assays.
A. In duplicate in a 96-well plate, cells were exposed to either drug A, drug B, drug A plus drug B, or no drug control with concentrations of drugs from 6.85 nmol/L to
555 nmol/L. B, CI and Fa for each combination drug value are plotted. Values are defined as displaying slight synergism, synergism, or strong synergism. Graphs
depict summary data from four independent experiments for infigratinib, AZD-4547, erdafitinib, and ponatinib.C,Average CI values are listed for drug combinations
that had Fa values greater than 0.1. SD values from four independent experiments are listed in parentheses. CI, combination index; Fa, fraction affected.
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certain organs/tissue sites, finite amounts of tissue collected, and
sampling from only one tissue site at a single time point. Furthermore,
tumor biopsies do not accurately portray the complex and complete
genetic profile of disease. ctDNA has the potential to fully capture
tumor heterogeneity including the presence of acquired secondary
resistance mutations in patients receiving targeted therapies and
therefore has the potential to overcome limitations associated with
tumor biopsies. Importantly, in 80%–90% of patients with metastatic
disease, ctDNA can accurately reconstruct the genome with a high
mutational concordance tomatched tumor tissues (36–39). In contrast
to this high mutational concordance between matched tissues and
ctDNA, studies have recently shown that tumor biopsies are inaccurate
at fully describing the landscape of acquired secondary resistance
mutations following FGFR inhibition. In a recent publication by
Goyal and colleagues, the authors demonstrated that ctDNA can
identify FGFR2mutations that were not present in the tumor biopsies
from the same patient (16). Furthermore, in the patient presented in
this study, the FGFR2 p.L617Mmutation was identified in ctDNA but
was not detected in the tissue biopsy specimen. Collectively, these
findings highlight the inter- and intratumor heterogeneity that exists
within patients. ctDNA is less invasive, can be collected serially, and
thus may be a clinically useful method to track tumor heterogeneity
with respect to acquired FGFR resistance mutations in patients.
Moving forward, upon progression we propose a combination of
tumor biopsy and ctDNA for patients with FGFR-mutant cancers.
This will enable a complementary view of genomic changes (ctDNA)
as well as transcriptomic and protein level alterations (biopsy) in
resistant tumors.

As the continuously evolving landscape of clinically relevant non-
selective and selective FGFR inhibitors expands, it is critical to catalog
these inhibitors based on their effectiveness against acquired second-
ary resistance mutations. Dovitinib, ponatinib, and lenvatinib are
nonselective TKIs that in addition to FGFR, target multiple other
receptor tyrosine kinases, including VEGFR and PDGFR (40–42).
Interestingly, our in vitro studies support the use of ponatinib follow-
ing acquisition of both the p.E565A and p.L617Msecondarymutations
as they retained sensitivity to ponatinib at nanomolar concentrations.
Unfortunately, given the nonselective activity of these inhibitors,
severe cardiovascular toxicities related to VEGFR inhibition have been
seen in patients therefore limiting their long-term clinical use (43).
Thus, there has been great interest in the development of selective
FGFR inhibitors. Currently, numerous selective ATP-competitive
FGFR inhibitors are being assessed clinically including AZD4547,
infigratinib, erdafitinib, pemigatinib (INCB054828), and LY2874455,
among others (12, 44, 45). While these inhibitors have shown prom-
ising activity in early clinical trials, they are largely ineffective at
overcoming the commonly acquired FGFR gatekeeper mutations
(FGFR1 V561M, FGFR2 V564F, FGFR3 V555M). While not consid-
ered gatekeeper mutations, the FGFR2 p.E565A and FGFR2 p.L617M
mutations we observed are located near the ATP-binding pocket and
are hypothesized to also be resistant to these selective inhibitors. Our
studies revealed cross-resistance to all selective inhibitors tested;
however, the level of resistance observed varied across the different
drugs. There has been great interest in developing novel inhibitors that
can overcome resistance mutations that arise in or near the ATP-
binding pocket. One such inhibitor is TAS120, which retained activity
in the presence of either mutation in our in vitro assays. to which the
two mutations in our studies largely still retained sensitivity. Taken
together, there is a need to define a comprehensive landscape of
mutations that develop in response to FGFR inhibition, including the
sensitivity of existing inhibitors to develop novel inhibitors.

In addition to acquired FGFR2 mutations, numerous studies have
identified activation of the PI3K/AKT/mTOR pathway following
acquired resistance to FGFR inhibition. Through RPPA analysis, we
also identified increased PI3K/AKT/mTOR activation in an FGFR
inhibitor–resistant cell line and determined that combination therapy
using an FGFR inhibitorwith themTOR inhibitor, INK128, was able to
induce synergistic effects that may be able to overcome the therapeutic
limitations posed by current mechanisms of resistance. Similarly, Hu
and colleagues found that antiproliferative effects were increased in
FGFR-addicted cells after treatment with a combination of infigratinib
and another mTOR inhibitor, rapamycin (46). In addition, a recent
study by Scheller and colleagues provides evidence for the combination
of FGFR and mTOR inhibition in hepatocellular carcinoma (47). This
concept has been expanded beyond FGFR inhibition as demonstrated
by Baselga and colleagues who showed that in hormone receptor–
positive breast cancer, the PI3K/AKT/mTOR pathway was implicated
in therapy resistance (48). As a result, the combination therapy of
exemestane, a steroidal aromatase inhibitor and everolimus, anmTOR
inhibitor, was approved for clinical use (49). These studies support the
idea that drug combination strategies involving common bypass
resistance mechanisms could provide a novel therapeutic avenue to
patients who have exhibited resistance to an existing FGFR inhibitor
while we wait the development of novel FGFR inhibitors.

Overall, our findings support the complementary use of a repeat
tumor biopsy upon progression coupled with serial ctDNA analysis
throughout treatment to characterize emerging resistance mechan-
isms in FGFR-altered cancers. Understanding genetic and proteomic
alterations will enable the rational implementation of novel combi-
nation therapeutic strategies in addition to development of novel
FGFR inhibitors to overcome acquired resistance.
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