


















Figure 5.

PANC1 spheroids have lower capabilities to compensate for interference with DDR. A, g-H2AX formation after 24 hours of treatment with inhibitor #1 (left) and 3
mmol/L gemcitabine (right) in PANC1 spheroids (red color) and monolayer cells (blue). Graph indicates mean number of g-H2AX–positive cells of 100 examined
cells; N¼ 3 independent experiments. Representative immunofluorescence images on right; scale bars, 5 mm. B, DNA damage in PANC1 spheroids (red) and 2D
monolayer cells (blue) treated for 4 hours with 3 mmol/L of gemcitabine (gemcitabine withdrawn after 4 hours) followed by treatment of inhibitor #1 for 24 hours
at indicated concentrations. C, Induction of g-H2AX (left) and cleaved caspase 8 levels (right) in PANC1 spheroids (red) compared with monolayer cells (blue)
treated with 3 mmol/L gemcitabine for 24 hours after transfection with scramble siRNA or TAOK3 siRNA for 48 hours (mean of 100 examined cells of N¼ 3
experiments, representative immunofluorescence images are shown). Impact of loss of (D) ATM and (E) ATR on g-H2AX and cleaved caspase 8 levels after
treatment with gemcitabine in PANC1 spheroids vs. 2D monolayer cells.
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function of tumor initiating or CSCs (10, 37). CSCs enhance their
DNA repair mechanisms in a variety of ways to protect their
genome from accumulated replication errors during the pro-
longed period of quiescence (10, 13, 38).

RNAi silencing of the top targets of inhibitor #1 highlighted
several compelling leads including the TAOK3 which has been
reported to affect responses to cellular genotoxic events and

mediate DNA damage–induced G2–M checkpoint control via
activation of p38 signaling (39). Loss of TAOK3 either via RNAi
knockdown or treatment with inhibitor #1 affected DDR. Spher-
oids did hereby have in comparison with 2D monolayer cells a
clearly limited reserve to cope with interference in DDR in
response to genotoxic stress which was also shown after silencing
of other DDR components. TAOK3 provides hereby an essential

Figure 6.

Elevated TAOK3 expression is a
feature of pancreatic cancer cells
displaying CSC signatures. A,
TAOK3 gene expression measured by
qRT-PCR in cell lines PANC1, L3.6pl,
and KLM-1. Expression levels in
monolayer cells were set to #1 and
used as a reference to calculate the
fold difference in spheroids (in
triplicates; N¼ 5). B,Overexpression
of TAOK3 transcripts in pancreatic
cancer clinical specimens compared
with matched uninvolved normal
pancreas (derived from gene sets
GSE15471, GSE16515, and GSE28735).
C, Enforced expression of TAOK3
increases expression levels of
stemness genes SOX2, NANOG, and
CD44. Expression levels of stemness
genes in empty vector control cells
were set to 1 (in triplicates, mean
expression levels and SEMs ofN¼ 3
independent experiments are shown,
fold difference mRNA expression
indicated on top). D, Anchorage-
independent growth after 14 days of
incubation on soft agar of
nontransfected cells, KLM-1 cells
transfected with empty vector GFP
control, and with TAOK3.
Representative soft-agar plates
shown on top. E, Tumor volumes in
nu/nu mice inoculated with 1,000
KLM-1 cells transfected with empty
vector GFP control (EV) or
overexpressing TAOK3 (TAOK3OE) at
60 days after implantation (top), and
longitudinal measurements shown on
bottom. Representative images of
animals on right, tumors indicated by
black cycle. F, TAOK3 increases
metastasis in NSG KLM-1 mice.
Representative liver, primary tumor
specimens at necropsy of animals and
histopathology (H&E) of livers shown
on the left. Quantification of liver
metastasis (liver metastasis/mm2

calculated as the sum of areas of
individual metastasis of examined liver
section) and primary tumor weights
shown on right.

TAOK3 Is a Novel Target in Pancreatic Cancer Stem Cells

www.aacrjournals.org Mol Cancer Ther; 18(11) November 2019 2107

on January 26, 2022. © 2019 American Association for Cancer Research. mct.aacrjournals.org Downloaded from 

Published OnlineFirst August 8, 2019; DOI: 10.1158/1535-7163.MCT-18-1011 

http://mct.aacrjournals.org/


Figure 7.

Loss of TAOK3 reduces CSC traits in pancreatic cancer cells. A, SOX2, NANOG, and CD44mRNA expression measured by qRT-PCR (UnTx, untreated cells;
Scramble KD, scramble siRNA). B, TAOK3 loss decreases anchorage-independent growth. Colony formation on soft agar 14 days after transfection with scramble
and anti-TAOK3 siRNA (y axis depicts number of colonies; N¼ 3). C, Treatment with inhibitor #1 reduces colony formation compared with gemcitabine. Number
of colonies of PANC1 monolayer cells and spheroids after treatment with 100 nmol/L and 500 nmol/L inhibitor #1 or 3 mmol/L gemcitabine. Colony numbers after
14 days are depicted on y axis. D, Expression levels of stemness genes measured by qRT-PCR after 24 hours of treatment with inhibitor #1 and gemcitabine
compared with vehicle-treated values in both PANC1 monolayer cells and spheroids. E, Inhibitor #1 reduces cleaved NOTCH1 levels in PANC1 cells. Quantitative
immunofluorescence of PANC1 2Dmonolayer cells (representative images, top row) and spheroids (bottom) treated for 24 hours with 500 nmol/L inhibitor #1 or
3 mmol/L gemcitabine. Quantification of mean fluorescence intensity (100 cells examined, N¼ 2 independent experiments, in triplicates) on bottom. F, Inhibitor
#1 reduces CD44 expression on PANC1 spheroids. Flow cytometry histogram of vehicle (blue) and inhibitor #1-treated (red) PANC1 spheroids.
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link betweenDDR competency and stemness. TAOK3was noted to
beupregulated inpancreatic spheroidmodels and forcedexpression
of TAOK3 increased the expression of SOX2, NANOG, and CD44.
Overexpression of TAOK3 increased colony formation and in vivo
tumor initiation andmetastatic burden. Conversely, knockdown of
TAOK3hadanegative influence on stemness traits. Previous reports
connecting DDR competency and cancer stemness–like phenotype
included ATMwhichwas shown to be a checkpoint for self-renewal
in melanocytes, p38 MAPK negatively regulating stemness pheno-
types in NSCLC, aurora kinase promoting metastasis via the acqui-
sition of stem cell–like properties and epithelial-mesenchymal
transition (EMT), or RAD6 promoting stemness and DDR in
ovarian cancer (40–43). Thus, there is intense interest in the devel-
opment of DDR inhibitors like CHK, PARP, or p38 inhibitors in
combination with cytotoxic chemotherapy to overcome the chal-
lenges ofdrug resistancemediatedbyCSCs (44, 45). In this regard, a
first-in-human early clinical signal of targeting TAOK3-related sig-
naling was just released. Using the small-molecule ATR inhibitor
M6620, with ATR being directly upstream of TAOK3, in combina-
tion with topotecan, M6620 showed within a phase I study early
clinical activity in solid organ cancers heavily pretreated with
cytotoxic chemotherapy (46). It has tobe seen if currently employed
agents targeting CHK1, CHK2, WEE1, or DNA-PK in combination
with current standard-of-care therapies are the best anti-CSC
option (45). In this regard, the synergistic combinations derived
frommatrix screening of spheroids in this study provide novel leads
for addressing tumor heterogeneity. For example, the strong coop-
erativity of DDR and proteasome inhibitors seem to suggest yet
unexplored options targeting the CSC-like phenotype.

The presented study is not without limitations. Although
TAOK3 promotes metastasis, we cannot define how much of the
antimetastasis effect of inhibitor #1 in the NSG PANC1 mice is
due to inhibitor #10s anti-TAOK3 effect. It is possible that the
previously described antimetastasis mechanism of action of
aurora kinase inhibitors is predominantly driving this pheno-
type (41). Although the combination of in vitro RNAi studies in
3D spheroids suggests cooperativity between the individual tar-
gets of inhibitor #1, their individual impact might be different
in vivo (47, 48).

In summary, based upon these studies, TAOK3 appears to be a
novel anti-CSC target as it mediates CSC traits including tumor
initiation andmetastasis formation. The increased dependency of
tumor spheroids on TAOK3 and DDR function may yield a novel
mean for the selective reduction, or eradication, of CSC
populations.
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