Trastuzumab-Resistant HER2⁺ Breast Cancer Cells Retain Sensitivity to Poly (ADP-Ribose) Polymerase (PARP) Inhibition

Monica E. Wielgos¹, Zhuo Zhang¹, Rajani Rajbhandari¹, Tiffiny S. Cooper¹, Ling Zeng¹, Andres Forero², Francisco J. Esteva³, C. Kent Osborne⁴,⁵,⁶,⁷, Rachel Schiff⁴,⁵,⁶,⁷, Albert F. LoBuglio², Susan E. Nozell¹,⁸, and Eddy S. Yang¹,⁸,⁹

Abstract

HER2-targeted therapies, such as trastuzumab, have increased the survival rates of HER2⁺ breast cancer patients. However, despite these therapies, many tumors eventually develop resistance to these therapies. Our lab previously reported an unexpected sensitivity of HER2⁺ breast cancer cells to poly (ADP-ribose) polymerase inhibitors (PARPi), agents that target homologous recombination (HR)-deficient tumors, independent of a DNA repair deficiency. In this study, we investigated whether HER2⁺ trastuzumab-resistant (TR) breast cancer cells were susceptible to PARPi and the mechanism behind PARPi induced cytotoxicity. We demonstrate that PARPi ABT-888 (veliparib) decreased cell survival in vitro and tumor growth in vivo of HER2⁺ TR breast cancer cells. PARP-1 siRNA confirmed that cytotoxicity was due, in part, to PARP-1 inhibition. Furthermore, PARP-1 silencing had variable effects on the expression of several NF-kB-regulated genes. In particular, silencing PARP-1 inhibited NF-kB activity and reduced p55 binding at the IL8 promoter, which resulted in a decrease in IL8 mRNA and protein expression. Our results provide insight in the potential mechanism by which PARPi induces cytotoxicity in HER2⁺ breast cancer cells and support the testing of PARPi in patients with HER2⁺ breast cancer resistant to trastuzumab. Mol Cancer Ther; 17(5); 921–30. ©2018 AACR.

Introduction

Overexpression of the human epidermal growth factor receptor 2 (HER2) is observed in 20% to 30% of breast cancer patients and associated with poor patient survival (1). One FDA-approved agent targeted against HER2 receptors is trastuzumab (Herceptin; ref. 2). Trastuzumab blocks HER2 signaling and ultimately leads to tumor cell lysis by multiple mechanisms (3). Despite its efficacy in the clinic, trastuzumab resistance remains a clinical challenge (4).

In the last decade, poly (ADP-Ribose) polymerase inhibitors (PARPi) have been shown to be a promising therapeutic agent, especially in patients with homologous recombination (HR) repair–deficient tumors (5–8). Interestingly, we have previously found that HER2⁺ breast cancer cells are sensitive to the PARPi [ABT-888 (veliparib) or AZD-2281 (olaparib)] alone, independent of a basal or induced HR deficiency (9). However, cell survival was not affected after treatment with PARPi in non-HER2-overexpressing breast cancer cell lines (MCF7 and T47D). We also reported that PARPi suppressed NF-kB activity and HER2 overexpression alone conferred sensitivity to PARPi (9).

In this study, we hypothesized that trastuzumab-resistant (TR) breast cancers may also be sensitive to PARPi as these tumors may rely on compensatory mechanisms to activate similar downstream effectors. Indeed, we found that TR HER2⁺ breast cancer cells are sensitive to pharmacological or genetic inhibition of PARP-1. Furthermore, we show that PARPi diminishes NF-kB (p55/RelA) transcriptional activity. Using the PanCancer Pathway Panel on the NanoString platform, which measures the expression of 770 genes involved in the 13 canonical cancer pathways, we analyzed the effects of PARPi on expression of NF-kB target genes (10). We discovered that knockdown of PARP-1 had differential effects on the 82 NF-kB target genes included in the PanCancer Panel, such as IL8, BRCA2, NFKBIZ, VEGFC, PIM1, and FASLG. We also validated that PARP-1 knockdown strongly inhibited the mRNA and protein expression of IL8, a gene involved in inflammation and angiogenesis. Furthermore, using chromatin immunoprecipitation (ChIP) assays, we found that silencing of PARP-1 decreased p55 recruitment to the IL8 promoter, which resulted in reduced IL8 mRNA and protein expression. In summary, these results provide evidence that PARP inhibitors may be used as...
novel therapeutic strategy for HER2+ breast cancer patients and uncover PARP-1/NF-κB (p65) signaling as a potential mechanism behind PARPi sensitivity.

Materials and Methods

Ethics statement

The animal protocol was approved by the University of Alabama at Birmingham at Birmingham Institutional Animal Care and Use Committee (APN#: 10129). Ketamine and xylazine anesthesia was used to minimize suffering before performing surgery on the mice.

Cell culture, drugs, and reagents

BT-474, UACC-812, and SKBR3 parental and TR HER2+ breast cancer cell lines were used in this study and were previously characterized in two other studies (11, 12). The BT-474 and UACC-812 TR breast cancer cells were also cultured with 50 μg/mL of trastuzumab and were kindly donated by Dr. Rachel Schiff and C Kent Osborne (Department of Medicine, Baylor College of Medicine, Houston, TX). The SKBR3 TR cells were cultured with 10 μg/mL of trastuzumab and were kindly donated by Dr. Francisco J. Esteva (Department of Medicine, NYU). All cell lines were also verified for mycoplasma and were validated by Western analysis for HER2. However, cell authentication was not conducted. Further, the cell lines were cultured for no more than 20 passages after thawing the frozen cells. All three TR breast cell lines were also verified for resistance to trastuzumab. Veliparib (ABT-888) was obtained from Enzo Life Sciences (catalog #ALX-270-444), olaparib (AZD-2281) was purchased from LC Laboratories (catalog #O-9201), niraparib was obtained from Tesaro. All three drugs were reconstituted in dimethyl sulfoxide (DMSO) at 10 mmol/L. ABT-888 was also obtained from AbbVie Oncology for in vivo testing and reconstituted every 5 days in 0.9% saline at 100 mg/kg. Trastuzumab (Herceptin) was purchased from Besse Medical (catalog #23961). Recombinant human TNFα was obtained from R&D Systems (catalog #210-1A).

Clonogenic survival assay

The colony formation assay was utilized to determine the percent survival in both the parental and TR breast cancer cell lines as previously described (13, 14).

PARP-1 knockdown

PARP-1 siRNA was obtained from Santa Cruz Biotechnology and contains three to five siRNA pools specifically targeting the PARP-1 gene (sc-29437; Santa Cruz Biotechnology). Another PARP-1 siRNA from Sigma-Aldrich (#NM_001618, SASI_Hs01_00159524) was utilized to confirm siRNA studies. Control siRNA was used as a negative control (sc-37007; Santa Cruz Biotechnology). The siRNAs were transfected with Lipofectamine2000 or Lipofectamine RNAiMax according to the manufacturer’s instructions. PARP-1 knockdown was confirmed by Western blot or real-time PCR analysis.

Immunoblotting

Protein expression levels were analyzed via a standard immunoblotting protocol using the M-PER Mammalian Protein Extract Reagent with protease and phosphatase inhibitors as described previously (15). The PVDF membranes were immunoblotted overnight with the following primary antibodies according to the manufacturer’s instructions: PARP-1 (Cell Signaling Technology, catalog #9542), PARP-1 (Santa Cruz Biotechnology, catalog #sc-8007), PARP-2 (Abcam, catalog ab176330), IKKα (Cell Signaling Technology, catalog #2682), and BRCA2 (Abcam, catalog #ab27976). The immunoblots were then incubated with a rabbit or mouse horseradish peroxidase–conjugated secondary antibody for an hour. β-Actin expression levels were evaluated as a loading control (Santa Cruz Biotechnology, catalog #sc-7778 HRP).

Cell proliferation

Cell proliferation was also assessed after PARP1 knockdown. After 4 days of treatment, the cells were washed with 1 x ice-cold PBS and then removed with trypsin. Subsequently, the number of cells was counted using a cell counter (Beckman Coulter).

Apoptosis analysis

Apoptosis was measured using the Annexin V-FITC Apoptosis Detection kit (Biovision Research Products; catalog #K101-400), 96 hours after transfection with control or PARP-1 siRNA and as previously described (14).

NF-κB luciferase reporter assay

The NF-κB Secreted Luciferase Reporter System was used to analyze NF-κB activity. Specifically, cells were cotransfected with the NFκB-driven luciferase plasmid NFκB-MetLuc2 or its vector control MetLuc2 (Clontech; catalog #631728) and control or PARP-1 siRNA using the Lipofectamine2000 reagent, according to the manufacturer-supplied protocol and as previously described (9).

mRNA expression

Total RNA was isolated using the Ambion PureLink RNA mini kit (catalog #12183018A) according to the manufacturer’s recommendations. Gene expression was measured using the PanCancer Pathways Panel after PARP-1 knockdown, as previously described (16). One microgram of total RNA was also reverse transcribed using the SuperScript III First-Strand Synthesis System kit (Invitrogen; catalog #18080-051) and the resulting cDNA was analyzed by semiquantitative PCR using the following primer pairs: PARP-1 (Hs00242302_m1), IL8 (Hs00174103_m1), and BRCA2 (Hs00609073_m1). mRNA levels were determined with the ABI Prism 7000 Sequence Detection System (Applied Biosystems) as per manufacturer’s instructions. Samples were run in triplicate and then normalized to the endogenous control, GAPDH (Hs00275899_g1). The relative gene expression levels were relative gene expression levels was analyzed using the 2−ΔΔCT method.

Chromatin immunoprecipitation (ChIP)

ChiP experiments were performed in triplicate as previously published (17). Control or PARP-1 siRNA-treated cells were sonicated and lysates were immunoprecipitated using 4 μg of p65 (Santa Cruz Biotechnology; catalog #sc-372) or normal rabbit IgG (Santa Cruz Biotechnology; catalog #sc-2027) antibodies.

ELISA

Supernatants were analyzed after PARP-1 knockdown or PARPi using the Human IL8 enzyme-linked immunosorbent assay (ELISA; BioLegend; catalog #431504).
In vivo studies
Ten 4- to 6-week-old female BALB/c nude mice were obtained from Charles River Laboratories. The mice were allowed to acclimatize for 1 week and then supplemented with 0.36-mg 60-day-release estradiol pellets from Innovative Research. Following 2 to 3 days of recovery, BT-474 TR cells were collected and then suspended in 200 μL of growth factor-reduced Matrigel from BD Biosciences before injection. Cells (5 × 10^6) were injected subcutaneously in the BALB/c nude mice. After the tumors were palpable or reached ~5 to 6 mm in diameter, we randomized the mice into two treatment groups (n = 5): saline (vehicle control) or ABT-888. The mice were treated twice daily with 100 mg/kg of ABT-888 by oral gavage for 4 weeks. At this dose in mice, it has been reported to result in plasma Cmax of 35 μmol/L and is considered to be the monotherapy maximum tolerated dose (MTD) dose in mice (18). Tumor size was measured triweekly during the course of the treatment with a caliper. The tumor volume was calculated with the following formula: [(width)^2 × length]/2 (19). The animals were measured for 68 days and then sacrificed. The Institutional Animal Care and Use Committee at the University of Alabama at Birmingham approved all the animal procedures described above.

Statistical analysis
The data were analyzed via a two-tailed, Student t test or analysis of variance (ANOVA) followed by a Bonferroni post-test using GraphPad Prism version 4.02 and 7.0b (GraphPad Software). Data are presented as average ± standard error of mean (SEM). P values ≤0.05 were considered statistically significant.

Figure 1.
HER2⁺ TR breast cancer cells are sensitive to PARP inhibition (ABT-888) in vitro and in vivo. A–C, HER2⁺ parental and TR breast cancer cell lines were subjected to a colony formation assay after being treated with vehicle control and increasing concentrations of the PARPi ABT-888 (1–10 μmol/L). Shown is the mean percent survival (±SEM) from one of two independent experiments performed in triplicate. D, BT-474 TR were injected subcutaneously in the flank of BALB/c nude mice. The mice were treated twice daily with vehicle or 100 mg/kg of ABT-888 once the tumors were palpable. Tumors were measured three times per week. Shown is the mean fold change in tumor volume ±SEM. ***, P < 0.0005.

Results
Trastuzumab-resistant HER2⁺ breast cancer cells exhibit in vitro and in vivo sensitivity to the PARPi ABT-888
To examine whether HER2⁺ TR (TR) breast cancer cell lines were sensitive to PARPi, we assessed PARPi-induced cellular cytotoxicity using colony formation assays. As shown in Fig. 1A–C, the BT-474 TR, UACC-812 TR, and SKBR3 TR cells all demonstrated reduced colony formation in response to increasing, clinically achievable concentrations of ABT-888 (18) and exhibited a similar profile of sensitivity as their parental counterparts. Specifically, at 10 μmol/L of ABT-888 (Veliparib), there was more than a 70% reduction in the survival of all three TR breast cancer cell lines. Similarly, the PARPi MK-4827 (Niraparib) also reduced the survival fraction in two HER2⁺ TR and parental breast cancer cell lines (Supplementary Fig. S1).

To validate these results, we next established 3D microtumors (Vivo Biosciences, Supplementary Methods) using the BT-474 TR cells. As shown in Supplementary Fig. S2, ABT-888 reduced the tumor viability of BT-474 TR microtumors cultured with trastuzumab. We also assessed the in vivo tumor growth effects of PARPi in the BT-474 TR xenografts. As shown in Fig. 1D, tumor growth was significantly inhibited after PARPi treatment in the HER2⁺ TR xenografts. There was no significant difference in body weight observed in the ABT-888 treated group compared with the vehicle control group (Supplementary Fig. S3C). To confirm that the decrease in tumor growth was due to the inhibition of PARP-1’s enzymatic activity, we examined PAR protein levels in tumors harvested from both control and ABT-888–treated animals. As shown in Supplementary Fig. S3A and S3B, PAR levels were decreased in ABT-888–treated...
animals compared with control animals (Supplementary Methods; Supplementary Fig. S3A and S3B). These results demonstrate that HER2⁺ TR breast cancer cells are sensitive to PARPi alone both in vitro and in vivo.

PARP-1 knockdown inhibits cell proliferation and induces apoptosis in HER2⁺ TR breast cancer cells

To verify that our observations were indeed due to the inhibition of PARP-1 and not caused by an off-target effect, we examined cellular proliferation after silencing PARP-1 using a pooled PARP-1 siRNA, which reduced PARP-1 but not PARP2 levels (Fig. 2A and B). Ninety-six hours after PARP-1 knockdown, cell proliferation was reduced by more than 50% in both the BT-474 TR (Fig. 2C) and UACC-812 TR (Fig. 2D) breast cancer cell lines. These results were confirmed with another PARP-1 siRNA from Sigma-Aldrich (Supplementary Fig. S4). Next, we tested whether silencing PARP-1 induced cellular apoptosis. As shown in Fig. 2E and F, increased apoptosis was observed after 96 hours of PARP-1 suppression. Furthermore, inhibition of PARP by ABT-888 or PARP-1 siRNA treatment did not alter cell-cycle progression (Supplementary Methods; Supplementary Fig. S5).

NF-kB signaling is attenuated by inhibition and suppression of PARP-1

Previously, we reported that PARPi susceptibility correlated with inhibition of the NF-kB signaling pathway in the HER2⁺ parental breast cancer cells. We also observed that resistance to PARPi was stimulated after p65 overexpression while sensitivity was induced after overexpression of the NF-kB endogenous inhibitor, IkBa (9). Subsequently, we tested NF-kB activity in the TR cell lines with or without PARP inhibition using an NF-kB driven luciferase reporter assay. Consistent with our previous findings, pharmacologic or genetic modulation of PARP-1 attenuated NF-kB transcriptional activity in the BT-474 TR (Fig. 3A) cell line.

It has also been reported that HER2 overexpression activates the canonical NF-kB signaling pathway via the IKK complex, without the stimulation of an inflammatory stimuli such as TNFα (20). Because we observed an inhibition of NF-kB activity, we hypothesized that the expression of the IKK complex, an NF-kB activator, would be reduced by PARP1 knockdown. Western blot analysis following PARP-1 knockdown via two different PARP-1 siRNAs revealed that the level of IKK complex protein was decreased in the BT-474 TR and SKBR3 TR HER2⁺

Figure 2. PARP-1 siRNA reduces cell proliferation and induces apoptosis in HER2⁺ TR breast cancer cell lines. BT-474 TR and UACC-812 TR were transfected with 20 nmol/L of control (CON) or PARP-1 siRNA for 96 hours. Knockdown of PARP-1 protein expression levels was verified via Western Blot analysis. β-Actin was used as a loading control (A and B). Data shown are representative immunoblots from one of three independent experiments. Following PARP-1 knockdown, cell counts were obtained via cellular proliferation assays (C and D). Apoptosis was assessed with FACS analysis using propidium iodide and Annexin V staining (E and F). The representative figures shown are from one of three independent experiments performed in (C and D) quadruplicate or (E and F) triplicate. *** \(P \leq 0.0005; ** P < 0.005.\)
breast cancer cell lines (Fig. 3B and C; Supplementary Fig. S6). These results indicate that PARP-1 suppression inhibits NF-κB signaling in HER2+ TR breast tumors.

PARP-1 inhibits the expression of NF-κB–regulated target genes

Hassa and Hottiger et al. previously reported that PARP-1 is a coactivator of NF-κB (21, 22). To further examine the role of PARP-1 as a regulator of NF-κB activity, we assessed the gene expression of NF-κB target genes using the NanoString nCounter Analysis System after PARP-1 knockdown in the BT-474 TR cell line. After normalizing the data to housekeeping genes included in the panel, suppression of PARP-1 significantly altered the expression levels of a number of NF-κB–regulated genes (Table 1). The gene most strongly impacted by PARP-1 knockdown was IL8 (13-fold reduction).

PARP-1 knockdown inhibits IL8 gene and protein expression

To validate our NanoString data, we assessed changes in IL8 gene expression following PARP-1 siRNA using qRT-PCR analysis. IL8 is also an excellent gene candidate and readout to further study the role of PARP-1 in NF-κB–mediated transcription because, unlike other genes, NF-κB plays a dominant role in its expression. Specifically, the human IL8 promoter is highly accessible to the NF-κB transcription factor, p65 (23, 24). Consistent with our NanoString data, IL8 mRNA was significantly reduced after PARP-1 knockdown in both the BT-474 TR and UACC-812 TR breast cancer cells (Fig. 4A and B). Moreover, PARP-1 siRNA significantly reduced IL8 mRNA levels induced by TNFα, which robustly activates the NF-κB signaling pathway and thus can be used as a positive control for NF-κB activation. IL8 mRNA levels were similarly attenuated in the parental BT-474 breast cancer cell line (Fig. 4C) after PARP-1 knockdown. Finally, ABT-888 and AZD-2281 also decreased the gene expression levels of IL8 in the BT-474 TR cells (Fig. 4D; Supplementary Fig. S7D).

To determine whether these changes in mRNA expression directly correlated with similar changes in protein expression, we subjected the BT-474 TR and UACC-812 TR breast cancer cell lines to ELISA analysis after PARP-1 inhibition or knockdown. Indeed, IL8 protein expression levels were decreased by both pharmacologic or genetic modulation of PARP-1 (Fig. 5A–D).

PARP-1 knockdown decreases p65 binding at the IL8 promoter

To further investigate PARP-1’s role in regulating NF-κB activity in the context of IL8 expression, we assessed the recruitment of the NF-κB subunit p65 to the IL8 promoter using ChIP. As shown in Fig. 6A, TNFα stimulation increased p65 binding at the IL8 promoter in the BT-474 TR cell line, and this effect was significantly reduced with PARP-1 knockdown. p65 and IgG (negative control) were also immunoprecipitated in untreated or TNFα treated BT-474 TR cells. We observed that p65 was associated with the IL8 promoter in TNFα treated cells, and this was not detected using IgG (Fig. 6B). These ChIP experiments further demonstrate that PARP-1 regulates the NF-κB subunit p65 at the IL8 promoter.

Table 1. Significant NF-κB target genes influenced by PARP-1 knockdown

<table>
<thead>
<tr>
<th>NF-κB target genes</th>
<th>CON siRNA</th>
<th>PARP1 siRNA</th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL8</td>
<td>1180.83</td>
<td>89.72</td>
<td>-13.16</td>
</tr>
<tr>
<td>BRCA2</td>
<td>42.3</td>
<td>19.7</td>
<td>-2.15</td>
</tr>
<tr>
<td>NFKBIZ</td>
<td>51.5</td>
<td>27.36</td>
<td>-1.88</td>
</tr>
<tr>
<td>VEGFC</td>
<td>44.14</td>
<td>24.07</td>
<td>-1.83</td>
</tr>
<tr>
<td>PRMT1</td>
<td>37.71</td>
<td>73.31</td>
<td>1.95</td>
</tr>
<tr>
<td>FASLG</td>
<td>9.2</td>
<td>22.98</td>
<td>2.5</td>
</tr>
</tbody>
</table>

NOTE: The BT-474 TR cell line was treated with control (CON) or PARP-1 siRNA for 72 hours and then subjected to NanoString Analysis using the NanoString nCounter Analysis System after PARP-1 knockdown. The counts were normalized to expression levels of housekeeping genes included in the probe set. Shown in the table are the normalized NanoString counts along with the fold change values.
Discussion

PARP-1’s role in DNA damage repair, specifically the base excision repair pathway, has been studied extensively. In addition to its DNA repair functions, PARP-1 also has a role in several other cellular processes (25). PARP-1 has been shown to promote chromatin decondensation by PARylating histones or binding directly to nucleosomes (26, 27). Several other studies have shown that PARP-1 is involved in angiogenesis (28). Recently, there has been an increased interest in targeting transcriptional factors with PARPi in various types of cancer models (29–31). In this study, we report that the susceptibility to PARPi observed in HER2⁺ breast cancers (sensitive or resistant to the HER2-targeted agent trastuzumab) may be dependent on the inhibition of the NF-κB signaling pathway. We also elucidated the effects of PARP-1 on the NF-κB signaling pathway in HER2⁺ breast cancer cells by investigating effects on IL8 expression.

Various mechanisms of resistance to trastuzumab have been described in the literature (32). Examples include overexpression of insulin-like growth factor 1 receptor (11), compensatory activation of other HER receptors (12), and reactivation of the HER2 signaling pathway. Because these pathways activate similar downstream effectors, such as NF-κB, it is not surprising that TR cells retained sensitivity to PARP inhibition.

PARP inhibitors such as ABT-888 target both PARP-1 and PARP-2 members of the PARP family that are involved in DNA repair (33). PARP-1 is the most abundant nuclear member of this family and is responsible for a larger percentage of PARP activity compared with PARP-2 (34). In this study, we focused mainly on the PARP-1 protein because we recently discovered that HER2⁺ breast cancers express increased levels of nuclear PARP-1 and phospho-p65 compared with non-HER2-overexpressing breast cancers (35). No significant differences were found with PARP-2 protein levels (35). However, we cannot exclude PARP-2 as an essential target in this mechanism as it is still responsible for 10% of PARylation produced in the nucleus (36). We are currently investigating the role of PARP-2 in this process but it is beyond the scope of this study.

PARP-1 has also been shown to regulate gene transcription by acting as a coactivator. Some transcription factors that are regulated by PARP-1 include the following: NF-κB (21),...
androgen receptor (29), and estrogen receptor (37). Our results suggest that PARP-1 may be acting as a coactivator of NF-κB (Figs. 4 and 6). The role of PARP-1’s enzymatic activity in NF-κB–dependent gene expression is controversial. Multiple studies have reported that PARP-1’s enzymatic activity is independent of its coactivator function of NF-κB (22, 38). However, we observed a reduction in the gene expression levels of a NF-κB target gene, IL8, after PARPi in TNFα-treated cells, suggesting here that PARP-1 enzymatic activity may indeed play a role in the its coactivation function of NF-κB (Fig. 4D; Supplementary Fig. S7D). These contradictory results suggest that the role of PARP-1’s enzymatic activity may be context dependent.

Conversely, the expression of PARP-1 is required and sufficient in various disease models (22, 38, 39). Our PARP-1 knockdown studies further confirm these results and suggest that PARP-1 regulates NF-κB activity. Specifically, PARP-1 knockdown reduced p65 binding to the IL8 gene promoter, leading to decreased gene and protein expression in untreated or TNFα-treated cells (Figs. 4–6). All together, these results suggest that PARPi attenuates NF-κB signaling in HER2+ TR breast cancer cells. However, we do not propose that the sole mechanism behind PARPi sensitivity is the inhibition of IL8 expression. We would like to further stress that IL8 is merely an excellent gene candidate to study the role of PARP-1 in NF-κB–mediated transcription.

Nevertheless, IL8 is a HER2 regulated gene and associated with metastasis in breast cancer patients. Trastuzumab has also been shown to downregulate IL8 gene expression levels in BT-474 breast cancer cells (40). IL8 has also been observed to

Trastuzumab-Resistant Breast Cancers Are Sensitive to PARPi

Figure 5.
PARP-1 knockdown inhibits IL8 protein expression. A, BT-474 TR cells were transfected with control (CON) or PARP-1 siRNA for 48 hours and (B) UACC-812 TR cells were transfected for 24 hours. Cells were serum starved for 18 hours, and then stimulated for 24 hours with 10 ng/mL of TNFα. C, BT-474 TR cells were serum starved and treated with DMSO or 10 μmol/L ABT-888 for 24 hours or (D) 1 μmol/L AZD-2281 for 72 hours after seeding and then stimulated for an additional 24 hours with TNFα. The supernatant was then collected, and IL8 protein expression was analyzed by an enzyme-linked immunosorbent assay (ELISA). Results shown are from one of three independent experiments. *** P ≤ 0.001 and **** P < 0.0001.
We have also previously shown that HER2 alter BRCA2 protein levels (Supplementary Fig. S8A and S8B). Knockdown decreased the levels of a decrease in HR (44). Our results show that PARP-1 reduced expression of BRCA1 and Rad51, two other proteins involved in HR. These results were also associated with PARP-1 reduced expression of BRCA2 and IL8, two other proteins involved in the HR DNA repair pathway (43). Previous studies have shown that genetic and pharmacologic inhibition of reduced after PARP-1 knockdown (Table 1). BRCA2 is a protein involved in several transcription factors, whereas, IL8 could be due to the fact that their levels are regulated by PARP-1 besides IL8. However, their expression levels were not as strongly influenced by PARP-1 suppression. This could be due to the fact that their levels are regulated by several transcription factors, whereas, IL8 is highly dependent on NF-kB. In particular, the expression levels of BRCA2 were reduced after PARP-1 knockdown (Table 1). BRCA2 is a protein involved in the HR DNA repair pathway (43). Previous studies have shown that genetic and pharmacologic inhibition of PARP-1 reduced expression of BRCA1 and Rad51, two other proteins involved in HR. These results were also associated with a decrease in HR (44). Our results show that PARP-1 knockdown decreased the levels of BRCA2 mRNA, but did not alter BRCA2 protein levels (Supplementary Fig. S8A and S8B). We have also previously shown that HER2 breast cancer cells do not harbor a basal or induced HR deficiency (9). This suggests that the effects observed after PARP-1 knockdown were independent of an HR deficiency. Conversely, PARP-1 knockdown upregulated PIM1 and FASLG expression. PIM1 is involved in survival and cell proliferation whereas FASLG is involved in apoptosis (45, 46). A possible explanation behind these findings could be NF-kB’s complex role in multiple cellular pathways (47). Several studies have also indicated that in a single cell, NF-kB can have both pro-apoptotic and anti-apoptotic functions (48). These results will be investigated in future studies.

This study supports further clinical testing of PARPi in patients with HER2-positive breast tumors that are sensitive or resistant to trastuzumab. It also suggests the use of PARPi to suppress PARP-1’s transcriptional functions besides solely inhibiting its DNA repair roles.

Disclosure of Potential Conflicts of Interest

F.J. Esteva is a consultant/advisory board member for Genentech. C.K. Osborne is a consultant/advisory board member for AstraZeneca, Genentech, P. Elmer, and Pfizer, has received expert testimony from O’Melveny and Myers. R. Schiff reports receiving a commercial research grant from AstraZeneca. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Conception and design: M.E. Wielgos, A. Forero, A.F. LoBuglio, S.E. Nozell, E.S. Yang

Development of methodology: M.E. Wielgos, Z. Zhang, A. Forero, F.J. Esteva, C.K. Osborne, E.S. Yang

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M.E. Wielgos, Z. Zhang, R. Rajbhandari, L. Zeng, A. Forero, F.J. Esteva, C.K. Osborne, R. Schiff, S.E. Nozell, E.S. Yang

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M.E. Wielgos, Z. Zhang, R. Rajbhandari, T.S. Cooper, A. Forero, A.F. LoBuglio, E.S. Yang

Writing, review, and/or revision of the manuscript: M.E. Wielgos, A. Forero, F.J. Esteva, C.K. Osborne, R. Schiff, S.E. Nozell, E.S. Yang

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): R. Rajbhandari, T.S. Cooper, A.F. LoBuglio, E.S. Yang

Study supervision: E.S. Yang

Acknowledgments

We would like to thank Vivo Biosciences for their help with the microtumor experiments as well as Enid F. Keyser for her assistance with the apoptosis and cell cycle experiments. The authors would also like to thank Alice Weaver for her help with an experiment. This study was supported by grants from the American Association of Cancer Research/Genentech Career Development Award (12-30-18-YANG) to E.S. Yang), Susan G. Komen Career Catalyst Award (CCR12364491, to E.S. Yang), Breast Cancer Research Foundation of Alabama (to E.S. Yang), and the Breast SPORE (SP50CA089019 to E.S. Yang) from the University of Alabama-Birmingham Comprehensive Cancer Center. The UAB
Comprehensive Flow Cytometry Core Facility is supported by Grants P30 AR048311 and Grant P30 AR077677.

The costs of production of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 4, 2017; revised August 29, 2017; accepted February 23, 2018; published first March 28, 2018.

Trastuzumab-Resistant Breast Cancers Are Sensitive to PARPi

References

Trastuzumab-Resistant HER2⁺ Breast Cancer Cells Retain Sensitivity to Poly (ADP-Ribose) Polymerase (PARP) Inhibition

Monica E. Wielgos, Zhuo Zhang, Rajani Rajbhandari, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-17-0302

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2018/03/28/1535-7163.MCT-17-0302.DC1

Cited articles
This article cites 47 articles, 17 of which you can access for free at:
http://mct.aacrjournals.org/content/17/5/921.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/17/5/921.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link:
http://mct.aacrjournals.org/content/17/5/921.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.