MOLECULAR CANCER THERAPEUTICS

TABLE OF CONTENTS

HIGHLIGHTS
1957 Selected Articles from This Issue

REVIEW
1959 Ion Channels and Their Role in the Pathophysiology of Gliomas
Takeshi Takayasu, Kaoru Kurisu, Yoshua Esquenazi, and Leomar Y. Ballester

SMALL MOLECULE THERAPEUTICS
1970 Novel, Selective Inhibitors of USP7 Uncover Multiple Mechanisms of Antitumor Activity In Vitro and In Vivo
Yamini M. Ohol, Michael T. Sun, Gene Cutler, Paul R. Leger, Dennis X. Hu, Berenger Biannic, Payal Rana, Cynthia Cho, Scott Jacobson, Steve T. Wong, Jerick Sanchez, Niket Shah, Deepe Pookot, Betty Abraham, Kyle Young, Silpa Suthram, Lisa A. Marshall, Delia Bradford, Nathan Kosak, Xinping Han, Akinori Okano, Jack Maung, Christophe Colas, Jacob Schwarz, David Wustrow, Dirk G. Brockstedt, and Paul D. Kassner

Hiroshi Sootome, Akihiro Miura, Norio Masuko, Takamasa Suzuki, Yoshihiro Uto, and Hiroshi Hirai

1992 The Novel Histone Deacetylase Inhibitor, OBP-801, Induces Apoptosis in Rhabdoid Tumors by Releasing the Silencing of NOXA
Yohei Sugimoto, Yoshiki Katsumi, Tomoko Iehara, Daiuse Kanesha, Chihoro Tomoyasu, Kazutaka Ouchi, Hideki Yoshida, Mitsuji Miyachi, Shigeki Yagyu, Ken Kikuchi, Kunihiko Okano, Jack Maung, Christophe Colas, Jacob Schwarz, David Wustrow, Dirk G. Brockstedt, and Paul D. Kassner

2001 Targeting the Synthetic Vulnerability of PTEN-Deficient Glioblastoma Cells with MCL1 Inhibitors
Chao Chen, Siciao Zhu, Xia Zhang, Tingting Zhou, Jing Gu, Yurong Xu, Quan Wan, Xiao Qi, Yezi Chai, Xiaorong Liu, Lujin Chen, Jie Yan, Yunfen Hua, and Fan Lin

2012 Polyamine Blocking Therapy Decreases Survival of Tumor-Infiltrating Immunosuppressive Myeloid Cells and Enhances the Antitumor Efficacy of PD-1 Blockade
Eric T. Alexander, Kelsey Mariner, Julia Donnelly, Otto Phanstiel IV, and Susan K. Gilmour

2023 Antihistamine Drug Ebastine Inhibits Cancer Growth by Targeting Polycomb Group Protein EZH2
Qiaqia Li, Killa Y. Liu, Qiping Liu, Guangyu Wang, Weihua Jiang, Qingshu Meng, Yang Yi, Yongyong Yang, Rui Wang, Sen Zhu, Chao Li, Longxiang Wu, Dongyu Zhao, Lin Yan, Lili Zhang, Jung-Sun Kim, Xiongbing Zu, Anthony J. Kozielis, Wei Qian, Jenny C. Chang, Akash Patnaik, Kaifu Chen, and Qi Cao

2034 Targeted Radionuclide Therapy in Patient-Derived Xenografts Using 177Lu-EB-RGD
Liang Zhao, Haojun Chen, Zhida Guo, Kaili Fu, Lanling Yao, Li Fu, Wei Ji Guo, Xuejun Wen, Orit Jacobson, Xianzhong Zhang, Long Sun, Hua Wu, Qin Lin, and Xiaoyuan Chen

LARGE MOLECULE THERAPEUTICS

2044 Amivantamab (JNJ-6186372), an Fc Enhanced EGFR/cMet Bispecific Antibody, Induces Receptor Downmodulation and Antitumor Activity by Monocyte/Macrophage Trogocytosis
Smruthi Vijayaraghavan, Lorraine Lipfert, Kristen Chevalier, Barbara S. Bushey, Benjamin Henley, Ryan Lenhart, Jocelyn Sendecki, Marilda Beqiri, Hillary J. Millar, Kathryn Packman, Matthew V. Lorenzi, Sylvie Laquerre, and Sheri L. Moores

2057 Retargeted and Stealth-Modified Oncolytic Measles Viruses for Systemic Cancer Therapy in Measles Immune Patients
Eugene S. Bah, Rebecca A. Nace, Kah Whye Peng, Miguel Ángel Muñoz-Alía, and Stephen J. Russell

Downloaded from mct.aacrjournals.org on October 14, 2021. © 2020 American Association for Cancer Research.
TABLE OF CONTENTS

2068 PF-06804103, A Site-specific Anti-HER2 Antibody–Drug Conjugate for the Treatment of HER2-expressing Breast, Gastric, and Lung Cancers

2079 Preclinical Antitumor Activity and Biodistribution of a Novel Anti-GCC Antibody–Drug Conjugate in Patient-derived Xenografts

2089 Development of Anti-CD32b Antibodies with Enhanced Fc Function for the Treatment of B and Plasma Cell Malignancies

2105 Pharmacologic Properties and Preclinical Activity of Sasanlimab, A High-affinity Engineered Anti-Human PD-1 Antibody
Amir A. Al-Khami, Sawsan Youssef, Yasmina Abdicbe, HoangKim Nguyen, Joyce Chou, Christopher R. Kimberlin, Sherman M. Chin, Cris Kamperschroer, Bart Jessen, Brent Kern, Natalija Budimir, Christopher P. Dillon, Allison Xu, Jerry D. Clark, Jeffrey Chou, Eugenia Kraynov, Arvind Rajpal, John C. Lin, and Shahram Salek-Ardakani

2117 Targeting Multiple EGFR-expressing Tumors with a Highly Potent Tumor-selective Antibody–Drug Conjugate

2126 Dual Epitope Targeting and Enhanced Hexamerization by DRS Antibodies as a Novel Approach to Induce Potent Antitumor Activity Through DRS Agonism

COMPANION DIAGNOSTIC, PHARMACOGENOMIC, AND CANCER BIOMARKERS

2139 High Tumor Mutational Burden Correlates with Longer Survival in Immunotherapy-Naive Patients with Diverse Cancers
Paul Riviere, Aaron M. Goodman, Ryosuke Okamura, Donald A. Barkauskas, Theresa J. Whitchurch, Suzanne Lee, Noor Khalid, Rachel Collier, Manvita Mareboina, Garrett M. Frampton, David Fabrizio, Andrew B. Sharabi, Shumei Kato, and Razelle Kurzrock

2146 Prognostic and Predictive Biomarkers in Patients with Metastatic Colorectal Cancer Receiving Regorafenib
Yingmiao Liu, Jing Lyu, Kirsten Bell Burdett, Alexander B. Sibley, Ace J. Hatch, Mark D. Starr, John C. Brady, Kelli Hammond, Federica Marmorino, Daniele Rossini, Richard M. Goldberg, Alfredo Falcone, Chiara Cremolini, Kouros Ozwaz, Anastasia Ivanova, Dominic T. Moore, Michael S. Lee, Hanna K. Sanoff, Federico Innocenti, and Andrew B. Nixon

2155 Phase I, Pharmacogenomic, Drug Interaction Study of Sorafenib and Bevacizumab in Combination with Paclitaxel in Patients with Advanced Refractory Solid Tumors
E. Gabriela Chiorean, Susan M. Perkins, R. Matthew Strother, Anne Younger, Jennifer M. Funke, Safi G. Shahda, Noah M. Hahn, Kumar Sandrasegaran, David R. Jones, Todd C. Skaar, Bryan P. Schneider, Christopher J. Sweeney, and Daniela E. Matei

CANCER BIOLOGY AND TRANSLATIONAL STUDIES

2163 Expression of the Androgen Receptor Governs Radiation Resistance in a Subset of Glioblastomas Vulnerable to Antiandrogen Therapy
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2196</td>
<td>Dysregulation of EAAT2 and VGLUT2 Spinal Glutamate Transports via Histone Deacetylase 2 (HDAC2) Contributes to Paclitaxel-induced Painful Neuropathy</td>
<td>Xiao-Min Wang, Pan Gu, Leorey Saligan, Michael Iadarola, Stanley Sau Ching Wong, Lian Kah Ti, and Chi Wai Cheung</td>
</tr>
<tr>
<td>2221</td>
<td>Hypomorphic mTOR Downregulates CDK6 and Delays Thymic Pre-T LBL Tumorigenesis</td>
<td>Joy M. Gary, John K. Simmons, Jinfie Xu, Shuling Zhang, Tyler J. Peat, Nicholas Watson, Benjamin J. Gamache, Ke Zhang, Alexander L. Kovalchuk, Aleksandra M. Michalowski, Jin-Qiu Chen, Tuddow Thaiwong, Matti Kiupel, Snehal Gaikwad, Maudeline Etienne, R. Mark Simpson, Wendy Dubois, Joseph R. Testa, and Beverly A. Mock</td>
</tr>
</tbody>
</table>

MODELS AND TECHNOLOGIES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2221</td>
<td>Hypomorphic mTOR Downregulates CDK6 and Delays Thymic Pre-T LBL Tumorigenesis</td>
<td>Joy M. Gary, John K. Simmons, Jinfie Xu, Shuling Zhang, Tyler J. Peat, Nicholas Watson, Benjamin J. Gamache, Ke Zhang, Alexander L. Kovalchuk, Aleksandra M. Michalowski, Jin-Qiu Chen, Tuddow Thaiwong, Matti Kiupel, Snehal Gaikwad, Maudeline Etienne, R. Mark Simpson, Wendy Dubois, Joseph R. Testa, and Beverly A. Mock</td>
</tr>
</tbody>
</table>

ABOUT THE COVER

In this issue of Molecular Cancer Therapeutics, Vijayaraghavan and colleagues outline the mechanism of an anti-EGFR/anti-cMET bispecific antibody, Amivantamab. The anti-tumor efficacy of amivantamab required the Fc-dependent trogocytosis, pictured on our cover. In trogocytosis, macrophages (shown in green) acquired fragments of opsonized tumor cell membranes (shown in orange). Read the full article on page 2044.
Molecular Cancer Therapeutics

19 (10)

Updated version Access the most recent version of this article at:
http://mct.aacrjournals.org/content/19/10

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/19/10. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>