Targeting Plk1 to Enhance Efficacy of Olaparib in Castration-Resistant Prostate Cancer

Jie Li1, Ruixin Wang1, Yifan Kong1, Meaghan M. Broman2, Colin Carlock1, Long Chen1, Zhiguo Li1, Elia Farah1, Timothy L. Ratliff2, and Xiaoqi Liu1,2

Abstract

Olaparib is an FDA-approved PARP inhibitor (PARPi) that has shown promise as a synthetic lethal treatment approach for BRCA-mutant castration-resistant prostate cancer (CRPC) in clinical use. However, emerging data have also shown that even BRCA-mutant cells may be resistant to PARPi. The mechanistic basis for these drug resistances is poorly understood. Polo-like kinase 1 (Plk1), a critical regulator of many cell-cycle events, is significantly elevated upon castration of mice carrying xenograft prostate tumors. Herein, by combination with Plk1 inhibitor BI2536, we show a robust sensitization of olaparib in 22RV1, a BRCA1-deficient CRPC cell line, as well as in CRPC xenograft tumors. Mechanistically, monotherapy with olaparib results in an override of the G1–S checkpoint, leading to high expression of Plk1, which attenuates olaparib’s overall efficacy. In BRCA1 wild-type C4-2 cells, Plk1 inhibition also significantly increases the efficacy of olaparib in the presence of p53 inhibitor. Collectively, our findings not only implicate the critical role of Plk1 in PARPi resistance in BRCA-mutant CRPC cells, but also shed new light on the treatment of non-BRCA–mutant patient subgroups who might also respond favorably to PARPi.

Mol Cancer Ther; 16(3); 469–79. ©2017 AACR.

Introduction

Prostate cancer is the second leading cause of cancer-related death in males in the United States, with 180,890 new cases and 26,120 deaths estimated in 2016 (1). The androgen receptor (AR) signaling pathway, which controls the growth of prostate cancer cells, including those in CRPC, is a valid target for treatment (2). Consequently, current approaches to treat CRPC are to delay or replace treatment with cytotoxic agents (e.g., docetaxel) with androgen signaling inhibitors (ASI), such as abiraterone and enzalutamide, instead (3, 4). Despite success in targeting AR signaling pathway, resistance to these ASIs invariably develops (5). Therefore, it is urgent to identify novel therapeutic targets and strategies to manage this neoplasm.

PARPi is the most abundant and best characterized member of the family of PARP enzymes (6, 7). PARPi is required for the efficient repair of DNA single-strand breaks (SSB) during base excision repair (BER), and its inhibition leads to persistent single-strand gaps in DNA. If these gaps are encountered by a replication fork, arrest would occur and the single-strand gaps may be converted to double-strand breaks (DSB; refs. 8–10). Normally, these DSBs can be repaired by RAD51-dependent homologous recombination (HR), a process in which both BRCA1 and BRCA2 are involved. In the absence of BRCA1 or BRCA2, the replication fork cannot be restarted and collapses, resulting in persistent chromatid breaks (11). The repair of these breaks by alternative error-prone DSB repair mechanisms can cause large numbers of chromatid breaks and aberrations, leading to loss of viability. Thus, PARPi are strikingly toxic to cells with defects in HR (12).

Olaparib, a PARPi inhibitor, is recently developed and used to target cancers with defects in DNA repair, such as BRCA mutations. It has already been approved by the FDA for treating advanced ovarian cancer associate with defective BRCA genes (13, 14) and also granted Breakthrough Therapy designation for the treatment of BRCA-mutant CRPC. Results from the TOPARP-A phase II clinical trial showed that treatment with olaparib in patients whose prostate cancers were no longer responding to standard treatments and who had defects in DNA repair genes led to a high response rate (15). However, many groups have also shown that some BRCA-mutant cells may be resistant to PARPi (11, 16–18). Thus, the major clinical challenges in terms of olaparib usage are the acquisition of drug resistance, and defining non-BRCA–mutant patient subgroups who might also respond favorably to PARPi.

Plk1, overexpressed in prostate cancer, is linked to higher grade tumors, suggesting that Plk1 is involved in tumorigenesis and progression in this tumor entity (19). Of note, Plk1 is one of the top five upregulated pathways following castration (20). Several potent and selective ATP-competitive inhibitors of Plk1, including BI2536 (21) and GSK461364, are in phase I or II clinical studies for patients with various cancers (22, 23). In addition, we recently reported that inhibition of Plk1 enhances the efficacy of ASI in CRPC (24). In this study, we discovered that Plk1 and PARPi interact with each other, and that Plk1 inhibition significantly enhances the efficacy of olaparib in 22RV1 cells. We also demonstrate that combinatorial inhibition of Plk1 and PARPi is a novel and therapeutically effective approach to treat PARPi-resistant CRPC in both cultured cells and 22RV1-derived xenografts.
tumors. Mechanistically, we propose that the G1–S checkpoint override triggered by olaparib in some BRCA-mutant tumors may result in high expression of Plk1, which greatly reduces the efficacy of olaparib. Thus, inhibition of Plk1 activity enhances the efficacy of olaparib.

Materials and Methods

Cell culture and drugs

22RV1, PC3, and MDA-MB-231 cells were purchased from the ATCC. C4-2 cells were obtained from Dr. Leland Chung at the University of Texas MD Anderson Cancer Center in 2010. Refer to Table 1 for information on the genetic backgrounds present in these cell lines. Cells were grown and aliquots were stored in liquid nitrogen for future use. Cells were purchased more than 6 months ago and were not further tested or authenticated by authors. 22RV1 and C4-2 cells were cultured in RPMI1640 medium supplemented with 10% (v/v) FBS and 100 U/mL penicillin, 100 U/mL streptomycin at 37°C in 5% CO2. PC3 cells were cultured in ATCC-formulated F-12K medium supplemented with 10% (v/v) FBS and 100 U/mL penicillin, 100 U/mL streptomycin at 37°C in 5% CO2. MDA-MB-231 cells were cultured in ATCC-formulated Leibovitz’s L-15 medium supplemented with 10% (v/v) FBS and 100 U/mL penicillin, 100 U/mL streptomycin at 37°C in 5% CO2. B2536 and olaparib were purchased from Symansis and Santa Cruz Biotechnology, respectively. 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) was purchased from Tokyo Ci n5 %C O2. BI2536 and olaparib were purchased from Ci n5 %C O2. PC3 cells were cultured in ATCC-formulated F-12K medium supplemented with 10% (v/v) FBS and 100 U/mL penicillin, 100 U/mL streptomycin at 37°C in 5% CO2. B2536 and olaparib were purchased from Symansis and Santa Cruz Biotechnology, respectively. 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) was purchased from Tokyo Chemistry Industry. Pifithrin-1-α (PFT1-α) was obtained from Calbiochem-Novabiochem.

Cell apoptosis detected by Annexin V-fluorescein isothiocyanate–propidium iodide

An Annexin V apoptosis kit was purchased from BioVision (catalog number: K101-25) and the Annexin V assay was performed according to the manufacturer’s instructions. FACS analysis

Cells were harvested by trypsinization, fixed in 75% ethanol, stained with propidium iodide (PI) solution at a final concentration of 50 μg/mL, and subjected to FACS analysis.

Subcellular fractionation

Cytoplasmic and nuclear fractions of cells were prepared using the Nuclear Extract Kit from Active Motif. Briefly, harvested cells were resuspended in hypotonic buffer, vortexed for 10 seconds, and centrifuged for 30 seconds at 14,000 rpm at 4°C. Supernatants were collected as cytoplasmic fractions. Nuclear pellets were resuspended using complete lysis buffer, incubated on ice for 30 minutes, vortexed for 30 seconds, and centrifuged for 10 minutes at 14,000 rpm. Supernatants were collected as nuclear fractions.

RNA expression analysis

Total RNA was extracted by the RNeasy Mini Kit (Qiagen). For quantitative RT-PCR analysis, reverse transcription using 1 μg RNA was performed with the iScript cDNA Synthesis Kit (Bio-Rad), followed by gene amplification using FastStart Universal SYBR Green (Roche Applied Science) and a Roche LightCycler 96 thermocycler (Roche Diagnostics Corporation). All individual reactions were performed in duplicate and all genes were normalized to 18S ribosomal RNA.

Combination index

The combination index (CI) was calculated using the following equation (26): CI = (Am)so/(As)so + (Bm)so/(Bs)so, where (Am)so is the concentration of B2536 necessary to achieve a 50% inhibitory effect in the combination with half of the concentration of the olaparib IC50 (Ax)so is the concentration of B2536 that will produce the identical level of effect by itself; (Bm)so is the concentration of olaparib that will produce a 50% inhibitory effect in the combination with half of the concentration of B2536 IC50 and (Bs)so is the concentration of olaparib.
that will produce the same level of effect by itself. Antagonism is indicated when CI > 1, CI = 1 indicates an additive effect and CI < 1 indicates synergy (27).

22RV1-derived mouse xenograft model

22RV1 cells (1 x 10^6 cells/mouse) were mixed with an equal volume of Matrigel (Collaborative Biomedical Products) and inoculated into the right flank of nude mice (Harlan Laboratories). Two weeks later, animals were randomized into treatment and control groups with 4 mice each. Both olaparib and BI2536 were injected into the tail vein twice weekly. Tumor volumes, estimated from the formula: V = L x W^2/2 (V, mm^3; L, mm; W, mm), were measured with digital calipers.

Histology and IHC

Xenograft tumors were fixed in 10% neutral buffered formalin, paraffin embedded, sectioned to 5 μm, and stained using conventional hematoxylin and eosin (H&E) staining. Immunohistochemical and immunofluorescent chemistry (IFC) staining was accomplished with Elite Vectastain ABC kit.

Statistical analysis

The statistical significance of the results was analyzed using an unpaired Student t test (StatView I, Abacus Concepts Inc.). A P value of less than 0.05 indicates statistical significance.

Results

Inhibition of Plk1 enhances the efficacy of olaparib

The use of PARPi is an active area of clinical investigation in oncology, as it exploits synthetic lethality in tumors with defective HR and potentiates the cytotoxic effect of chemotherapy and radiation (28). However, emerging data have shown that some tumors with HR defects demonstrate apparent resistance to olaparib treatment (17, 18, 29). Plk1, overexpressed in prostate cancer and involved in prostate cancer tumorigenesis and progression, is one of the top upregulated pathways following castration in prostate cancer xenograft models (30). Whether Plk1 inhibition can enhance the antineoplastic activity of olaparib is currently not known.

We investigated whether BI2536 and the PARPi olaparib act synergistically to inhibit the growth of CRPC cells. First, 22RV1 cells were treated with BI2536, olaparib or BI2536 in combination with olaparib, and harvested for analysis of cleaved-PARP, a marker of apoptosis (Fig. 1A; Supplementary Fig. S1A). As indicated, low-dose olaparib treatment (0.1 μmol/L, lane 4) showed very weak cellular apoptotic response in 22RV1 cells. The combination treatment of BI2536 and olaparib led to a significantly increased cellular apoptotic response (lane 5) when compared with BI2536 or olaparib alone (lane 2 and 4). Next, we performed FACS analysis to monitor any cell-cycle defects upon drug treatment. As indicated, the presence of BI2536 potentiated olaparib-associated cell death in 22RV1 cells (Supplementary Fig. S1C). Cell apoptosis, detected by Annexin V-fluorescein isothiocyanate (FITC)/PI, also showed that combination treatment with BI2536 and olaparib significantly increased the apoptotic cell population (Fig. 1D and E). In agreement, treatment of 22RV1 cells with the BI2536 and olaparib combination showed a much stronger inhibitory effect on colony formation compared with BI2536 or olaparib alone (Fig. 1B and C). We then investigated the formation of γH2AX foci, which normally form in response to DSBs in mammalian cells. As shown in Fig. 1F, treatment with BI2536 or olaparib alone had a marginal effect on the γH2AX foci formation. When 22RV1 cells were treated with BI2536 plus olaparib for 24 hours, γH2AX foci formation was significantly affected. The number of foci per cell was increased, the foci were enlarged, and the fluorescence intensity of foci was enhanced (Fig. 1G).

Finally, the combination treatment of BI2536 and olaparib also significantly increased the expression of γH2AX at the protein level compared with the monotherapy with BI2536 or olaparib (Fig. 1H). To further investigate the synergistic effect between BI2536 and olaparib, we measured the CI. Measurements of IC50 values revealed an IC50 value of 70 μmol/L for olaparib-treated 22RV1 cells. However, the IC50 value of olaparib was reduced to 20 μmol/L when cells were treated in combination with 50 nmol/L BI2536. The CI of the two drugs was calculated to be 0.58, suggesting a strong synergistic effect between BI2536 and olaparib (Table 2). Altogether, these results demonstrate that Plk1 inhibition can sensitize the antineoplastic activity of olaparib, suggesting a strong synergistic effect between BI2536 and olaparib.

Combination therapy with BI2536 and olaparib synergistically blocks growth of CRPC cell–derived xenograft tumors

To assess this combinatorial activity, we next tested the effect of combination treatment in a 22RV1-derived xenograft mouse model. As shown in Fig. 2A, monotherapies with BI2536 or olaparib did not significantly affect the tumor growth compared with untreated control group. In contrast, the combination of BI2536 and olaparib led to a significantly greater tumor-inhibitory effect than did monotherapy with either BI2536 or olaparib (Fig. 2A–C). Histologically, tumors from the control group were composed of sheets of neoplastic epithelial cells with marked nuclear pleomorphism, 1–2 prominent nucleoli, and numerous mitotic figures within a scant fibrous stroma (Fig. 3A, H&E). These histopathologic features are similar to high-grade prostatic adenocarcinoma in vivo, which is typically associated with poor clinical outcomes. However, tumors treated with BI2536 and olaparib combination therapy showed increased numbers of apoptotic bodies with condensed cytoplasm and pyknotic nuclei compared with BI2536 or olaparib monotherapy-treated tumors or controls. Immunostaining for Ki67 and cleaved caspase-3 also confirmed that tumors from combination therapy had a significant reduction in overall proliferation and a significant increase in apoptosis (Fig. 3B–D), suggesting that the combination of olaparib and BI2536 led to more effective prostate cancer cell killing compared with monotherapy with olaparib.

In summary, these studies support the notion that the Plk1 inhibitor BI2536 and olaparib act synergistically in human prostate cancer cells, providing a novel and promising therapeutic option to treat CRPC patients. These results are also consistent with our observation in the cell-based study, providing additional evidence of a strong synergistic effect between olaparib and BI2536 in vitro and in vivo.

Interaction between PARP1 and Plk1

Because combined inhibition of Plk1 and PARP1 shows a strong synergistic effect in blocking human prostate tumor growth, we investigated whether PARP1 and Plk1 interact with each other in CRPC cells. First, 22RV1 cells were treated with nocodazole for 12 hours, and harvested for anti-Plk1 IP, followed by Western blotting. Coimmunoprecipitation assays showed an interaction between endogenous Plk1 and endogenous PARP1.
Figure 1. Plk1 inhibition enhances the efficacy of olaparib in BRCA1-deficient 22RV1 cells.

A, 22RV1 cells were treated with indicated concentrations of BI2536, olaparib, or both for 24 hours and harvested for immunoblotting (IB) with antibodies against cleaved-PARP.

B, 22RV1 cells (0.5 × 10^3) were plated in 6-well plates for 24 hours and then treated with BI2536 (2.5 nmol/L), olaparib (1 μmol/L), or both drugs. (Continued on the following page.)
Olaparib (in combination with 50 nmol/L BI2536) 20 μmol/L CI = 0.58

Olaparib in CRPC Treatment

Table 2. The IC_{50} values of olaparib and BI2536 in 22RV1 cells

<table>
<thead>
<tr>
<th>Drugs</th>
<th>IC_{50}</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI2536</td>
<td>100 nmol/L</td>
<td></td>
</tr>
<tr>
<td>Olaparib</td>
<td>70 μmol/L</td>
<td></td>
</tr>
<tr>
<td>Olaparib (in combination with 50 nmol/L BI2536)</td>
<td>20 μmol/L</td>
<td>CI = 0.58</td>
</tr>
</tbody>
</table>

Abbreviation: CI, combination index.

(Continued) After changing fresh media containing drug(s) every 3 days for 2 weeks, cells were PFA fixed and colony formation was monitored by crystal violet staining. The experiments shown are representatives of 3 repeats. C. Quantification of the colonies in B. The numbers of colonies were quantified using ImageJ software (mean ± SD; n = 3 independent experiments). P = 1.04648E − 07 (BI2536 vs. BI2536 + olaparib); P = 9.11184E − 06 (olaparib vs. BI2536 + olaparib).

Discussion

Olaparib is an innovative, first-in-class PARP inhibitor that exploits tumor DNA repair pathway deficiencies to preferentially kill cancer cells. The DNA repair defect present in BRCA-mutant cancers has been used to develop “synthetic lethal” treatment strategies that have been clinically validated (13, 15, 25, 27). Although it has been reported that BRCA-mutant cancers respond very well to olaparib monotherapy, a substantial fraction

www.aacjrournals.org Mol Cancer Ther; 16(3) March 2017 473

Downloaded from mct.aacjrournals.org on June 5, 2021. © 2017 American Association for Cancer Research.
of advanced BRCA-mutant cancers are resistant to olaparib (11, 16–18, 29). Therefore, identifying additional targets whose inhibition might enhance the efficacy of olaparib to overcome the drug resistance will have a major clinical impact. On the other hand, BRCA mutations are not common for many types of cancers, and BRCA wild-type patients do not respond very well to the olaparib treatment. Therefore, cotargeting PARP1 and additional target(s) might be an effective approach to overcome drug resistance by enhancing the efficacy of olaparib in BRCA-mutated patient and/or make the non-BRCA–mutant patients also respond well to PARPi.

Increasing evidence supports the notion that Plk1-associated activity might be involved in acquisition of resistance for various cancer therapies. For example, Plk1 phosphorylation of Orc2 drives continued DNA replication even in the presence of gemcitabine, the major approach for treatment of pancreatic cancer (31). Plk1-associated kinase activity is a predictable marker for the efficacy of radiotherapy in rectal cancer (32). Plk1 also plays a critical role for therapy resistance in prostate cancer. Plk1 phosphorylation of CLIP-170 and p150Glued, two microtubule plus-end binding proteins, enhances microtubule dynamic which results in resistance to docetaxel, the first-line treatment for CRPC (33). Furthermore, Plk1-mediated activation of the PI3K/AKT/mTOR pathway leads to activation of the AR signaling, thus antagonizing the effect of ASIs, such as abiraterone and enzalutamide (24). Recently, we also demonstrated that inhibition of Plk1 enhances the antineoplastic activity of metformin and β-catenin inhibitor in CRPC (20, 34). Therefore, Plk1 elevation/activation is likely a general mechanism for therapy resistance in CRPC, albeit via multiple mechanisms. For DNA damage-based therapy, the underlying mechanism for the Plk1 involvement is clearly the p53 pathway. Enough evidence supports the link between Plk1 and the p53 pathway, as Plk1 is inhibited upon DNA damage and p53 activation. During the subsequent checkpoint recovery, Plk1 phosphorylation of GTSE1 drives p53 translocation from the nucleus to the cytoplasm, resulting in p53 degradation and eventually cell-cycle re-entry (35).

In this study, we investigated the sensitivity of several different cell lines with various genetic backgrounds to the olaparib monotherapy or combination therapy with olaparib plus a Plk1 inhibitor BI2536. Among the cell lines used in this study (Table 1), both 22RV1 and C4-2 are considered CRPC cells, as their growth is androgen independent (36, 37). Herein, we showed that Plk1 inhibition significantly potentiates olaparib-associated cell death in BRCA1-null 22RV1 cells as well as the 22RV1-derived xenograft tumors, supporting an immediate clinical trial by combining BI2536 and olaparib in treatment of BRCA-defective, PARPi-resistant CRPC patients. As expected, the BRCA1-wild-type C4-2 cells do not respond well to the olaparib monotherapy, and a synergistic effect similar to that in
Figure 3.
Histologic analysis of 22RV1-derived xenograft tumors. A, Representative images of H&E on formaldehyde-fixed, paraffin-embedded 22RV1-derived xenograft tumors sections from different treatment groups. B, Representative images of immunofluorescence staining for Ki67 and cleaved caspase-3 with tumors as in A. C and D, Microscopic quantification of Ki67 or cleaved caspase-3 as percentages of Ki67- or cleaved caspase-3–positive cells in total numbers of cells. For quantification, at least 300 cells were scored on each field (>20 fields, more than 3 sections at different tumor depths/mouse) as the percentages of Ki67- or cleaved caspase 3-positive cells compared with the total numbers of cells counted; *, P < 0.05; **, P < 0.001 (two-tailed unpaired t test).
22RV1 cells was not observed (Fig. 5J, left). Surprisingly, inhibition of p53 activity significantly resensitized the BRCA1-wild-type C4-2 cells to Olaparib monotherapy and combination with Plk1 inhibitor further enhanced the efficacy of olaparib to kill these cells, as indicated by the substantial increase in the level of cleaved-PARP (Fig. 5J, right). A similar synergistic effect as in BRCA1-null p53-mutant 22RV1 cells was observed in BRCA1-wild-type but p53-mutant MDA-MB-231 cells. These results implicate that p53 status might be an important factor for the proposed combination therapy with olaparib and BI2536.

Figure 4. Plk1 inhibition profoundly suppresses the level of PARP1 protein expression, and PARP1 activation inhibits the Plk1 expression. A, PARP1 binds to Plk1. 22RV1 cells were treated with nocodazole and harvested for immunoprecipitation (IP) with antibodies against Plk1, followed by IB. B, 22RV1 cells were treated with 0.3 mmol/L mimosine (Mimo) for 20 hours, 4 mmol/L hydroxyurea (HU) for 24 hours, or 200 ng/mL nocodazole (Noc) for 12 hours to block cells at \(G_0\), \(G_1\)–S, or \(G_2\)–M phase, respectively. Cells were harvested after 30-minute treatment with 50 \(\mu\)mol/L MNNG. C, Representative images of IF staining for PARP1 and Plk1 in 22RV1 cells treated with 0.3 mmol/L mimosine for 20 hours, 4 mmol/L hydroxyurea for 24 hours, 10 \(\mu\)mol/L RO-3306 for 7 hours, or 200 ng/mL nocodazole (Noc) for 12 hours. D, 22RV1 cells were treated with BI2536 (5 nmol/L, 24 hours) or in combination with MNNG (50 \(\mu\)mol/L), and harvested at indicated time points for IB. E, 22RV1 cells were treated with BI2536 (5 nmol/L, 24 hours), MNNG (50 \(\mu\)mol/L, 30 minutes), or both, and subjected to FACS analysis.
Figure 5.

p53 inhibition restores the synergistic effect between BI2536 and olaparib in BRCA1 wild-type C4-2 cells. A–C, 22RV1 cells were treated with or without olaparib (10 μmol/L) for 24 hours, and harvested for IB (A), quantitative RT-PCR (B), or FACS analysis (C). D, BRCA1 expression was determined by IB in 22RV1 and C4-2. E–G, C4-2 cells were treated with or without olaparib (10 μmol/L) for 24 hours and harvested for IB (D), quantitative RT-PCR (E), or FACS analysis (F). H, C4-2 cells were treated with indicated concentrations of BI2536, olaparib or both for 24 hours and harvested for IB with antibodies against cleaved-PARP.

I, C4-2 cells (0.5 × 10³) were plated in 6-well plates for 24 hours and treated with BI2536, olaparib, or both drugs. After changing fresh media containing drug(s) every 3 days for 2 weeks, cells were PFA fixed and colony formation was monitored by crystal violet staining. The experiments shown are representatives of three repeats. J, C4-2 cells were treated with BI2536 (5 nmol/L), olaparib (10 μmol/L), or both drugs in the presence/absence of p53 inhibitor Pfithrin-α (PFT1-α, 40 μmol/L) and harvested for IB. K and L, PC3 or MDA-MB-231 cells were treated with indicated concentrations of BI2536, olaparib, or both for 24 hours and harvested for IB. M, Proposed working model based on the results of this study.
thus elevation of Plk1, which eventually counteract the efficacy of olaparib. It provides a strong rationale for combing BI2536 with olaparib in these patients. This is an excellent example for personalized medicine in terms of olaparib use in CRPC.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: J. Li, T.L. Ratliff, X. Liu
Development of methodology: J. Li, R. Wang, E. Farah
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J. Li, R. Wang, Y. Kong, C. Carlock, L. Chen
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J. Li, R. Wang, Y. Kong, M.M. Broman, C. Carlock, E. Farah, X. Liu
Writing, review, and/or revision of the manuscript: J. Li, R. Wang, T.L. Ratliff, X. Liu

References

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): R. Wang, Z. Li, T.L. Ratliff, X. Liu
Study supervision: J. Li, T.L. Ratliff, X. Liu

Acknowledgments
We gratefully acknowledge the Biological Evaluation Shared Resource at Purdue University Center for Cancer Research. We also appreciate Sandra Torregrosa-Alen and Benjamin Ramsey for their help with xenograft study.

Grant Support
The study is supported by NIH grants R01 CA157429 (X. Liu), R01 CA192894 (X. Liu), R01 CA196835 (X. Liu), and NIH RO1 CA196634 (X. Liu), ACS grant RSG-13-073 (to X. Liu), and NIH grant P30 CA023168 (Purdue University Center for Cancer Research).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 6, 2016; revised December 1, 2016; accepted December 22, 2016. Published OnlineFirst January 9, 2017.
Molecular Cancer Therapeutics

Targeting Plk1 to Enhance Efficacy of Olaparib in Castration-Resistant Prostate Cancer

Jie Li, Ruixin Wang, Yifan Kong, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-16-0361

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2017/01/07/1535-7163.MCT-16-0361.DC1

Cited articles
This article cites 37 articles, 10 of which you can access for free at:
http://mct.aacrjournals.org/content/16/3/469.full#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/16/3/469.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/16/3/469.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.