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~ prostate cancer organoids. A, Tumors derived from our Pten'®/'** and ERG Pten'®/'** GEM

models were used to establish prostate cancer organoids (3 clones for each genotype) and characterized in 3D culture conditions for histology, and IHC was
performed for ERG and AR. B, Western blotting confirming loss of Pten, activation of PI3K pathway, and ERG overexpression. C, Pten~/~ and ERG Pten™’~
organoids underwent AR Crispr (3 individual clones for each genotype) and were characterized in 3D culture conditions for histology, and IHC was performed for
ERG and AR. D, Western blotting confirming loss of Pten, activation of PI3K pathway, ERG overexpression, and loss of AR following AR Crispr.

may play arolein regulating its own expression when translocated
to the TMPRSS2 locus.

Maintenance of ERG expression promotes resistance to
combined PI3K/AR inhibition in an ERG-dependent prostate
cancer model

To evaluate the impact of ERG expression on promoting
resistance to combined PI3K/AR pathway inhibition in human
prostate cancer model systems, we constitutively overexpressed
Flag-tagged ERG or vector control in the VCaP cell line, which
harbors the TMPRSS2:ERG genomic rearrangement and estab-
lished xenograft models (10 tumors/group) for preclinical
therapeutic studies (Supplementary Fig. S1C). Similar to that
observed in our GEM model studies, the overexpression of
ERG, even at modestly low levels, promoted resistance to
combined PI3K and AR inhibition (P < 0.001; Fig. 5A). Inter-
estingly, overexpression of ERG promoted increased expression
of the AR target genes PSA and FKBP5, which remained per-
sistently higher following acute inhibition of PI3K and AR,
highlighting the interplay of ERG and AR on driving AR target
gene expression (Fig. 5B). The expression of exogenous ERG
promoted the increased expression of endogenous TMPRSS2:

www.aacrjournals.org

ERG pre- and posttreatment compared with vector control cells.
We have shown that both AR and ERG bind at the enhancer
region of TMPRSS2 and thus ERG may play a role in supporting
its own transcription from the TMPRSS20-translocated enhanc-
er region (Fig. 4C). Furthermore, in the vector control cells,
complete androgen blockade reduced but did not abolish the
AR-regulated expression of TMPRSS2:ERG and all end of study
tumors across the different cohorts displayed diffuse ERG
expression by IHC (Fig. 5C). Although pS6 levels were
repressed in the PI3K/AR treatment groups, Ki67 and PSA
staining was notably increased in the tumors with exogenous
ERG overexpression despite combined PI3K/AR-targeted ther-
apy (Fig. 5C). Furthermore, overexpression of ERG in the
androgen-dependent prostate cancer organoid MSKPCa2 pro-
moted enhanced cell proliferation in the presence of enzalu-
tamide (MDV3100) compared with vector control (Supple-
mentary Fig. S2) (13). Importantly, overexpression of ERG also
resulted in maintenance of the AR target genes PSA and STEAP1
in the MSKPCa2 prostate cancer organoids in the presence of
enzalutamide (Supplementary Fig. S2).

Our data provide a framework where in established prostate
cancers harboring ERG genomic rearrangements, ERG and AR
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Figure 3.

AR target and luminal gene expression is maintained in the presence of ERG following AR knockout. A, RNA-seq expression profiling (3 clones for each
genotype) for genes differentially expressed greater than 1.5-fold following AR Crispr in Pten™~ and ERG Pten™~ organoids shows substantial overlap in AR
targets and a subset of genes that are not differentially regulated in the context of ERG. B, AR gene signature was developed in the Pten™~ organoids following
AR knockout and then applied across our organoid models. C, Gene set enrichment analysis was performed revealing loss of enrichment for the AR-regulated
luminal gene set in Pten~ organoids following AR knockout. D, Gene set enrichment analysis was performed comparing Pten™~ and ERG Pten™/~ following
AR knockout, which demonstrated enrichment for the luminal signature in the ERG Pten™/~ AR Crispr organoids. E, Gene set enrichment analysis revealed loss of
enrichment for luminal gene sets in our Pten™/~ organoids following AR knockout. F, Gene set enrichment analysis demonstrating enrichment of basal signatures
(loss of luminal signatures) in the Pten~/~ versus ERG Pten™~ following AR Crispr.
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Figure 4.

Interaction of ERG and AR on transcription start site and enhancer regions. A, ChIP-seq analyses for ERG and AR show that in ERG Pten/~ organoids, there is

significant overlap of AR and ERG binding peaks at transcription start site and enhancer regions. B, AR knockout revealed an increase in ERG binding at enhancer
regions in a subset of genes. C, Integrated genomics view of AR and ERG chromatin binding at the enhancer regions of Tmprss2 and Fkbp5.
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Overexpression of ERG promotes resistance to combined PI3K and AR inhibition in a TMPRSS2:ERG preclinical model. A, VCaP cells harboring the TMPRSS2: ERG
genomic rearrangement display resistance to PI3K (BEZ235 30 mg/kg/day) and AR (castration + enzalutamide 30 mg/kg/day) pathway inhibition following
modest exogenous overexpression of ERG (n = 10 tumors/group). B, Western blot following acute in vivo treatment with PI3K and AR pathway inhibition.

C, Histologic and IHC analyses of VCaP tumors. D, Model of ERG and AR interaction in established prostate cancers.

AR Target gene

chromatin binding significantly overlaps and ERG is capable of Discussion

maintaining a subset of AR target genes in the absence of AR to Loss of the tumor suppressor PTEN, resulting in activation of

maintain luminal lineage and promote resistance to AR-targeted  the PI3K pathway, has been shown to promote resistance to

therapies (Fig. 5D). androgen ablation and AR-targeted strategies in a variety of
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preclinical models, but the implications of this in patients with
metastatic prostate cancer has been less consistent (6, 16). Several
studies have demonstrated that loss of PTEN is enriched in
metastatic CRPC compared with primary prostate cancers, and
loss of PTEN has been associated with less favorable response to
second-generation AR pathway-targeted therapies (7, 17, 18).
Collectively, these data have led to recent clinical trials investi-
gating the role of combined PI3K and AR pathway inhibition in
metastatic prostate cancers demonstrating loss of PTEN. However,
it has not been well studied how ERG genomic rearrangements
and the complex interaction of ERG and PTEN, which are con-
comitantly enriched in prostate cancer, impact the response to AR
or PI3K-targeted therapies. Here, we show in established preclin-
ical model systems that the expression of ERG in the background
of Pten loss promotes resistance to combined PI3K and AR
inhibition in a dose-dependent manner. Our data are directly
applicable to the small subset of prostate cancers where ERG is
rearranged to non-androgen-regulated gene promoter regions,
leading to constitutive overexpression. However, even in the
setting of the most common TMPRSS2:ERG genomic rearrange-
ment, we show that ERG expression is not abolished by second-
generation AR-targeted therapies, even modest overexpression of
ERG is sufficient to promote resistance, and ERG expression is
restored as resistance develops. Furthermore, we show that ERG
and ARssignificantly overlap at the chromatin level and that in the
absence of AR, ERG maintains the expression of a subset of AR
target genes, especially those enriched in luminal signatures, thus
negating the global phenotype of AR inhibition.

The results of our study are in slight contrast to the data
reported by Blee and colleagues, which found that ERG promoted
modest sensitivity to enzalutamide in the context of Pten and Tp53
loss (14). However, these results may be explained by the fact that
in their studies, ERG was expressed under the control of the
ARR2PB promoter, which is significantly more androgen depen-
dent compared with the endogenous TMPRSS2 promoter that
ERG is commonly rearranged to. Thus, in the context of ERG
dependency, loss of ERG expression as driven by ARR2PB may be
a driving force in the modest sensitivity of enzalutamide in this
model system. Importantly, these tumors still displayed growth
throughout treatment and following 3 weeks of therapy were
found to express ERG in the growing population of cells, and
similar to our findings, these investigators also found that ERG
promoted a luminal phenotype (14). In addition, a recent study
by Knuuttila and colleagues, reported that ERG-positive prostate
cancers had enhanced androgen-regulated gene expression pos-
sibly through activation of testosterone-independent DHT syn-
thesis (19). Thus, in TMPRSS2:ERG rearranged tumors, activation
of AR target genes and maintenance of ERG expression is crucial.

The androgen receptor plays a dominant role in prostate cancer
and is a driver luminal differentiation (20, 21). Previous studies
have demonstrated that inhibition of AR promotes loss of a
luminal phenotype with associated dysregulation of luminal
associated genes, and therapeutic efficacy for androgen-
dependent prostate cancers (20). Furthermore, as androgen-
dependent prostate cancers evolve in the setting of AR-targeted
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therapies, a subset will dedifferentiate to an AR-negative neuro-
endocrine or double negative phenotype as a mechanism of
resistance (22, 23). Here, we show that in addition to AR, ERG
is capable of maintaining expression of genes associated with
luminal signatures independent of AR and promoting resistance
to AR lineage-targeted therapies; this may explain in part the low
frequency of ERG genomic rearrangements in AR-negative neu-
roendocrine prostate cancers (1).

On the basis of the exciting results of the ipatasertib and
abiraterone phase II clinical trial, there is tremendous enthusiasm
for combining PI3K and AR pathway inhibitors in patients with
prostate cancers harboring loss of PTEN (7). Our data would
suggest that ERG-positive prostate cancers harboring loss of PTEN
will be less responsive to combination therapy, and as the clinical
trials mature, this can be directly addressed in patients. Further-
more, our data suggest the optimal way of inhibiting ERG activity
may not be through AR-targeted strategies, highlighting the
importance of further understanding the molecular biology of
ERG in prostate cancer and discovering more potent ways of
targeting ERG therapeutically.
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