












that the override of the weak paclitaxel-induced SAC with
low concentrations of BOS172722 may explain the synergistic
increase in cell death.

Simultaneous combination of BOS172722 with paclitaxel for
24 hours induces maximum synergy

In order to better delineate the time that is required for the
combination of paclitaxel and BOS172722 to exert a syner-
gistic effect, we incubated MDA-MB-231 cells with BOS172722
for distinct periods of time and analyzed the induced syner-
gism with paclitaxel. We observed that incubation of both
drugs for 12 hours had only a limited synergistic effect in
MDA-MB-231 cells (Supplementary Fig. S4D). We then
explored the synergy of paclitaxel and BOS172722 in associ-
ation with the incubation time in wash-off long-term clono-
genic assays in MDA-MB-231 cells. We found that the combi-
nation of 1 nmol/L paclitaxel with 10 nmol/L BOS172722 was
as efficacious as higher concentrations of each individual drug
(Fig. 4C). We were also interested in investigating whether

sequential addition of the drugs had any benefit over simul-
taneous treatment on the degree of synergism seen. The addi-
tion of BOS172722 following paclitaxel treatment or the
opposite had no superior effect over the simultaneous addi-
tion (Supplementary Fig. S4E). Therefore, simultaneous
administration of drugs is potentially the most beneficial in
clinical studies. Based on our data, we propose the following
model (Fig. 4D): Treatment with paclitaxel induces mitotic
arrest with unaligned chromosomes due to impaired MT
dynamics and partial inactivation of the SAC due to the
presence of kinetochore-MT attachments in some chromo-
somes. Cancer cells can escape mitotic arrest by mitotic slip-
page and/or following metabolism/excretion of the drug. Not
all cells will have lethal levels of chromosomal abnormalities.
Treatment with paclitaxel in combination with BOS172722
completely prevents chromosome alignment in cancer cells
due to impaired MT dynamics and dramatically reduced time
in mitosis. All cells exit mitosis with gross chromosomal
abnormalities and are not viable.

Figure 3.

Synergy of BOS172722 with standard-of-care drugs in TNBC cell lines and mechanistic studies. A, Bar chart of synergism volumes of BOS172722 with paclitaxel,
eribulin, and doxorubicin in TNBC cell lines. B, FACS analysis of the cell-cycle distribution in MDA-MB-231 cells after 24-hour incubationwith indicated drugs.
C, Evaluation of the SAC in response to treatment with paclitaxel and BOS172722. Hela cells were incubated with paclitaxel, BOS172722 or a combination of both.
Mitotic timing was then assayed by live-cell imaging as the time from nuclear envelope breakdown until the start of anaphase. Box plots showmedian, 25th to
75th percentile, and min/max values. D, HeLa cells, stably transfected with H2B-mCherry were treated with the indicated compounds. More than 60 cells were
analyzed for each condition. The graph depicts the quantification of chromosome alignment errors as measured by live-cell imaging.
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In vivo pharmacodynamic activity of BOS172722
In pharmacodynamic (PD) experiments in vivo BOS172722

potently inhibits the SAC induced by paclitaxel in human
tumor xenograft models of TNBC (MDA-MB-231), as measured
by inhibition of the mitotic marker phosphorylated histone H3
(p-HH3) by immunofluorescence microscopy (Fig. 5A, right
graph; 5B, bottom). We confirmed that this effect is mediated
by MPS1 inhibition by demonstrating reduction of the
mechanism-related proximal biomarker phosphorylated-KNL1
(p-KNL1) by IHC (Fig. 5A, left graph; 5B, top). KNL1 is a
natural substrate of MPS1 and is phosphorylated upon initia-
tion of SAC activation by MPS1 (47).

Having shown that BOS172722 abrogates SAC as measured by
paclitaxel-induced p-HH3 and p-KNL1 inhibition, we investigat-
ed whether we could identify target-engagement biomarkers to
measure the activity of both paclitaxel and BOS172722 simulta-
neously in the same samples. It is known that taxanes induce
acetylation of tubulin due to tubulin polymerization (48), when
at the same time MPS1 inhibition should not affect tubulin
modification. Paclitaxel and BOS172722 were administrated
simultaneously into HCT116 tumor bearing mice. Figure 5C
shows paclitaxel-induced acetylation of tubulin at all time points
whereas addition of BOS172722 had no effect on tubulin acet-
ylation. In contrast, paclitaxel-induced histone H3 phosphoryla-
tion was significantly inhibited by BOS172722 at 2 and 6 hours.
To optimize these assays in a high-throughput format, we devel-
oped quantitative electrochemiluminescence assays (MSD). The

results confirmed the immunoblotting data, indicating apotential
use of these biomarkers in the clinic (Fig. 5D).

Therapeutic activity of BOS172722 in in vivo TNBC models
Based on in vitro activity and PD data, human TNBC xeno-

graft experiments in athymic mice were undertaken to evaluate
the therapeutic activity of paclitaxel alone or in combination
with BOS172722. We initially used an MDA-MB-468 orthoto-
pic (mouse mammary fat pad) xenograft model. Combination
of BOS172722 with paclitaxel gave significant tumor regres-
sions and a clear benefit in comparison with paclitaxel alone
(Fig. 6A). A study using a TNBC patient-derived xenograft
(PDX) model also showed tumor regression and a significant
benefit of combination treatment in comparison with paclitax-
el alone (Fig. 6B).

We then performed in vivo studies using a TNBC model to
simulate breast cancer metastases. Tail-vein–injected MDA-MB-
231-luciferase-expressing TNBC cells in SCID mice give rise pre-
dominantly to lungmetastases. On day 28, the flux expressed as a
percentage of vehicle control was as follows: paclitaxel alone
18.8%; combination with BOS172722 at 30 mg/kg 4.8%, and
40 mg/kg 5.7%, confirming a significant benefit of combination
treatment in both tumor growth and survival (up to day 63) at
BOS172722 doses � 30 mg/kg (Fig. 6C and D). Taken together,
the data described above demonstrate that our selective MPS1
inhibitor BOS172722 in combination with paclitaxel synergisti-
cally induces increased cell death in TNBC cell lines in vitro and

Figure 4.

SAC respond to MT stabilizing and destabilizing drugs. A, Comparison of SAC override by BOS172722 between paclitaxel and nocodazole-treated HeLa cells.
Plotted is the fraction of cells in mitosis at any given time. Only cells already arrested at the start of time-lapse imaging are included in the analysis with
BOS172722 added to the cells at 0 minute. B,Quantification of BUB1 accumulation at centromeres in nocodazole and paclitaxel-treated cells. Measurements were
done in triplicate. C, Long-term proliferation assay. MDA-MB-231 cells were incubated with BOS172722, paclitaxel, and the combination of both for 24 hours.
Whole-cell growth was determined by SRB after 14 days.D,Model of the mechanism of synergism between BOS172722 and paclitaxel.
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regression and/or reduced growth rate of human tumor xeno-
grafts in vivo compared with treatment with either agent alone.

Discussion
We initially discovered MPS1 as a potential therapeutic target

during a siRNA screening campaign where we showed that a
subgroup of breast cancer cell lines with a deregulated PTEN
tumor suppressor gene were susceptible to cell death upon MPS1
depletion (37). We further investigated these findings using
BOS172722. Fifty cell lines, 25 PTEN-proficient and 25 PTEN-
deficient from a variety of human cancer types, were tested upon
treatment with BOS172722. We found a clear trend of sensitivity
to BOS172722 of cell lines with PTEN deficiency, irrespective of
the type of cancer. Although not statistically significant, patients
with PTEN-deficient tumorsmay represent a target population for
treatment with an MPS1 inhibitor. However, the strongest, sta-
tistically significant corollary of sensitivity toMPS1 inhibitionwas
cell proliferation rate. Cells with shorter doubling times were

more sensitive to death upon MPS1 inhibition, TNBC cell lines
being themost sensitive. A novel indicator for sensitivity toMPS1
inhibition is the SAC activity. We found that cell lines with
reduced SAC activity were more sensitive to BOS172722, suggest-
ing that lower SAC activity requires reduced concentrations of the
MPS1 inhibitor to abrogate mitosis, thus inducing detrimental
aneuploidy in cancer cells.

Due to the moderate levels of tumor growth inhibition by
BOS172722 in xenograft studies, we focused on combination
studies with the standard-of-care agents in TNBC. We identified
paclitaxel as a favorable combination agent for use with MPS1
inhibition as it exerts robust synergistic effects throughout our
panel of TNBC cell lines. This combination has also been iden-
tifiedbyothers andclinical trialshavebeen initialized (refs. 19, 49;
NCT02366949). Importantly, we discovered that a reduced SAC
checkpoint is easier to override with an MPS1 inhibitor.

The sameMPS1mechanism of action is observed in paclitaxel-
treated human TNBC xenografts in vivo. Athymic mice carrying
TNBC human tumor xenografts were treated with vehicle,

Figure 5.

In vivo pharmacodynamic studies of BOS172722.A, Pharmacodynamic analyses of paclitaxel and BOS172722 in MDA-MB-231 subcutaneous human tumor
xenografts. Vehicle, paclitaxel alone, and the simultaneous combination of paclitaxelþ BOS172722. Percentage of phospho-Histone H3 (p-HH3)-positive cells by
immunofluorescence and p-KNL1 by IHC staining at 8 hours after treatment. B, Representative images of staining at 8 hours after treatment. C, Immunoblot
analysis of tumor lysates from HCT116 xenografts in athymic mice treated with vehicle (V), paclitaxel alone (P), or paclitaxel in combination with BOS172722 (C).
Antibodies against acetylated and total tubulin, phosphorylated and total histone H3 were used at the indicated time points. D,MSD assays to measure the level
of acetylated tubulin and phosphorylated Histone H3 in HCT116 xenografts.
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paclitaxel alone at clinically relevant dose, or in combinationwith
single-dose BOS172722. Immunofluorescence microscopy and
IHCof tumor sections showed a significant reduction of phospho-
histone H3 and reduction of phospho-KNL1. These data confirm
the mechanistic contribution of MPS1 inhibition in vivo. In
addition,wehave suggested anovel target-engagement biomarker
strategy to be able to measure simultaneously the effect of
paclitaxel and BOS172722 in tumor biopsies. The therapeutic
benefit of BOS172722 in combination with paclitaxel was dem-
onstrated in three TNBC in vivo models: MDA-MB-468 orthoto-
pically transplanted in mouse mammary fat pads, systemic met-
astatic MDA-MB-231, and in a TNBC PDX.

In summary, BOS172722 is a highly potent and selective,
orally bioavailable MPS1 inhibitor with favorable PK. Robust
efficacy was demonstrated at well-tolerated doses in combina-
tion with paclitaxel in multiple xenograft models of TNBC,
including PDX. BOS172722 is now in phase I dose escalation
clinical trials in combination with standard-of-care paclitaxel
treatment (NCT03328494).
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