Dual Targeting of Aurora Kinases with AMG 900 Exhibits Potent Preclinical Activity Against Acute Myeloid Leukemia with Distinct Post-Mitotic Outcomes

Marc Payton1, Hung-Kam Cheung2, Maria Stefania S. Ninniri1, Christian Marinaccio3, William C. Wayne1, Kelly Hanestad1, John D. Crispino3, Gloria Juan2, and Angela Coxon1

Abstract
Aurora kinase A and B have essential and non-overlapping roles in mitosis, with elevated expression in a subset of human cancers, including acute myeloid leukemia (AML). In this study, pan-aurora kinase inhibitor (AKI) AMG 900 distinguishes itself as an anti-leukemic agent that is more uniformly potent against a panel of AML cell lines than are isoform-selective AKIs and classic AML drugs. AMG 900 inhibited AML cell growth by inducing polyploidization and/or apoptosis. AMG 900 and aurora-B–selective inhibitor AZD1152-hQPA showed comparable cellular effects on AML lines that do not harbor a FLT3-ITD mutation. AMG 900 was active against P-glycoprotein–expressing AML cells resistant to AZD1152-hQPA and was effective at inducing expression of megakaryocyte-lineage markers (CD41, CD42) on human CHRF-288-11 cells and mouse Jak2[V617F] expressing AML cells in culture, with a better proliferation recovery profile relative to classic antimitotic drug docetaxel. In vivo, AMG 900 significantly reduced tumor burden in a systemic MOLM-13 xenograft model where we demonstrate the utility of 3'-deoxy-3'-[18F]fluorothymidine [18F]FLT positron emission tomographic (PET)–CT imaging to measure the antiproliferative effects of AMG 900 in skeletal tissues in mice. Mol Cancer Ther; 17(12); 2575–85. ©2018 AACR.

Introduction
Acute myeloid leukemia (AML) is a genetically heterogeneous disease that accounts for approximately 33% of newly diagnosed adult leukemia (1). In AML, defects in myeloid-lineage differentiation leads to clonal expansion of precursor cells that is fueled by pro-proliferative and pro-survival pathway signaling. Standard-of-care therapy for most younger adult patients with AML is high-dose induction chemotherapy (daunorubicin and Ara-C) followed by post-remission treatments that include additional chemotherapy (consolidation) as well as allogeneic stem cell transplantation (2). Recently, the first multi-targeted kinase inhibitor (midostaurin) was approved in combination with chemotherapy for treating newly diagnosed AML patients with FLT3 mutations (3). Elderly patients with AML are often unfit for the intensive chemotherapy and therefore rely on less effective therapies such as low-dose Ara-C (LDAC). Furthermore, the disease in elderly patients with AML may have unfavorable characteristics [TP53 mutations, chromosome 5q and 7q deletions, P-glycoprotein (P-gp) expression] that have limited benefit from current therapies (4).

Aurora kinases (AK) A and B are essential mitotic regulators having both distinct functions and subcellular localization (5). The expression of aurora-A and -B is elevated in a variety of human cancers, including AML (6–8). The spindle assembly checkpoint (SAC) is a surveillance mechanism that governs mitotic progression by ensuring proper microtubule-attachment to sister chromatids at the kinetochore to achieve bipolar orientation and tension at metaphase. A classic hallmark of mitosis is the phosphorylation of histone H3 on serine-10 (p-histone H3) by aurora-A and -B, whereas selective aurora-A inhibition leads to an increase in p-histone H3 and SAC activation which delays mitotic progression, whereas selective aurora-B or dual AK inhibition leads to a decrease in p-histone H3 and SAC silencing resulting in exit from mitosis without division (5).

MLN8054 and MLN8237 (alisertib) are isoform-selective inhibitors of aurora-A (9, 10), whereas AZD1152-hQPA (barasertib) targets aurora-B and FLT3 kinase activity with a 1,000-fold selectivity over aurora-A (11, 12). In clinical studies, alisertib and barasertib have shown single-agent antileukemia activity in AML [overall response rate of 17% (pretreated, NCT00830518) and 35% (older newly diagnosis, NCT00952588), respectively].
with on-target toxicities observed in proliferating normal tissues (13–15). Recent studies have shown that MLN8237 induces differentiation of acute megakaryoblastic leukemia (AMKL) cells, with potent antialeukemia activity (16–18); these findings have led to a clinical study specifically targeting AMKL and primary myelo-fibrosis (PMF; NCT02536019). Factors limiting the efficacy of AKIs may include quiescence (arrested state), such as in leukemic stem cells (19, 20); expression of drug-efflux transporters such as P-gp and BCRP (21, 22); and acquisition of target-modifying mutations in AURKA or AURKB (23, 24). To our knowledge, an inhibitor that is equipotent against aurora-A and -B and highly selective against other kinases has not been evaluated against isoform-selective AKIs in a panel of AML cell lines.

AMG 900 is a potent and highly selective pan-AKI with activity across solid tumor cell lines in vitro, and is effective at inhibiting the growth of taxane-resistant tumor xenografts in vivo (24–26). A recent study demonstrated that AMG 900 is more lethal to breast cancer cells with p53 pathway dysfunction (27). In combination studies, AMG 900 can potentiate the activity of histone deacetylase inhibitors and microtubule-targeting agents in preclinical tumor models (26, 28). In a phase-I dose-escalation study in AML patients (relapsed/refractory, NCT01380756), AMG 900 had a response rate of 9% (3-of-35 achieved a complete response with an incomplete count recovery), with cases of prolonged cytopenia, a prototypical AKI class effect (29).

In this report, we describe the effects of AMG 900, isoform-selective AKIs, and two classic anti-AML drugs on a diverse panel of AML cell lines. We assess the activity of AMG 900 on P-gp–expressing AML cells, and its effects on expression of megakaryocyte-lineage markers as well as p53 and intrinsic apoptosis signaling pathways. We combine LDAC with AMG 900 in a subset of AML lines and perform expanded single-agent drug action studies using MOLM-13 cells and human bone marrow mononuclear cells (HBMC) in culture. We investigate the anti-leukemia effects of AMG 900 using a systemic MOLM-13 xenograft model and evaluate the anti-proliferative response using PET/CT imaging to measure the level of 18F-FLT in skeletal tissue in mice.

Materials and Methods

Small molecules

AKIs include AMG 900 (in-house synthesis), MLN8054/MLN8237 (Selleck Chemicals), and AZD1152-hQPA (in-house synthesis): molecular structures have previously been reported (25). Test compounds include Ara-C (Sigma), daunorubicin (Sigma), docetaxel (Sanofi-Aventis), nocodazole (Sigma), nutlin-3a (Sigma), and GF120918 (Sigma; ref. 30).

Cells and culture conditions

Human AML cell lines were procured from the ATCC or DSMZ and authenticated by the ATCC using short tandem repeat DNA analysis. MOLM-13-Luc cell line expressing luciferase was established at Amgen Inc. (31). MOLM-13-Luc cells were negative for mycoplasma by DNA analysis (Charles River Laboratories), the remaining AML cell lines have not been recently retested for the presence of mycoplasma. Cell lines were grown using recommended culture conditions and maintained at 37°C with 5% CO$_2$, a subset of lines were grown in the presence of penicillin/streptomycin (Invitrogen). Primary human bone marrow mononuclear cells (LONZA) were grown in 15% FBS in IMDM media supplemented with 2.5 ng/mL G-CSF, 2.5 ng/mL GM-CSF, and 10 ng/mL SCF (R&D Systems). To differentiate primary mouse bone marrow cell cultures to megakaryocytic lineage, c-kit+ progenitor cells were positively enriched from whole bone marrow obtained from Jak2V617F knock-in mice using MACS system (Miltenyi Biotech). Enriched c-kit+ progenitor cells were grown in StemSpan Media (Stemcell Technologies) supplemented with 10 ng/mL mouse IL-3, 10 ng/mL human IL-6, 40 ng/mL mouse SCF, and 20 μg/mL human low-density lipoprotein (Stemcell Technologies) for 24 hours. Megakaryocytic differentiation was performed by culturing cells in 10% FBS in RPMI-1640 media supplemented with 50 ng/mL mouse thrombopoietin (Stemcell Technologies).

Animals

All experimental procedures were conducted in accordance with the Institutional Animal Care and Use Committee Protocol at Molecular Imaging Inc., the U.S. Department of Agriculture regulations, and met all the Association for Assessment and Accreditation of Laboratory Animal Care specifications. NOD/SCID IL-2Rγ$^{-/-}$ (NSG) mice (The Jackson Laboratory) were housed in sterilized cages maintained under aseptic and pathogen-free conditions. Food, water, and nutritional supplements were offered on a daily basis during the study. AMG 900 was formulated as a suspension in 2% HPMC, 1% Tween-80, at pH 2.2 and administered on the basis of individual body weight.

Western blot analysis

Whole-cell lysates were prepared using RIPA Buffer (Sigma) supplemented with protease and phosphatase inhibitor cocktail (Roche). Primary antibodies [cl-caspase-3 (04-439), Bcl-2 (05-729), Bax (MAB4601) Millipore; p53 (9282), Mcl-1 (5453), GAPH (14C10) CST; p21 (sc-6246) SCBT; MDM2 (MA1-113) Invitrogen; Bcl-xL (ab98143) Abcam; aurora-A (610938), aurora-B (611082) BD Biosciences; β-actin (AS5441) Sigma]. Secondary detection performed using anti-rabbit or anti-mouse IgG Vectastain ABC kit (Vector Laboratories) and detected with Lightning-ECL kit (PerkinElmer).

Confocal imaging

MOLM-13 cells were treated with AMG 900 at 10 nmol/L or DMSO for 48 hours. Formaldehyde (4%) fixed cells were stained with anti-p-histone H3 (05-806, Millipore) and anti-pericentrin (MA1-113) Invitrogen; Bcl-xL (ab98143) Abcam; aurora-A (610938), aurora-B (611082) BD Biosciences; β-actin (AS5441) Sigma]. Secondary detection performed using anti-rabbit or anti-mouse IgG Vectastain ABC kit (Vector Laboratories) and detected with Lightning-ECL kit (PerkinElmer).

In vivo imaging

NSG female mice were injected intravenous (IV) with 5 × 104 human MOLM-13-Luc luciferase cells. Xenogen IVIS bioluminescence (BLI) imaging platform (PerkinElmer) was used to acquire whole-body BLI for each animal to confirm tumor establishment. Mice were injected intraperitoneally with 150 mg/kg of luciferin based on body weight and imaged 10 to 15 minutes later as per the manufactures instructions. Whole-body 18F-FLT-PET/CT imaging was conducted using sequential Siemens Focus micro-PET...
[200μCi (18F)FLT IV, 60 minute incubation time, followed by 10 minute static scan] and Gamma Medica FLEX micro-CT (80 kVp, 440 μA). Nine days after tumor injection, mice with tumor burden were randomized into three treatment groups (n = 10 per group): vehicle alone [7 days daily, oral (PO)], AMG 900 at 22 mg/kg (4 days daily, PO), and AMG 900 at 12.6 mg/kg (7 days daily, PO). [18F]FLT measurements were recorded at baseline (one day before treatment) and on days 5, 8, 11, and 14 post-treatment start. Data are represented as mean whole-body BLI signal of treatment initiation) and on days 6, 9, 12, 15 post-treatment start. Data are reported as mean ± standard deviation per organ (%ID/g). Statistical significance for [18F]FLT and BLI was determined by paired t test. Study and image analysis was performed by inviCRO Inc.

Results

AMG 900 blocks proliferation of AML cell lines through polyploidy and apoptosis, with a distinct sensitivity profile relative to isoform-selective AKIs

We first investigated the antiproliferative effects of three AKIs [AMG 900 (pan), AZD1152-hQPA (B-selective), and MLN8054 (A-selective)] as well as Ara-C and daunorubicin in a panel of AML cell lines. Cells were treated with each test agent for 72 hours and processed for FC to measure absolute cell count, cell death (apoptosis and subG1), and polyploidy (≥4N DNA content; Supplementary Fig. S1A and S1B). As shown in Fig. 1A, AMG 900 inhibited the growth of AML lines at low nanomolar concentrations, with largely uniform potency relative to the other test agents. The level of polyploidy and cell death induced by AMG 900 varied across AML lines, with three principal phenotypes observed: polyploidy or cell death alone, and most frequently polyploidy with cell death (Fig. 1B; Supplementary Fig. S1C and S1D). The FLT3-ITD–expressing MOLM-13 and MV-411 cells showed a bell-shaped polyploidy profile with AZD1152-hQPA, in contrast with a stable polyploidy profile with AMG 900, consistent with a recent study identifying FLT3-ITD in AML as a target of AZD1152-hQPA (12). The cell-cycle effects observed with Ara-C (S-phase) and daunorubicin (G2-M) were distinct from AKI mode-of-action (Supplementary Fig. S1E).

Next, we determined the AKI effective concentration for each SAC activation or silencing by measuring p-histone H3 levels. As shown in Fig. 1C, inhibition of aurora-B activity by AMG 900 or AZD1152-hQPA led to p-histone H3 decrease and SAC silencing. In agreement with cell count data (in Fig. 1A), the two cytochrome leukemic lines (HEL and KG-1) were much less sensitive to AZD1152-hQPA than MOLM-13 and MEGAL cells. MLN8054 markedly increased p-histone H3 except in MOLM-13 cells where the magnitude of SAC activation was notably lower. We observed a significantly lower level of aurora-A protein accumulation after nodosazole treatment in MOLM-13 cells than in KG-1, HEL, and MEGAL cells, suggesting the lower level of p-histone H3 accumulation after MLN8054 treatment may be due to a weakened SAC response in MOLM-13 cells (Supplementary Fig. S2). At higher concentrations of MLN8054 (>2 μmol/L), we observed SAC silencing in three of four cell lines suggesting that the compound can act as a pan-AKI. To confirm the mechanism of resistance to AZD1152-hQPA, we determined that HEL and KG-1 cells overexpress P-gp, and showed that co-administration of P-gp/BCRP1 inhibitor GF120918 (30, 32) re-sensitized HEL cells to AZD1152-hQPA relative to AMG 900 (Fig. 1D and E). Collectively, these data show that AMG 900 is more uniformly potent across AML lines with some overlapping and distinct features relative to isoform-selective AKIs.

AMG 900 induces polyploidy and differentiation of lineage-committed malignant megakaryocytes

During normal maturation, megakaryocyte precursor cells become polyploid through a process termed endomitosis, where repeated rounds of DNA replication lead to large cells that permanently exit the cell cycle with nuclei containing 16N to 64N DNA content. Polyploidy inducers can fuel terminal differentiation of AMKL cells, producing similar cellular effects to those that occur during megakaryocyte maturation (18). To investigate the effects of pan-AK inhibition as a potential driver of cell differentiation, CHRF-288-11 AMKL cells were treated with AMG 900 or MLN8237. As shown in Fig. 2A and B, both AKIs induced similar megakaryocyte maturation features as evidenced by the cell size, nuclear/cytoplasmic morphologies, levels of polyplody, and co-expression of CD41/CD42. Previous studies with MLN8237 demonstrated that inhibition of aurora-A promoted these same hallmarks of megakaryocyte maturation in HEL and SET-2 AML cell lines as well as in mouse bone marrow cells harboring JAK2V617F knock-in mutation (16, 17). With this in mind, we investigated whether pan-AK inhibition would affect differentiation of JAK2V617F–expressing mouse bone marrow cell cultures. As shown in Fig. 2C and D, treatment with AMG 900 significantly increased polyploidization and expression of CD41/CD42 in a subset of mouse cells, where the level of differentiation was less for MLN8237 and failed to reach statistical significance.

AMG 900 induces apoptosis independent of p53 post-mitotic G1 checkpoint activation

To examine the effects of pan-AK inhibition on p53 signaling we treated TP53(−/−) (GDM-1, MOLM-13) and TP53(+/−) (U937, HEL) AML lines with AMG 900 for 48 hours. As shown in Fig. 3A, AMG 900 markedly increased cl-caspase-3 protein levels in GDM-1, MOLM-13, and U937 cells, whereas HEL cells largely evaded apoptosis. Total p53 protein levels increased after AMG 900 treatment in both TP53(−/−) lines, which coincided with an increase in p21 protein levels in GDM-1 cells, but not in MOLM-13 cells. Surprised by these findings, we evaluated the p53 and p21 induction profile over a wider concentration range of AMG 900 in MOLM-13 cells and found a low level of p21 protein induction only near the infection point (1.2 nmol/L), whereas p53 and cl-caspase-3 protein levels, and polyploidy increased in a parallel manner (Supplementary Fig. S3). In contrast with the other three AML lines, GDM-1 cells treated with AMG 900 showed a prominent 4N DNA content peak, consistent with attenuation of
polyploidization mediated by p21-induced growth arrest (Fig. 3B; ref. 33).

AMG 900 can potentiate cell killing in combination with LDAC

To determine the effectiveness of AMG 900 in combination with LDAC, we designed a dose-matrix (1 to 4 nmol/L by 31 to 125 nmol/L, respectively) using U937, HEL, GDM-1, and MOLM-13 cells. After 72 hours, we determined the fraction of cells positive for apoptosis using annexin-V FC assay (Fig. 3C and D). The level of cell killing induced by combined AMG 900 and Ara-C varied, MOLM-13 and HEL showed a net increase in apoptosis relative to that induced by AMG 900 alone, whereas the combination was less effective than AMG 900 alone against U937 and GDM-1 cells. On the basis of the positive drug interaction on MOLM-13 cells, we next examined the cell cycle effects of combining AMG 900 and Ara-C. As shown in Fig. 3E and F, we observed an increase in subG1 and cl-caspase-3–gated populations (represented as total cell death) with a dose-dependent attenuation of polyploidization, suggesting the agents can act together to induce an effect not observed with either agent alone (neomorphic effect). Median dose–effect analysis using the Chou–Talalay method (34) showed that MOLM-13 cells treated with AMG 900 plus Ara-C combination in a cell growth assay had additive to weak synergy (combination index score of 1 to 0.7, respectively; Supplementary Fig. S4).

Figure 1.
AMG 900 exhibits potent antileukemia activity on AML cell lines with a distinct sensitivity profile relative to isoform-selective AKIs. A and B, AML cell lines were treated with DMSO or test agents at eleven concentrations [three-point dilution, high concentration AMG 900 (0.1 μmol/L), MLN8054 and AZD1152-hQPA (5 μmol/L), Ara-C and daunorubicin (20 μmol/L)] for 72 hours. Cell count and apoptosis/DNA content analysis. A, Cell count potency determined for individual AML lines (n = 11), with mean and median EC50 values noted below. *OCI-AML-3 data not included in graph for Ara-C (EC50 > 1 μmol/L). B, AKI dose–response profiles for MOLM-13, KG-1a, and HE-60 cells showing percentage of ≥4N DNA content and total cell death (subG1 + cl-caspase-3) populations (mean ± SD). C, MOLM-13, KG-1, HEL, and MEGAL cells treated with AMG 900, MLN8054, and AZD1152-hQPA or DMSO for 48 hours. Heatmaps showing p-histone H3 positivity represented as a mean percentage of control (POC). SAC activation (p-histone H3 POC > 100, white to red) and SAC silencing (p-histone H3 POC < 100, white to blue). D, Histogram of MOLM-13, KG-1, HEL cells stained with P-gp (blue) and isotype (red) antibodies, and unstained control (black). MES-SA/Dx5 cells were included as P-gp control. E, DNA content analysis of HEL cells treated with AMG 900 or AZD1152-hQPA ± P-gp inhibitor GF120918. Dose-response of AKI alone (blue) and in combination with P-gp inhibitor (red).
Inhibition of aurora kinase activity in MOLM-13 cells by AMG 900 leads to accumulation of centrosomes, induction of the intrinsic apoptotic pathway, and cleavage of Bcl-2

To understand the phenotypes and signaling events triggered by AMG 900, we selected MOLM-13 cells as a representative AML line for further studies. As shown in Fig. 4A, DMSO-treated mitotic cells exhibited strong p-histone H3 immunoreactivity with condensed sister chromatids, and two centrosome centers. In contrast, AMG 900-treated mitotic cells showed a significant decrease in p-histone H3 associated with an accumulation of centrosomes and DNA content. Interestingly, a low-level of p-histone H3 signal was detectable in a subset of AMG 900–treated mitotic cells that had supernumerary centrosomes (eight pericentrin spots) and higher ploidy content (Fig. 4A, bottom). One explanation for the residual p-histone H3 staining may be amplification of aurora-B gene dosage resulting from polyploidization. We next examined the effects of AMG 900 on intrinsic apoptotic pathway proteins (35) and compared the effects with an MDM2 inhibitor (nutlin-3a; ref. 36). As shown in Fig. 4B, AMG 900 increased total p53 and cl-caspase-3 protein levels with negligible changes in MDM2, p21, full-length Bcl-2, Mcl-1, Bcl-xL, and Bax protein levels. Notably, we detected a 23-kDa Bcl-2 protein product that mirrored the induction profile of cl-caspase-3 protein. Bcl-2 can convert from a full-length pro-survival protein to a lower molecular weight (LMW) form that is pro-apoptotic (37). The antibody used in our studies recognizes Bcl-2 peptide 41 to 54 a.a., that is downstream from two caspase cleavage sites (Asp-31, Asp-34); cleavage at these sites generates approximately 23-kDa protein product. Addition of caspase inhibitors (Z-VAD-fmk, Z-DEVD-fmk) attenuated the antiproliferative effects of AMG 900 by approximately 2.5-fold relative to AKI treatment alone, and partially blocked apoptosis and Bcl-2 protein cleavage (Fig. 4C and D; Supplementary Fig. S5A and S5B). To examine the effects of AMG 900 on mitochondrial membrane (MM) integrity, we performed JC-1 coupled annexin-V analysis (Supplementary Fig. S6). In healthy mitochondria, JC-1 dye forms aggregates with orange–red fluorescence emission, during apoptosis, depolarization of the MM results in monomeric JC-1 with a green fluorescence emission profile (38). Treatment with AMG 900 increased the annexin-V population by 7-fold and decreased annexin-V–positive JC-1 with green fluorescence intensity by 5-fold, in agreement with cells undergoing apoptosis with deenergized MMs (Fig. 4E). Together, our results show that inhibition of aurora-B activity by AMG 900 in MOLM-13 cells leads to an increase in polyploidy and centrosome number, activation of p53 pathway without p21 induction, and increase in cell lethality mediated in part by the intrinsic apoptotic pathway.

Figure 2.
AMG 900 induces polyploidization and the expression of megakaryocyte-lineage differentiation markers. CHRF-288-11 AMKL cells and Jak2V617F knock-in mouse bone marrow cells were treated with MLN8237 and AMG 900 at 0.3 μmol/L or DMSO for 72 hours. A and C, Representative images of Wright-Giemsa stained cells (magnification, ×400), CD41/CD42 expression, and DNA content profiles. B and D, The percentage of CD41+/CD42+ and >4N DNA content gated CHRF-288-11 and Jak2V617F gated populations (mean ± SD). CHRF-288-11 cells [MLN8237 and AMG 900 versus DMSO (CD41+/CD42+ and DNA ploidy; *, P ≤ 0.0009)]. Jak2V617F cells from five individual mice [MLN8237 vs. DMSO (CD41+/CD42+ and DNA ploidy) P = 0.5354, not significant (ns); AMG 900 vs. DMSO (CD41+/CD42+ and DNA ploidy ; **P ≤ 0.0007)].
AMG 900 blocks proliferation of primary HBMNCs without inducing polyploidization

In clinical studies, the most frequently observed adverse event with AKIs has been on-target myelotoxicity, particularly neutropenia (13–15, 29). To test the activity of AMG 900 on bone marrow suppression in vitro, we evaluated cultured HBMNCs that express granulocyte markers CD15$^+$/CD11b$^-$ (early myelocytes) and CD15$^+$/CD11b$^+$ (myelocytes to segmented granulocytes; Supplementary Fig. S7A). We treated HBMNC cultures with AMG 900 or AZD1152-hQPA for 48 hours and observed an increase in cell death (subG1) and a dose-dependent decrease in proliferation (BrdUrd uptake) with EC$_{50}$ values similar to their potencies against AML cells (Supplementary Fig. S7B). To understand the potential recovery profile of normal cells after AKI washout, we shortened the duration of treatment to 24 hours and used anti-mitotic docetaxel as a cytotoxic comparator. In contrast with docetaxel, HBMNCs treated with AZD1152-hQPA or AMG 900 showed and improved recovery proliferation profile by 48 hours after compound washout, where AKIs were comparable with DMSO-treated cells (Supplementary Fig. S7C and S7D). No substantial accumulation of $>$4N DNA content bone marrow cells was observed after treatment with AMG 900, suggesting pre- and/or post-mitotic mechanism(s) exist that prevent bulk polyploidization.

AMG 900 reduces tumor burden and inhibits $[^{18}$F$]FLT$ uptake in the skeleton of mice bearing MOLM-13-Luc xenografts

To examine the antiproliferative effects of AMG 900 in vivo, we used a systemic AML model that closely mimics disease dissemination into the skeleton tissues of mice bearing MOLM-13 cells expressing luciferase (31). In addition, we utilized $[^{18}$F$]FLT$-PET/CT imaging as a noninvasive method of monitoring cell proliferation and drug response (39). Nine days post-tumor implantation, mice were orally administered vehicle or AMG 900 using two dosing schedules (consecutive daily dosing for 4 days at 22 mg/kg or seven days at 12.6 mg/kg). Mice were imaged for luciferase activity and $[^{18}$F$]FLT$ uptake before initiating treatment (baseline) and at multiple time points after the cessation of AMG 900 treatment as outlined in the study scheme in Fig. 5A.
As measured by whole-body bioluminescence, mice treated with AMG 900 using either dose schedule showed significant antitumor activity across study time points relative to vehicle-treated group [tumor growth inhibition 86%–90% and 94%; \(P < 0.0001 \) (days 6 and 9); 95%, \(P < 0.02 \) (day 12)] (Fig. 5B). Because of the aggressive nature of the MOLM-13 systemic model, animals with either hind-limb paralysis or significant body weight loss were euthanized. On average, mice maintained \(>90\% \) of their initial body weight in all treatment groups, one animal from each treatment group died on study by day 19 post-tumor implantation (Supplementary Fig. S8). We removed the vehicle-treated group from study on day 19 and the AMG 900-treated groups on day 23. At the end of the study, we assessed mouse femurs for tumor burden by FC, using a DNA content fitting algorithm to quantify the ratio of mouse diploid cells to human aneuploid AML cells (Fig. 5C and D). Relative to the vehicle-treated group, AMG 900 significantly reduced the MOLM-13 cell fraction in the marrow (\(P \leq 0.0002 \); Fig. 5D), with 7-day schedule reducing tumor burden to a greater degree than the 4-day schedule (\(P = 0.0152 \)).

The combined approach of PET/CT offers the capability of high-resolution 3D imaging of skeletal tissue to measure and report \([^{18}F]\)FLT signal specifically in bone as the percentage injected dose per gram of tissue (%ID/g). Mice were administered FLT radiotracer at baseline (one day before treatment) and on days 5, 8, 11, and 14 after the start of treatment (Fig. 5E and F). Administration of AMG 900 on 4- and 7-day schedules significantly inhibited skeletal \([^{18}F]\)FLT uptake measured on day 5 \(\left[22 \text{ mg/kg AMG 900} = 2.2 \text{ %ID/g} \pm 0.08; \text{ vehicle} = 3.7 \text{ %ID/g} \pm 0.23 \quad (P < 0.0001) \right] \) and day 8 \(\left[12.6 \text{ mg/kg AMG 900} = 2.8 \text{ %ID/g} \pm 0.4; \text{ vehicle} = 5.2 \text{ %ID/g} \pm 0.2 \quad (P < 0.0001) \right] \), respectively. Interestingly, both AMG 900 schedules resulted in a \([^{18}F]\)FLT flare event measured 4 days after treatment cessation (Fig. 5E, noted by the arrowheads). Skeletal \([^{18}F]\)FLT signal decreased within 3 days after the initial flare event, suggesting the flare may have resulted from a transient pulse of proliferation associated with bone marrow recovery (40) or alternatively, may have resulted from a drug induced cell-cycle synchronization of remaining viable cancer cells.
Discussion

Despite recent advances in our understanding of AML molecular heterogeneity and pathogenesis (2), new-targeted treatment strategies have largely failed at improving overall survival over standard chemotherapy. In this report, AMG 900 distinguished itself as the most potent antileukemic agent across a panel of diverse AML cell lines compared against two AK isoform-selective inhibitors and two classic AML drugs. We established the primary effects of AMG 900 on AML cells resulted in suppression of p-histone H3, polyploidization and/or apoptosis with cellular effects mirroring that of AZD1152-hQPA, indicating inhibition of aurora-B as the dominant driver of antileukemic activity. Suppression of p-histone H3 immunoreactivity in AML or normal proliferating cells by AMG 900 may serve as a robust pharmacodynamic marker for monitoring aurora-B inhibition in vivo (41), whereas accurately measuring aurora-A inhibition in vivo remains a challenge for the field (42). Our cell line data support that MLN8054 has a more complex concentration-dependent mode-of-action, either by activating SAC through selective inhibition of aurora-A, or by SAC silencing through dual AK inhibition at higher micromolar concentrations. On the basis of our current...
study, we cannot definitively conclude that dual AK inhibition is more efficient at killing AML cells than isofom-selective AK inhibition. However, in contrast to isofom-specific AKIs, dual AK inhibition by AMG 900 reduces the likelihood of resistance driven by target-modifying mutations, as both mitotic genes are essential for cell division (25). Multiple other factors can contribute to drug resistance, including elevated expression of P-gp, which in elderly patients with AML is strongly associated with negative outcomes (21, 43). Unlike the case with AZD1152-hQPA, cell surface expression of P-gp on AML cells did not confer resistance to AMG 900. Clinically, selection of AML patients based on P-gp expression level is one biomarker approach to assess the utility of AMG 900 at combating drug-efflux-mediated resistance, particularly in a relapse setting. Conversely, AMG 900 could negatively impact cycling immature hematopoietic progenitor cells expressing P-gp and BCRP.

A subset of bone marrow proliferative disorders such as AMKL and PMF are characterized by defects in megakaryocyte differentiation. AMG 900-treatment of AMKL and Jak2V617F mutant cells induced parallel increases in DNA ploidy, cytoplasmic volume, and expression of CD41/CD42, all three phenotypes associated with megakaryocyte maturation. Admittedly, this same assessment should be expanded to include AZD1152-hQPA to determine whether selective aurora-B and dual AK inhibition induce similar hallmarks of megakaryocyte maturation (16). Induction of differentiation with all-trans retinoic acid is a successful strategy for treating acute promegloyctic leukemia (44), whether this approach can be efficacious with induction of polyploidization (18) is actively under investigation with alsitib in AMKL and PMF patients.

In the next phase of our in vitro studies, we determined that AMG 900 combined with LDAC neither enhanced (HEL, MOLM-13) or attenuated cell killing (GDM-1, U937). The observation that TP53 WT GDM-1 cells showed a strong cell arrest response after AMG 900 treatment suggests p21 protein induction promotes an antagonistic interaction with Ara-C in terms of lethality. Evaluating AK inhibition in combination with Ara-C in a larger panel of AML lines and primary AMLs representing diverse FAB subtypes and genotypes is an appropriate next step to better define the response differences observed in our study and to elucidate the molecular underpinnings driving enhanced cell killing. In a phase-1 AML study with AMG 900, baseline expression levels of select mitotic genes (AURKA, AURKB, BIRC5, CCNB1, CDC2, TTK) were evaluated in 24 patients as exploratory biomarkers. Of note, three CRI responders to AMG 900 all showed elevated expression of mitotic genes at baseline (29). Although these results are interesting, additional studies are needed due to the small sample size. One unanticipated finding from our in vitro studies was the detection of a LMW-form of Bcl-2 protein after AMG 900 treatment in MOLM-13 cells. Cleavage of Bcl-2 is believed to inactivate its pro-survival function, consistent with our observation that peptide caspase inhibitors attenuated the apoptotic response of AMG 900 noted by the concomitant drop in active–caspase-3 and LMW-form of Bcl-2 protein levels. We detected no changes in the ratio of Bcl-2 to Bax protein expression with AMG 900, which was previously reported to be a positive predictor of pro-apoptotic response in AML lines treated with pan-AKI VX-680 (35). In this report, we did not directly address the cell fate of cycling polyplloid AML cells harboring extra centrosomes after AKI withdrawal. Given that SAC silencing by AMG 900 leads to exit from mitosis without division, the likelihood of a mitotic catastrophe event with AKI present is low. However, upon SAC restoration after AMG 900 wash out, polyplloid AML cells that transition through mitosis are expected to trigger lethal multipolar cell division and/or cellular senescence in the next interphase.

On-mechanism toxicity to normal proliferating tissues has hindered clinical development of small-molecule inhibitors targeting mitotic kinases and kinesins (45). Consistent with this anti-mitotic class effect, AMG 900 induced cytotoxicity on HBMMNCs in culture; however, we did observe an improved time-to-recovery profile after AMG 900 washout relative to classic anti-mitotic agent docetaxel. Several factors have the potential to influence efficacy/toxicity profile such as individual AKI drug-like properties, dose scheduling, route of administration, and formulation. One recent approach aimed at improving the effectiveness of AZD1152-hQPA used a nanoparticle formulation and an alternative dose schedule to successfully demonstrate durable regressions in AML xenograft models with lower toxicity (46); this same strategy is now in clinical testing with AZD1152-hQPA in AML and myelodysplastic syndrome patients (NCT03217838).

In line with our in vitro results, AMG 900 demonstrates robust antileukemia activity in an aggressive MOLM-13 systemic xenograft model, in which tumor burden was determined by whole body bioluminescence and AML cell dissemination in skeletal tissue. A single cycle of AMG 900 treatment using two clinically relevant schedules (4-day and 7-day; ref. 29) resulted in significant tumor growth inhibition (>85% TGI) by BLI. We also observed a reduction in tumor burden in mouse femurs, where the 7-day schedule appeared to be more effective at clearing AML cells from bone marrow. Additional studies will be required using multiple cycles of AMG 900 treatment in a less aggressive AML xenograft model to assess anti-leukemia durability. To correlate the antitumor effects of AMG 900 more directly, we assessed active DNA replication (S-phase) fraction using radiotracer [18F]FLT-PET in skeletal tissue. Factors that influence [18F]FLT-PET signal output after AKI treatment may include differences in proliferation rates between bone marrow and AML cells, thymidine kinase 1 expression, and the level of polyploidization (40, 47). With those stated factors, we clearly demonstrated AMG 900 reduced skeletal [18F]FLT signal during the treatment phase followed by an [18F]FLT flare event after treatment cessation, which may have resulted from bone marrow recovery and/or AML cells re-entering S-phase. On the basis of these data, [18F]FLT-PET imaging could be used to further optimize AMG 900 dose scheduling and explore multidrug combinations. Importantly from a therapeutic perspective, Ara-C is a cell-cycle phase specific nucleoside that kills cells in S-phase (48), therefore one could hypothesize that induction of an AMG 900 [18F]FLT flare event followed by LDAC may prime leukemia cells for maximal killing and thereby improve durability of response.

In summary, we provide evidence that AMG 900 has potent antileukemia activity on a panel of AML lines and that it can cooperatively promote enhanced cell killing in combination with LDAC. Cellular effects of AMG 900 were similar to AZD1152-hQPA, with differences in activity due to drug-efflux and kinase specificity. We discovered AMG 900 triggers maturation of AMKL and Jak2V617F cells, suggesting that it can act as a differentiation inducer. Our work provides an initial framework in which AMG 900 can serve as a best-in-class pan-AKI for further exploration of the effects of AKI on the interconnected p53/apoptotic/mitotic signaling networks in AML. Lastly, we highlight the in vivo activity of AMG 900 in a systemic AML model and the utility of [18F]FLT-PET/CT imaging for monitoring drug action.
Disclosure of Potential Conflicts of Interest

M. Payton, K. Cheung, W. Wayne, K. Hanestad, G. Juan, and A. Coxon are current or former full-time employees of Amgen Inc. and have owned stock in Amgen Inc. at the time this work was conducted. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Conception and design: M. Payton, H.-K. Cheung, M.S.S. Ninniri, W.C. Wayne, G. Juan, A. Coxon

Development of methodology: M. Payton, H.-K. Cheung, M.S.S. Ninniri, W.C. Wayne

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M. Payton, M.S.S. Ninniri, C. Marinaccio, W.C. Wayne, K. Hanestad

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M. Payton, K. Cheung, M.S.S. Ninniri, C. Marinaccio, W.C. Wayne, K. Hanestad, J.D. Crispino, G. Juan

Writing, review, and/or revision of the manuscript: M. Payton, H.-K. Cheung, M.S.S. Ninniri, C. Marinaccio, W.C. Wayne, J.D. Crispino, G. Juan, A. Coxon

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): M. Payton, M.S.S. Ninniri, W.C. Wayne

Study supervision: M. Payton, H.-K. Cheung, A. Coxon

Acknowledgments

The authors thank individuals on AMG 900 project and specifically Stephanie Geuns-Meyer, Kathleen Keegan, Gregory Friberg, Erick Carmelini, Richard Kendall, Peter Piezler, and Florian Vogel. We thank Ann Mullally at Brigham and Women’s Hospital/Harvard Medical School for providing the IkbΔVT17 mice. This work was supported in part by a grant from the NIH (HL112792) to JDC. We would also like to acknowledge the team from Molecular Imaging Inc. and inviCRO Inc. for conducting the in vivo imaging studies.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received February 22, 2018; revised June 15, 2018; accepted September 25, 2018; published first September 28, 2018.

References

Dual Inhibition of Aurora Kinases by AMG 900 in AML

38. Salvioni S, Andizzone A, Franchesi C, Cossetti A, JC1, but not DiOC6 (3) or rhodamine 123, is a reliable fluorescent probe to assess Δψm changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 1997;411:77–82.

Molecular Cancer Therapeutics

Dual Targeting of Aurora Kinases with AMG 900 Exhibits Potent Preclinical Activity Against Acute Myeloid Leukemia with Distinct Post-Mitotic Outcomes

Marc Payton, Hung-Kam Cheung, Maria Stefania S. Ninniri, et al.

Mol Cancer Ther 2018;17:2575-2585. Published OnlineFirst September 28, 2018.

Updated version
Access the most recent version of this article at: doi:10.1158/1535-7163.MCT-18-0186

Supplementary Material
Access the most recent supplemental material at: http://mct.aacrjournals.org/content/suppl/2018/09/28/1535-7163.MCT-18-0186.DC1

Cited articles
This article cites 48 articles, 21 of which you can access for free at: http://mct.aacrjournals.org/content/17/12/2575.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/17/12/2575.
Click on “Request Permissions” which will take you to the Copyright Clearance Center's (CCC) Rightslink site.