AKT Inhibition Modulates H3K4 Demethylase Levels in PTEN-Null Prostate Cancer

Mohammad Imran Khan1,2,3, Abid Hamid3,4, Suvasmita Rath3, Bushra Ateeq5, Qateeb Khan3, Imtiaz A. Siddiqui3, Vaqar Mustafa Adhami3, Hani Choudhry1,2, Mazin A. Zamzami1,2, and Hasan Mukhtar3

Abstract

Hyperactivated AKT kinase due to loss of its negative regulator PTEN influences many aspects of cancer biology, including chromatin. AKT primarily regulates acetyl-CoA production and phosphorylates many histone-modulating enzymes, resulting in their activation or inhibition. Therefore, understanding the therapeutic impact of AKT inhibition on chromatin-related events is essential. Here, we report that AKT inhibition in prostate-specific PTEN knockout mice significantly induces di- and trimethylation of H3K4 with concomitant reduction in H3K9 acetylation. Mechanistically, we observed that AKT inhibition reduces expression of the H3K4 methylation-specific histone demethylases KDM5 family, especially KDM5B expression at transcriptional levels. Furthermore, we observed that AKT negatively regulates miR-137 levels, which transcriptionally represses KDM5B expression. Overexpression of miR-137 significantly reduced KDM5B and increased H3K4 methylation levels but failed to change AKT phosphorylation. Overall, we observed that AKT transcriptionally regulates KDM5B mainly via repression of miR-137. Our data identify a mechanism by which AKT kinase modulates the prostate cancer epigenome through regulating H3K4 methylation. Additional studies on AKT inhibition-mediated induction of H3K4 methylation will help in designing strategies to enhance the therapeutic efficacy of PI3K/AKT inhibitors.

Introduction

Our knowledge regarding cancer initiation, propagation, and therapy resistance has received renewed attention as these events are highly governed and regulated by epigenetic machinery. The epigenetic machinery, that is, histone acetyltransferases, methyltransferases, and demethylases are regulated at both expression and activity levels by many factors that include growth and survival kinases. Among them, serine and threonine kinase AKT also known as protein kinase B (PKB) has evolved as a major kinase that regulates expression and activity of various chromatin modifiers.

Recently, AKT activation in tumorigenic conditions have been known to not only regulate oncogenic signaling but also modulate the metabolism of tumorigenic cells. Activated AKT facilitates higher glucose uptake and increased acetyl-CoA production mainly by stimulating ATP-citrate-lyase (ACLY) enzymatic activity through phosphorylation at Ser545 site within the activation loop (1, 2). Indeed, hyperactivated Akt results in increased histone acetylation and phosphorylation of ACLY under both in vitro as well as in vivo conditions (3). The AKT-mediated hyperactivation of ACLY derives increased conversion of glucose-derived citrate into acetyl-CoA, which is a main donor of acetyl group required for protein acetylation (4). Therefore, Akt activation leads to sustained histone acetylation in several cancer types by altering acetyl-CoA concentrations. The impact of activated AKT is not only limited to histone acetylation, but also modulates histone methylation. AKT phosphorylates the major component of polycomb repressive complex 2 (PRC2) namely Enhancer of zeste homolog 2 (EZH2), an H3K27 histone methyltransferase, inhibiting its methyltransferase activity and reducing overall repressive histone mark H3K27me3 (5). The impact of AKT-mediated phosphorylation switches EZH2 from transcriptional repressor to a transcriptional coactivator of target oncogenic genes (6).

Furthermore, AKT facilitates the repression of tumor suppressor genes like CDKN2A by phosphorylating BMI1, a polycomb repressive complex 1 (PRC1) involved in gene repression (7). Apart from methyltransferases, AKT phosphorylates histone acetyltransferase MOZ to regulate the expression of senescence-associated genes (8). All the above-mentioned reports clearly present a global impact of AKT on acetylation and methylation events related to histones. However, it remains unclear whether AKT regulates the function and expression of...
histone demethylases and, if so, whether this AKT-mediated regulation is critical for oncogenic growth.

Here, we report that AKT inhibition dramatically represses histone demethylases especially KDM5B expression at transcriptional level. Furthermore, we observed that AKT represses expression of KDM5B via targeting miR-137. Forced miR-137 expression reduces KDM5B and induces H3K4me3 levels under conditions of heightened AKT. Our work provides a novel mechanism for AKT-mediated regulation of prostate cancer epigenome.

Materials and Methods

Cell culture

All the cell lines (nontumorigenic and tumorigenic cell lines) used in this work were obtained from ATCC. The cell lines were characterized and authenticated by ATCC using a comprehensive database of short tandem repeat DNA profiles. All cell lines were well maintained in the laboratory based on the guidelines suggested by ATCC.

Generation of the prostate-specific Pten floxed: ProBasin-Cre4 (Pten-KO) mouse

We generated mice in our laboratory by crossing Pten floxed (loxp/loxp) with PB-Cre (PB-Cre4) as described earlier (9). The Jackson Laboratory mice (Pten-KO) mouse used were from the similar C57/BL6J background. The (Pten-KO) mouse (floxed: ProBasin-Cre4) was generated by ATCC. The cell lines were obtained from ATCC. The cell lines were well maintained in the laboratory based on the guidelines suggested by ATCC.

Histone extraction

In vitro histone extraction was performed in both groups by using a commercially available kit from Qiagen. (EpiQuik Total Histone Extraction Kit catalog number OP-0006-100). Briefly, for histone isolation, 1 to 2 mg mouse tissues were used. Protein estimation of isolated histones was done using standard BSA method and isolated histones were stored at −80°C for storage and further use.

Knockdown/overexpression using small RNA interference

Human SMARTpool ON-TARGETplus AKT1 siRNA (L-003000-00-005 5 nmol). Human SMARTpool ON-TARGETplus AKT2 siRNA (L-003001-00-0005 5 nmol) and nontargeting siRNA (D-001210-01-05) were purchased from Dharmacon and transfection was performed using well-established manufacturer's protocol.

Real-time qPCR analysis for mRNA expression

Briefly, RNA was extracted from the nontumorigenic, tumorigenic (PC3) and mouse tumor tissue (Pten-KO mice) samples using RNeasy Kit (Qiagen), and reverse transcribed with iScript Reverse Transcription SuperMix Kit (Bio-Rad). cDNA (1–100 ng) was amplified in triplicate using gene-specific primers;

- mKdm5a Fw: GGGTTTCTAAAGTGTAGATCT Rv: TGCTTCTTCTGCTATTCTAC
- mKdm5b Fw: GGGTTTCTCAAATGTGTGTGCRv: GCAGAGAGCTGGAATTCACA
- mKdm5c Fw: CGCTTCTAAGATGGATCT Rv: CCACACATCAGGAGCTTCTT
- mKdm5d Fw: ATCCTCTACACCTCTCAAGG Rv: TTGTCTCTA-GGCGTGCGCCGT

Threshold cycle (Ct) values obtained from the instrument's software were used to calculate the fold change of the respective mRNAs. ΔΔCt was calculated by subtracting the Ct value of the housekeeping gene from that of the mRNA of interest. ΔΔCt for each mRNA was then calculated by subtracting the Ct value of the control from the experimental value. Fold change was calculated by the formula 2−ΔΔCt.

Transfection with pre-miRs

The individual precursors of miRNAs (pre-miR) used in this study were purchased from Invitrogen. Cells were transfected with pre-miRs at 100 nmol/L working concentration, using Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer's protocol (http://tools.thermoshifizer.com/content/sfs/manuals/Lipofectamine_RNAiMAX_Reagents_protocol.pdf). For pre-miR negative control #1 (Invitrogen) was used as a scrambled control. Treatment proceeded for 72 hours before RNA extraction and/or Western blot analysis.

RNA purification and miRNA quantitative PCR

Extraction of miRNA was carried out by using a commercially available kit from Qiagen (miRNAeasy Kit catalog number # 217004) following the manufacturer's instructions (https://www.qiagen.com/us/shop/sample-technologies/rna/total-ma/measy-mini-kit/#orderinginformation). For miRNA quantitative PCR, total RNA (10 ng) was reverse transcribed with the TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems) and specific primers. For miRNA quantitation, the 7500 Fast Real-Time System (Applied Biosystems) was used in conjunction with gene-specific TaqMan assay kits for miR-137, miR-138, and RNU6B. RNU6B was used as an endogenous control to normalize the expression of target miRNAs.

Analysis of histone PTMs

ELISA-Based Quantification Kit was used to measure global histone H3 modifications. Briefly, H3 modification multiplex array (EpiQuik Histone H3 Modification Multiplex Assay Kit, www.aacrrjournals.org Mol Cancer Ther; 18(2) February 2019 357
AKT kinase inhibition modulates global epigenome marks and induces H3K4 methylation. A, Histograms show fold change in H3 histone modifications after treatment with AKT inhibitor perifosine using the Epiquick Histone Modification Multiplex Assay Kit in PTEN-deficient in vivo samples. Error bars, SEM. B, Western blot analysis (n = 3) of tissue extracts isolated from wild-type and PTEN-knockout mice samples after perifosine treatment showing expression pattern of H3K4Me1/2/3 proteins. C, Western blot analysis (n = 3) of perifosine-treated PTEN-null PC3 cell lines at 6- and 24-hour time point. Total H3 histone was used as loading control. D, Representative photomicrographs (magnification, ×10 and ×40) showing IHC staining for p-AKT and caspase-3 in Pten wild-type and knockout tumor sections of vehicle- or perifosine-treated mice.

H3K4 demethylase activity assay
The H3K4-specific demethylase activity was performed by using a commercially available kit from Abcam [KDM5/JARID Activity Quantification Assay Kit (Colorimetric) # ab113463]. The JARID Demethylase Assay Kit was capable of measuring activity or inhibition of total JARID subtypes and required cellular nuclear extracts.

IHC analysis
Sections (4–8 μm) were obtained from the fixed blocks of both tissue types (normal and tumor). Initially before starting the staining procedure, slides were warmed at room temperature for 5 minutes. Tissues were stained using anti-caspase 3 (Cell Signaling Technology; mab #9664) followed by goat anti-rabbit HRP-Polymer (Biocare) as a secondary antibody. Anti-pAkt[ser473] (Cell Signaling Technology; mab #4060) was applied and goat anti-rabbit HRP-Polymer (Biocare) was used as a secondary antibody. DAB chromogen was used for both antibodies for detection. Data acquisition and image analysis were performed as per standard methodology.

In vivo tumor xenograft mouse study
Athymic (nu/nu) male nude mice (Harlan) were housed under pathogen-free conditions with a 12-hour light/dark schedule and fed with an autoclaved diet ad libitum. We chose PTEN-null PC3 cells for determining the in vivo effects of perifosine, DZNep alone, and their combination. Thirty-two animals were then randomly divided into four groups, with 8 animals in each group. The first group of animals received intraperitoneal injection of vehicle (DMSO; 30 μL) and served as control. Furthermore, group 2 received intraperitoneal injection of perifosine (30 mg/kg bodyweight) twice weekly, group 3 received intraperitoneal injection of DZNep (1 mg/kg bodyweight) twice weekly, and group 4 received intraperitoneal and intradermal injection of perifosine and DZNep twice weekly. In both groups, the sizes of tumors were measured twice weekly (11). Once, the tumor size reaches to a volume of 1,200 mm³ in the control group, all animals of both groups were sacrificed.

Statistical analysis
Data were analyzed using GraphPad Prism (version 5; GraphPad Software). Two-tailed, unpaired t-test was used. Data points in graphs represent mean ± SD, and P values <0.05 were considered statistically significant.
Transcriptional Regulation of KDM5B by AKT

Results

In vivo AKT inhibition induces H3K4 methylation

To understand the global impact of in vivo AKT inhibition on histone (H3) modifications, histone protein samples were collected from vehicle and perifosine-treated Pten-KO mice. We observed a statistically significant upregulation of H3K4 di- and trimethylation in perifosine-treated samples when compared with control. We also noted a significant reduction in H3K9me3 and H3K36me2 along with statistically significant induction in H3K79me1. Furthermore, we found a statistically significant reduction in H3K14ac in perifosine-treated Pten-KO mice when compared with control (Fig. 1A). Our data suggest that AKT inhibition globally affects chromatin by modulating various histone marks. Because we observed a consistent reduction in H3K4 methylation levels, which was recently shown to be regulated by AKT kinase in breast cancer, we decided to focus on this histone mark in all further current studies.

We next evaluated by Western blotting the H3K4 methylation status in samples from in vivo as well as in vitro models treated with perifosine. We observed a statistically significant increase in expression of H3K4Me3 and H3K4Me2 levels in perifosine-treated Pten-KO mice samples when compared with vehicle (Fig. 1B), whereas no change was observed in H3K4Me1 level. Perifosine significantly suppressed AKT phosphorylation and dramatically affected the morphology of prostate in treated group (Fig. 1B; Supplementary Fig. S1A–S1C). Furthermore, H3K4 methylation status was validated in PTEN-null prostate cancer cell line PC3. In agreement with our in vivo results, we observed a statistically significant increase in H3K4me1/2/3 levels after 6 hours that showed a decrease at 24 hours when compared with untreated controls (Fig. 1C). We also observed a clear reduction in phospho-AKT levels at both time points. In addition, we also observed a clear reduction in phospho-AKT levels along with increase in staining intensity of caspase-3 (apoptosis marker) in perifosine-treated group when compared with vehicle-treated (Fig. 1D). Overall, we observed broad changes in various histone marks during inhibition of AKT kinase both in vitro and in vivo.

AKT inhibition reduces KDM5B expression level

The H3K4 di- and trimethylation is demethylated by the JARID1 subfamily of JmjC proteins, which encompasses four members: KDM5A (JARID1A), KDM5B (JARID1B), KDM5C (JARID1C), and KDM5D (JARID1D; refs. 11, 12, 13). Because we observed H3K4 methylation mark changes during AKT kinase inhibition in our study and the KDM5 family of proteins is known to interfere in the AKT pathway (14), we decided to focus on this family of demethylases only.

First, we assessed the mRNA expression of all KDM5 family demethylases (KDM5A-D) in perifosine-treated Pten-KO mice samples in control as well as perifosine-treated conditions in duplicate. Vinculin was used as a loading control. Bars represent normalized data (mean ± SEM, n = 3; *P < 0.05, †P < 0.005). We next evaluated by Western blotting the H3K4 methylation status in samples from in vivo PTEN-null mice. We also noted a statistically significant reduction in H3K9me3 and H3K79me1 levels after 6 hours that showed a decrease at 24 hours when compared with untreated controls (Fig. 1C). We also observed a statistically significant increase in H3K4me1/2/3 levels after 6

Figure 2.

AKT kinase inhibition reduces histone demethylase KDM5B. A, qPCR analysis of selective HDMs in AKT inhibitor–treated in vivo samples showing mRNA expression patterns. 18S actin was used as loading control. B, Western blot analysis (n = 3) of tissue extracts isolated from wild-type and PTEN-knockout mice samples in control as well as perifosine-treated conditions in duplicate. Vinculin was used as a loading control. Bars represent normalized data (mean ± SEM, n = 3; *P < 0.05, †P < 0.005). C, PCR cell line PC3 cell line PC3 cells transfected with nontarget siRNA and siRNA targeting AKT1 as well as AKT2. In another set of experiments, PC3 cells were treated with perifosine for 6 and 24 hours. Vinculin was used as a loading control.

© 2019 American Association for Cancer Research. Published OnlineFirst November 16, 2018; DOI: 10.1158/1535-7163.MCT-18-0141
samples and observed a statistically significant reduction in KDM5B mRNA expression when compared with control (Fig. 2A). These observations led us to conclude that KDM5B is the AKT-targeted histone demethylase in our experiments. Second, we observed similar KDM5B protein expression using Western blot analysis (n = 3) in perifosine-treated Pten-KO mice samples when compared with control (Fig. 2B). We anticipated a mechanism that regulates KDM5B expression at transcriptional level after AKT inhibition. To assess this, KDM5B mRNA levels were estimated both in AKT1/2 siRNA as well as inhibitor-treated PTEN-null PC3 cells. In the first set of experiments, AKT1/2 siRNA were transfected to PC3 cells, whereas in the other experimental setup, PC3 cells were treated with AKT inhibitor perifosine for various time points, that is, 3, 6, and 24 hours. Our data showed a statistically significant decrease in KDM5B mRNA expression in both the experimental conditions after AKT inhibition (Fig. 2C). We also observed reduced KDM5B protein expression in samples isolated from PTEN-null PC3 cell lines after perifosine treatment for 6 and 24 hours (Fig. 2D). Finally, we measured KDM5 enzymatic activity in nuclear lysates and observed a significant reduction in KDM5 enzymatic activity in perifosine-treated Pten-KO mice samples when compared with control (Fig. 2E).

AKT inhibition induces miR-137 expression to transcriptionally regulate KDM5B levels

Various miRNAs are involved in AKT-regulatory network and are affected by alteration in AKT activity (15). To understand the transcriptional regulation of KDM5B by AKT, we focused on miR-137, as this has been shown to transcriptionally regulate H3K4 demethylases. Also, the involvement of miR-137 in the AKT pathway has been reported previously (16), and overexpression of miR-137 was shown to suppress PI3K/AKT activity in different model systems (17–19).

We found a statistically significant upregulation in miR-137 expression levels in perifosine-treated Pten-KO mice samples when compared with control. These findings were further confirmed in Pten-null PC3 cells treated with perifosine (Fig. 3A). Next, we investigated the effect of miR-137 overexpression on KDM5B expression at both transcriptional and translational levels. In the first experiment, PC3 cells were transfected with miR-137 construct alone or in combination with miR-137 inhibitor. Our results showed significant downregulation of KDM5B mRNA expression as compared with KDM5A and KDM5C, which was reverted after treatment with miR-137 inhibitor (Fig. 3B). Furthermore, we found that miR-137 overexpression significantly reduces KDM5B protein expression and concomitantly increases H3K4me3 and

Figure 3.

A KT negatively regulates miR-137 expression to transcriptionally regulate KDM5B levels. A, Histograms represent pattern of miR-137 expression in samples isolated from perifosine-treated mice against control samples showed by qPCR. BSA actin was used as loading control. B, Histograms showing RNA levels of KDM family from PC3 cells transfected with miR-137 overexpression constructs and miR-137 inhibitor by qPCR. C, PC3 cells were transfected with miR-137-overexpressing constructs, and whole-cell lysates were analyzed by Western blotting to study the status of KDM5B protein along with p-AKT and H3K4 methylation marks. Vinculin was used as loading control. Bars depicting normalized data (mean ± SEM, n = 3), **, P < 0.05.
H3K4me2 levels, confirming our earlier results. However, no change in phosphorylation status of AKT was observed (Fig. 3C). These results suggested that AKT transcriptionally regulates KDM5B levels mainly via repression of miR-137.

AKT inhibitor synergies with DZNeP

Because we observed a clear modification in various histone methylation marks during AKT kinase inhibition, we hypothesized that the combination of AKT inhibitor with a methyltransferase inhibitor such as DZNeP (20, 21) could provide better remission of PTEN-null–driven tumorigenicity and tumor growth. For this purpose, we implanted PTEN-null PC3 cell lines in NOD/SCID mice and treated them with either an AKT inhibitor alone or in combination with DZNeP. We then measured tumor volume for 3 weeks postimplantation. As hypothesized, we found a significant reduction in tumor volume in the combination-treated group when compared with groups treated alone with either AKT inhibitor or DZNeP alone (Fig. 4A and B).

Discussion

The major findings of the current work are as follows: (i) AKT inhibition induces global H3K4 methylation levels. (ii) AKT negatively regulates miR-137 to transcriptionally repress KDM5B expression. (iii) Forced expression of miR-137 reduces KDM5B and induces H3K4me3 levels. (iv) AKT inhibitor synergies with DZNeP to reduce tumorigenicity of PTEN-null prostate cancer cells. Inhibition of PI3K/AKT pathway plays a significant role in many prostate cancer therapeutics (22). A recent finding found that AKT inhibition reduces levels of H3K4 trimethylation levels in breast cancer cells (14). However, surprisingly we observed induction of H3K4me2/3 methylation levels in AKT inhibitor–treated PTEN-null prostate cancer models. We speculate that this discrepancy could be due to the use of a different model in our study. However, at the same time, it would be interesting to understand the impact of AKT inhibition on cellular localization of KDM5B and H3K4me2/3 along with their chromatin localization in our model. Our observations suggest that AKT-driven KDM5B expression is important for tumorigenicity of PTEN prostate cancer cells. This notion is supported by previous studies that also showed the proteomic role of KDM5B in prostate cancer (23–25).

We further conducted in-depth experiments to understand the transcriptional regulation of KDM5B by AKT kinase in PTEN-null prostate cancer. Aberrant KDM5B expression influences miRNA expression and affects cancer progression (26). Conversely, miRNA can also regulate KDM5B expression. A very recent finding explained KDM5B, as a target of miR-137 in breast cancer cells (27) that also reduced proliferative nature of breast cancer cells. Hence, we wanted to study the involvement of miRNAs in AKT-driven transcriptional regulation of KDM5B. Our results revealed a significant change in miR-137 mRNA expression in AKT inhibitor–treated PTEN-null samples. We further validated the effect of miR-137 overexpression and confirmed downregulation of KDM5B mRNA that is reverted after treatment with miR-137 inhibitor. Furthermore, increased KDM5B protein expression and induction of H3K4me2/3 methylation was also observed in miR-137–overexpressing PTEN-null cell lines. However, no change in AKT phosphorylation after miR-137 overexpression was observed. Therefore, we believe that miR-137 acts downstream of AKT kinase. However, this notion requires further validation.

Our data regarding regulation of KDM5B expression by miR-137 in PTEN null conditions is in clear agreement with earlier studies (28, 29). The oncogenic roles of KDM5B are now well explored in prostate cancer; however, information regarding its regulation at both transcriptional and translational levels still remains scarce. Recently, Lu and colleagues 2015 (30) showed SKP2-mediated translational regulation of KDM5B protein expression in Pten/Trp53–mutant prostate cancer. Our novel observations now add an additional layer of KDM5B regulation at transcriptional levels in PTEN-null prostate cancer.
In conclusion, our data clearly identified a mechanism by which AKT alters the epigenome of prostate cancer, primarily through regulating H3K4 methylation and KDM5B expression. These biochemical and molecular mechanisms of histone demethylases. Carcinogenesis 2013;34:905–909.

Molecular Cancer Therapeutics

AKT Inhibition Modulates H3K4 Demethylase Levels in PTEN-Null Prostate Cancer

Mohammad Imran Khan, Abid Hamid, Suvasmita Rath, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-18-0141

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2018/11/16/1535-7163.MCT-18-0141.DC1

Cited articles
This article cites 30 articles, 11 of which you can access for free at:
http://mct.aacrjournals.org/content/18/2/356.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/18/2/356.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.