The Discovery and Characterization of K-756, a Novel Wnt/β-Catenin Pathway Inhibitor Targeting Tankyrase

Ryoko Okada-Iwasaki1,2, Yuichi Takahashi1, Yasuo Watanabe1, Hiroshi Ishida1, Jun-ichi Saito1, Ryuichiro Nakai1, and Akira Asai2

Abstract

The Wnt/β-catenin pathway is a well-known oncogenic pathway. Its suppression has long been considered as an important challenge in treating cancer patients. Among colon cancer patients in particular, most patients carry an adenomatous polyposis coli (APC) mutation that leads to an aberration of Wnt/β-catenin pathway. To discover the small molecule inhibitors of the Wnt/β-catenin pathway, we conducted high-throughput screening in APC-mutant colon cancer DLD-1 cells using a transcriptional reporter assay, which identified a selective Wnt/β-catenin pathway inhibitor, K-756. K-756 stabilizes Axin and reduces active β-catenin, and inhibits the genes downstream of endogenous Wnt/β-catenin. We subsequently identified that K-756 is a tankyrase (TNKS) inhibitor. TNKS, which belongs to the PARP family, poly-ADP ribosylates Axin and promotes Axin degradation via the proteasome pathway. K-756 binds to the induced pocket of TNKS and inhibits its enzyme activity. Moreover, PARP family enzyme assays showed that K-756 is a selective TNKS inhibitor. K-756 inhibited the cell growth of APC-mutant colorectal cancer COLO 320DM and SW403 cells by inhibiting the Wnt/β-catenin pathway. An in vivo study showed that the oral administration of K-756 inhibited the Wnt/β-catenin pathway in colon cancer xenografts in mice. To further explore the therapeutic potential of K-756, we also evaluated the effects of K-756 in non–small cell lung cancer cells. Although a single treatment of K-756 did not induce antiproliferative activity, when K-756 was combined with an EGFR inhibitor (gefitinib), it showed a strong synergistic effect. Therefore, K-756, a novel selective TNKS inhibitor, could be a leading compound in the development of anticancer agents. Mol Cancer Ther; 15(7): 1525–34. ©2016 AACR.

Introduction

The Wnt/β-catenin pathway controls many biologic processes, including cell proliferation, stem cell renewal, and tissue development (1). When Wnt ligands bind to Frizzled (Fzd) receptors, a key downstream factor, β-catenin, localizes to the nucleus and forms a transcription complex with T-cell factor (TCF; ref. 2). The β-catenin/TCF complex switches on the downstream genes such as MYC, BIRC5 (SURVIVIN), FGF20, ASCL2, CEMIP (RJA1199), VEGFA, DHRSS, CCND1, TNNC1, and AXIN2 (3–10). In contrast, when the Wnt ligand–mediated signaling is absent, β-catenin is degraded by a destruction complex, which is formed by adenomatous polyposis coli (APC), glycogen synthase kinase 3β (GSK3β), casein kinase (CK) 1α, and Axin (11).

The hyperactivation of the Wnt/β-catenin pathway is observed in many cancers including colon, gastric, and hepatocellular cancer (12, 13). The hyperactivation occurs due to the overexpression of the Wnt pathway–activating genes such as Wnt or β-catenin itself or a truncating mutation of the tumor suppressor APC, which is most often identified in colon cancer (12). APC deficiency leads to accumulation of nuclear β-catenin promoting the transcription of downstream target genes and leads to aberrant cell proliferation.

To develop an effective therapy for Wnt/β-catenin pathway deregulated cancer, many pharmacologic studies of small molecules and biologics have been attempted. Anti-Frizzled antibodies and porcupine inhibitors have already been studied in clinical trials (14, 15). These agents may be effective for cancers that exhibit deregulation of upstream factors such as Wnt overexpression. However, it would be difficult to render Wnt/β-catenin signaling with an APC mutation because APC-mutant cells do not depend on upstream Wnt signals for survival. In contrast, tankyrase (TNKS) inhibitor was discovered to inhibit Wnt/β-catenin signaling, even in APC-mutated cells (16). Therefore, TNKS has been considered to be an attractive target and several TNKS inhibitors have been discovered (16–18).

TNKS1 and 2 are members of the PARP family, which catalyze the modification of proteins using β-nicotinamide adenine dinucleotide (βNAD+) as a substrate, resulting in the repeated addition of ADP-ribose to target proteins and the release of nicotinamide (19). TNKS was originally discovered as a factor in telomere maintenance. It poly-ADP ribosylate (PARylate)s telomeric repeat binding factor 1 (TRF1) and controls the binding of TRF1 to telomeric DNA (19, 20). TNKS consists of three domains: a...
catalytic PARP domain, the ankyrin (ANK) domain, and the sterile alpha module (SAM) domain. In the Wnt/β-catenin pathway, TNKS PARsylates Axin, leading to its ubiquitination by the ubiquitin E3 ligase RNF146, which results in Axin degradation by the proteasome complex (16, 21).

We herein report the discovery of a novel selective TNKS inhibitor, K-756, which was found to bind to an induced proteasome complex (16, 21). The PC-9 human NSCLC cell line was obtained in 2006, the NCI-H322 human NSCLC cell line was obtained in 2007 from the Japanese Collection of Research Bioresources (Osaka, Japan). The COLO 320DM and SW403 human colon cancer cell lines were obtained in 2008 and 2012, respectively, from ATCC.

Materials and Methods

Cells and culture conditions

The human colon cancer cell line DLD-1 was obtained in 1998 from the Japanese Collection of Research Bioresources (Osaka, Japan). The COLO 320DM and SW403 human colon cancer cell lines were obtained in 2008 and 2012, respectively, from ATCC. The PC-9 human NSCLC cell line was obtained in 2006 from Immuno-Biological Laboratories (Gunma, Japan). The NCI-H322 human NSCLC cell line was obtained in 2007 from the European Collection of Cell Cultures. DLD-1 cells were grown in RPMI1640 with 10% FBS, 10 mmol/L HEPEs, 1 mmol/L pyruvate solution, 4.5 mmol/L NaCl, 1% glucose solution, and 1% penicillin–streptomycin (PS; cat. no. 15140-122; Thermo Fisher Scientific). COLO 320DM cells, PC-9 cells, and NCI-H322 cells were grown in RPMI1640 with 10% FBS and 1% PS. SW403 cells were grown in DMEM high-glucose medium with 5% CO2. All of the cell lines were authenticated by a short tandem repeat assay at the ATCC. The transcript levels were determined using an ABI PRISM 5700 Sequence Detection System (Thermo Fisher Scientific). The targeted proteins were detected using an HPLC column by Gene Design (Osaka, Japan). Stealth nontargeting siRNA (#12935-113) and C7N81B1 siRNA #2 (#HiSS102462) were purchased from Thermo Fisher Scientific.

Test and control articles

Non-targeting siRNA (sense: 5'-AUGCUGCGGCGAAAAUCGU-AdTdT-3'), antisense: 5'-UCAGUGAAGCCCUAGGAAUdTdT-3') and C7N81B1 siRNA #1 (sense: 5'-CAGUUGUGGUUGUAAGCGCU-CUIdAdC-3'), antisense: 5'-AAGGACUUAACACCAGCAGdIdTdT-3') were custom synthesized and purified using an HPLC column by Gene Design (Osaka, Japan). Stealth nontargeting siRNA (#12935-113) and C7N81B1 siRNA #2 (#HiSS102462) were purchased from Thermo Fisher Scientific.

Reporter cell line

The DNA sequences, including the TCF-binding sites and the mutated TCF (mtTCF)-binding sites, were amplified from a TOPflash reporter plasmid (Millipore) and a FOPflash reporter plasmid (Millipore), respectively. The pGL4.27-TCF or pGL4.27-mtTCF plasmid was transfected into DLD-1 cells and hygromycin was added to the cells for stable cell line selection. A single clone with high reporter activity was selected for further experiments.

Reporter assay

DLD-1/TCF-Luc cells or DLD-1/mTCF-Luc cells were seeded in 384-well white plates. The next day, the cells were treated with the compounds. After 18 hours, Steady Glo reagent (Promega) was added to the cells, and their luciferase activity was measured using a Top count NXT system (PerkinElmer).

Real-time reverse transcription-PCR

Cells were seeded in 24-well plates. The next day, the cells were treated with the compounds. After 24 hours, total RNA was extracted using an RNeasy Plus Kit (Qiagen) and reverse-transcribed using VILO reagent (Thermo Fisher Scientific). A real-time reverse transcription (RT)-PCR was performed with Platinum SYBR Green qPCR SuperMix-UDG (Thermo Fisher Scientific) or TaqMan Universal PCR Master Mix (Thermo Fisher Scientific). The transcript levels were determined using an ABI PRISM or Applied Biosystems 7500 Fast Real-Time PCR System (Thermo Fisher Scientific). Each mRNA level was normalized to the level of GAPDH mRNA. Correlation coefficients were calculated using the Microsoft Excel software program (Microsoft Corporation). The primers used for the real-time RT-PCR are shown below: GAPDH (sense primer: 5'-ACTTGTGACACGTATTTCGTG-3', anti-sense primer: 5'-CTCCTTCTCTTGTGCTTGTG-3'), MYC (sense primer: 5'-TTCCGGCTAGTGGAAACCGC-3', antisense primer: 5'-ACAGACGTGAATTTCTTCGT-3'), BIRC5 (SURVIVIN) (sense primer: 5'-GGTGCCGTTTTCTTCTTCGT-3', antisense primer: 5'-GCACCTTTCCAGGATTTTCGT-3'), FGF20 (TaqMan Assay ID: Hs00173929_m1), ASCL2 (TaqMan Assay ID: Hs00270888_s1), CEMP2 (KIAA1199) (TaqMan Assay ID: Hs00378530_m1), VEGFA (TaqMan Assay ID: Hs00900055_m1), DHR89 (TaqMan Assay ID: Hs00608375_m1), GAPDH (TaqMan Assay ID: Hs02758991_g1), CCND1 (TaqMan Assay ID: Hs00765535_m1), TNCN1 (TaqMan Assay ID: Hs00896999_g1), and AXIN2 (TaqMan Assay ID: Hs00610344_m1).

Western blot analysis

The cells were seeded in 10-cm dishes. The next day, the cells were treated with compounds. After 24 hours, the cells were collected and lysed by NP40 lysis buffer (Thermo Fisher Scientific) with a protease inhibitor cocktail (Sigma-Aldrich). The lysate samples were prepared for equal protein concentration and analyzed using a Bio-Rad Protein Assay Kit. The proteins were transferred to a polyvinylidene fluoride membrane using a semidy transfer apparatus. After the transfer, the membrane was blocked with 3% skim milk/TBS. After 30 minutes, the primary antibody was added to the membrane and incubated overnight at 4°C. The next day, the membranes were washed by TBS with 0.1% Tween-20 and the secondary antibody was added. The membranes were washed several times and added to Supersignal West Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific). The targeted proteins were detected using an LAS4000 system (Fuji Film) or ABI600 (GE Healthcare). The following antibodies were used: anti-Axin1 antibody (Cell Signaling Technology), anti-Axin2 antibody (Cell Signaling Technology), anti-phyrophospho-β-catenin antibody (Millipore), anti-β-actin antibody (Sigma-Aldrich), anti-rabbit IgG, HRP-Linked F(ab’2) fragment (Donkey; GE Healthcare), and anti-mouse IgG, HRP-Linked F(ab’2) fragment (Sheep; GE Healthcare).

TNKS and PARP family enzyme activity assay

The activity of each enzyme was measured using a PARP1, PARP2, PARP3, PARP6, PARP7, and PARP11 Chemicalluminescent Assay Kit, and a TNKS1 and TNKS2 Histone Ribosylation Assay Kit (Antibody Detection) at BPS Bioscience. Enzymatic reactions were conducted in duplicate at 30°C for 1 hour in a 50 μL mixture containing an assay buffer, an enzyme-coated plate, and a
substrate. After the enzymatic reactions, 50 μL of streptavidin–HRP was added to each well and the plate was incubated at room temperature for an additional 30 minutes. One-hundred microliters of developer reagents was added to the wells and luminescence was measured using a BioTek Synergy2 microplate reader. The luminescence data were analyzed using the GraphPad Prism software program.

Crystallography

TNKS1 protein was purchased from CreLux. Apo TNKS1 crystals were obtained using the sitting drop vapor diffusion method by mixing the protein solution with an equal volume of reservoir solution containing 0.1 mol/L Na-Succinate pH 5.8 and 6% PEG MME 5,000. The complex crystals were obtained by soaking apo crystals for 18 hours in soaking buffer containing 0.1 mol/L Na-Succinate pH 5.8, 20% PEG MME 5,000, and 0.5 mmol/L K-756. The complex crystals were transferred to a cryoprotected solution containing 0.1 mol/L Na-Succinate pH 5.8, 30% PEG MME 5,000, and 0.5 mmol/L K-756 for flash cooling in liquid nitrogen before the diffraction experiments. The complex crystal belongs to the space group P2₁2₁2₁ with the following unit cell parameters: a = 158.85 Å, b = 74.68 Å, c = 84.60 Å. The X-ray diffraction data for the complex crystal was collected at the BL5A beamline of Photon Factory in the High energy Accelerator Research Organization (Tsukuba, Japan). The data were processed using HKL2000 (22). The structures were solved by molecular replacement using the Phaser program (23), and refined using the Refmac5 program (24) from the CCP4 software suite (25). The TNKS1 structure in complex with K-756 has been deposited in the Protein Data Bank with access codes 5ETY.

Cell viability and cell growth inhibition assays

For the cell viability assay, cells were seeded in 96-well white plates. siRNAs were reverse transfected by RNAiMax (Thermo Fisher Scientific). After 144 hours, a cell viability assay was performed using a Cell Titer-Glo Luminescent Cell Viability Assay Kit (Promega). Luciferase activity was measured using a Top count NXT system. For the cell growth inhibition assay, cells were seeded in 96-well plates. The next day, the cells were treated with the compounds. After 0, 72, or 144 hours of incubation, 2,3-bis[2-methoxy-4-nitro-S-sulfophenyl]H-tetrazolium-5 carboxanilide (XTT) reagent (Roche Diagnostics) was added to the cells. After 3 hours of incubation, the formation of formazan dye from tetrazolium salt XTT was measured using a SpectraMax 1527 system. The values of Fluo-4 were compared between the vehicle and compound-treated groups using a one-way ANOVA followed by a Dunnett test. Statistical analysis was carried out using Statistical Analysis System (SAS Institute).

Results

K-756 inhibits Wnt/β-catenin reporter activity in APC-mutant DLD-1 cells

We identified K-756 as a Wnt/β-catenin pathway small molecule inhibitor from high-throughput screening using a Wnt/β-catenin reporter assay in APC-mutant DLD-1 colon cancer cells. DLD-1 cells with a TCF reporter plasmid (DLD-1/TCF-Luc cells) and a mutant TCF reporter plasmid (DLD-1/mtTCF-Luc cells) were used for the primary and counter screening, respectively. The TCF and mutant TCF reporter plasmids were generated using a Top Flash and FOP Flash plasmids, which contains repeated TCF binding site (27). K-756 (Fig. 1A), which was synthesized at Kyowa Hakko Kirin as a quinazoline derivative (28), strongly inhibited the reporter activity in DLD-1/TCF-Luc cells with an IC₅₀ of 110 nmol/L, but did not inhibit DLD-1/mtTCF-Luc cells, even at 1,000 nmol/L (Fig. 1C). On the contrary, K-050 (Fig. 1B), a close structural analogue of K-756 (29), did not inhibit the reporter activity in DLD-1/TCF-Luc cells or DLD-1/mtTCF-Luc cells (Fig. 1D). We, therefore, defined K-756 as a novel selective Wnt/β-catenin pathway reporter inhibitor.

The gene expression profile of K-756-treated cells downstream of Wnt/β-catenin is similar to that of CTNNB1 siRNA-treated cells

Next, we compared the effect of CTNNB1 siRNA and K-756 on the expression profiles of the genes downstream of Wnt/β-catenin to assess whether K-756 selectively inhibits the endogenous Wnt/β-catenin pathway. A certain expression profile was determined on the basis of the expression patterns of selected genes downstream of Wnt/β-catenin that were induced by a compound or a siRNA. If a gene expression profile of the compound-treated cells showed a high correlation with that of CTNNB1 siRNA-treated cells, then the compound was considered to potentially be a selective Wnt/β-catenin inhibitor. As a
pilot experiment, the expression patterns of the genes downstream of Wnt/β-catenin were examined after CTNNB1 siRNAs with different targeted sequences. Both CTNNB1 siRNAs showed sufficient CTNNB1 knockdown at concentrations of 10 nmol/L (Supplementary Fig. S1A). The β-catenin protein was suppressed by 10 nmol/L of CTNNB1 siRNAs (Supplementary Fig. S1B). Moreover, CTNNB1 siRNA inhibited the reporter activity of DLD-1/mtTCF-Luc cells, whereas it did not inhibit that of DLD-1/TCF-Luc cells (Supplementary Fig. S1C). The mRNA levels of the genes downstream of the Wnt/β-catenin pathway (MYC, ASCL2, DHR59, FGFR2, BIRC5, CEMIP, and VEGFA) were measured by real-time RT-PCR. As a result, the expression levels of all seven genes were found to be increased in DLD-1/mtTCF-Luc cells treated with XAV939 (3 nmol/L) (Supplementary Fig. S1D). The correlation coefficients among the gene expression profiles of the cells that were treated with CTNNB1 siRNA#1 and CTNNB1 siRNA#2 were above 0.92, which confirmed that the expression pattern of this gene set was appropriate as a profile of selective Wnt/β-catenin signaling inhibition (Supplementary Table S1). For reference, DLD-1/TCF-Luc cells were treated with XAV939 (3 μmol/L), a Wnt/β-catenin pathway inhibitor (16), to deduce its expression profile. The maximum correlation coefficient between the gene expression profile of the XAV939-treated cells and that of CTNNB1 siRNA-treated cells was 0.80 (Supplementary Table S1). As a result, this correlation analysis, which was based on the selected gene set, proved an ideal way to identify selective Wnt/β-catenin inhibitors. K-756 inhibited the expression of the genes downstream of Wnt/β-catenin at concentrations that showed reporter inhibitory activity (Fig. 2A). The gene expression profile of K-756-treated cells showed a maximum correlation coefficient of 0.80 with CTNNB1 siRNA-treated cells (Supplementary Table S1). K-756 was therefore defined as a selective Wnt/β-catenin pathway inhibitor.

K-756 stabilizes Axin1 and 2 by inhibiting TNKS1 and 2

Next, to examine the mechanism of action of K-756, DLD-1/TCF-Luc cells were treated with K-756 and the expression of Axin1, Axin2, and the unphosphorylated active form of β-catenin protein were detected by Western blot analysis. K-756 stabilized Axin1 and 2, and decreased active β-catenin in a dose-dependent manner (Fig. 2B). Huang and colleagues reported that a TNKS inhibitor, XAV939, stabilized Axin and promoted β-catenin protein degradation (16). We therefore assumed that K-756 also inhibits the enzymatic activity of TNKS. K-756 inhibited the ADP-ribosylation activity of TNKS1 and 2 with IC50s of 31 and 36 nmol/L, respectively, confirming that K-756 is a direct inhibitor of TNKS (Fig. 2C). TNKS is one of the members of the PARP family (it is also known as PARP5). Therefore, our next concern was whether K-756 selectively inhibits TNKS among the other PARP family isoforms. To study the isoform selectivity of K-756, the PARP family enzyme inhibitory activity at 10 μmol/L was evaluated. K-756 inhibited TNKS1 and 2 by 97% and 100%, respectively (Table 1). In contrast, the inhibitory activity of K-756 against PARP 1, 2, 3, 6, 7, and 11 was less than 13%, whereas XAV939 inhibited PARP1 and 2 by 98% and 100%, respectively. Thus, K-756 was defined as a selective TNKS inhibitor.

K-756 binds to the induced pocket of TNKS1

The natural ligand of TNKS is β-NAD⁺, which acts as a donor of ADP-ribose. TNKS catalyzes β-NAD⁺ to transfer ADP-ribose moieties onto the target protein and releases nicotinamide (19, 30). Previous studies have identified two inhibitor binding pockets in TNKS: the nicotinamide-binding pocket and the induced pocket. For example, XAV939 has a nicotinamide-mimic moiety, which binds to the nicotinamide-binding pocket by forming a hydrogen bond interaction with Ser1221 and Gly1185 of TNKS1 (31). The binding mode is shared with other PARP family enzymes, thus XAV939 not only inhibits TNKS but also PARP1 and 2. In contrast, another TNKS inhibitor, IWR-1, binds to an induced pocket, which
is not present in the apo-TNKS structure (32, 33). This induced pocket is created by the drastic rearrangement of Phe1188 and is suggested to enable the nicotinamide noncompetitive inhibition of TNKS (33). To elucidate the binding mode of K-756, we analyzed the crystal structure of TNKS1 in combination with K-756 and found that K-756 bound to the induced pocket (Fig. 2D and E). The oxygen of the carbonyl group of quinazoline-2-one forms a hydrogen bond to the main chain NH of Tyr1213. This hydrogen bond interaction has been shown in other induced pocket binders (34). The 6'-dimethoxyquinozoline moiety is stacked with His1201, and the Phe1188 side chain contacts with one of two methoxy moieties. The stacking interaction of K-756 with His1201 coincides with its high selectivity to TNKS1 because this residue is only conserved in TNKS (and not in other PARP family enzymes; ref. 33).

Table 1. Inhibitory activity against PARP family enzymes

<table>
<thead>
<tr>
<th>Compound</th>
<th>TNKS1 (IC50 μmol/L)</th>
<th>TNKS2 (IC50 μmol/L)</th>
<th>PARP1 (IC50 μmol/L)</th>
<th>PARP2 (IC50 μmol/L)</th>
<th>PARP3 (IC50 μmol/L)</th>
<th>PARP6 (IC50 μmol/L)</th>
<th>PARP7 (IC50 μmol/L)</th>
<th>PARP11 (IC50 μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-756</td>
<td>97</td>
<td>100</td>
<td>8</td>
<td>1</td>
<td>10</td>
<td>13</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>XAV939</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>100</td>
<td>10</td>
<td>13</td>
<td>9</td>
<td>29</td>
</tr>
<tr>
<td>IWR-1</td>
<td>100</td>
<td>100</td>
<td>8</td>
<td>0</td>
<td>11</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
K-756 inhibits the Wnt/β-catenin signaling and cell growth of Wnt/β-catenin–dependent APC-mutant colorectal cancer cell lines.

Although K-756 inhibited Wnt/β-catenin signaling in DLD-1/TCF-Luc cells, we did not observe clear cell growth inhibition in two-dimensional cultures (Supplementary Fig. S2A). When APC-mutant colorectal cancer cell line COLO 320DM and SW403 cells were transfected with CTNNB1 siRNA and incubated for 144 hours, the cell viability of both cell lines decreased (Fig. 3A). As expected, the knockdown of the target gene was observed in both cell lines (Supplementary Fig. S2B). We therefore defined these cell lines as Wnt/β-catenin–dependent cell lines. The cells were treated with K-756 and after 144 hours, cell growth inhibition was measured by an XTT assay. The application of K-756 inhibited the cell growth of COLO 320DM with a GI50 of 780 nmol/L (Fig. 3B). K-050, an inactive analogue of K-756, did not inhibit the cell growth of COLO 320DM and SW403 cells (Supplementary Fig. S2C). We therefore defined these cell lines as Wnt/β-catenin–dependent cell lines. The cells were treated with K-756 and after 144 hours, cell growth inhibition was measured by an XTT assay. The application of K-756 inhibited the cell growth of COLO 320DM with a GI50 of 780 nmol/L (Fig. 3B). K-050, an inactive analogue of K-756, did not inhibit the cell growth of COLO 320DM and SW403 cells (Supplementary Fig. S2C).

Figure 3. K-756 inhibits Wnt/β-catenin signaling and the growth of Wnt/β-catenin pathway–dependent COLO 320DM and SW403 cells. A, CTNNB1 siRNAs inhibited the cell growth of COLO 320DM and SW403 cells. CTNNB1 siRNAs were transfected to COLO 320DM and SW403 cells in 96-well plates. Cell viability was measured after 144 hours. Each column represents the mean ± SD of triplicate experiments. B, K-756 inhibited the cell growth of COLO 320DM and SW403 cells. K-756 was added to the cells in 96-well plates. After 144 hours, the antiproliferative activity was measured by an XTT assay. Each point represents the mean ± SD of triplicate experiments. C, K-756 stabilized Axin1 and 2 and decreased active β-catenin. K-756 was added to COLO 320DM and SW403 cells in 10-cm dishes. After 24 hours, cells were collected for Western blot analysis. D, K-756 inhibited the Wnt/β-catenin downstream genes. K-756 was added to COLO 320DM and SW403 cells in 24-well plates. After 24 hours, mRNA was collected for an RT-PCR.
growth of COLO 320DM (Supplementary Fig. S2C). K-756 also inhibited SW403 with a GI$_{50}$ of 270 nmol/L (Fig. 3B). K-756 stabilized Axin 1 and 2 and suppressed active β-catenin expression (Fig. 3C). It also downregulated the genes downstream of Wnt/β-catenin in both cell lines at a concentration that was consistent with cell growth inhibition (Fig. 3D). These results suggested that K-756 inhibited cell growth via Wnt/β-catenin inhibition. We also evaluated whether other TNKS inhibitors have equal effects. IWR-1 inhibited COLO 320DM cells with a GI$_{50}$ of 410 nmol/L and SW403 cells with a GI$_{50}$ of 1,300 nmol/L. XAV939 showed a moderate inhibition of less than 30%, even at a concentration of 10 μmol/L in both cells (Fig. 3B); however, both compounds inhibited DLD-1/TCF-Luc reporter activity with a similar potency (IC$_{50}$, IWR-1: 110 nmol/L; XAV939: 93 nmol/L; Supplementary Table S2) and stabilized Axins and suppressed active β-catenin. When the cells were cultured for long-term (72, 120, and 144 hours) with 1 μmol/L of K-756 and XAV939, the extent of Axin stabilization and active β-catenin inhibition level was lower in XAV939-treated cells compared with K-756–treated cells (Supplementary Fig. S3C). These results suggested that K-756 was more effective in inhibiting TNKS under long-term culture conditions. We did cell-cycle analysis of K-756 and IWR-1 in COLO 320DM cells and the compounds tended to increase G$_{1}$–M phase population in the cells (Supplementary Fig. S3D).

K-756 inhibits Wnt/β-catenin signaling in colon cancer cell xenografts in mice

To investigate whether K-756 inhibits Wnt/β-catenin signaling in vivo, we performed pharmacokinetic analysis in Balb/c mice. K-756 was administered orally at 1, 10, and 100 mg/kg, and after indicated time points plasma was collected and the plasma concentration of K-756 was analyzed. As a result, the plasma concentration at 100 mg/kg exceeded the plasma concentration converted IC$_{50}$ of DLD-1/TCF-Luc cells for 7 hours (Supplementary Fig. S4A). As Wnt/β-catenin signal inhibition of K-756 was observed at 24 hours in the in vitro assays, we assumed that 100 mg/kg was not enough for full signal inhibition in vivo. Therefore, we decided to orally administer K-756 at 100, 200, and 400 mg/kg to detect in vivo Wnt/β-catenin signal inhibition in cancer cell xenograft mice. We created DLD-1/TCF-Luc cell xenografts in SCID mice. Vehicle (0.5% MC400) or K-756 was administered orally once a day for 3 days at 100, 200, and 400 mg/kg. The Wnt/β-catenin signal inhibition in the tumor was detected by measuring FGF20 and LGR5, whose expressions were inhibited in vitro (Fig. 2A and Supplementary Fig. S4B), and luciferase activity. The expression of FGF20 and reporter activity were significantly decreased at doses of 100 mg/kg and above at 3-day administration (Fig. 2A and C). The expression of LGR5 was significantly decreased at doses of 200 mg/kg and above at 3-day administration (Fig. 2B). The maximum inhibitory activity was reached with the administration of K-756 at a dose of 400 mg/kg at 3-day administration (Fig. 2A–C). The Wnt/β-catenin signal inhibition at a dose of 400 mg/kg was observed from 1-day administration (Supplementary Fig. S4C–S4E).

K-756 shows a synergistic effect with gefitinib on cell viability in NSCLC cells

Casas-Selves and colleagues reported that TNKS shRNA showed a combination effect with an EGFR inhibitor (gefitinib) in NSCLC cells (35). We therefore studied the effect of K-756 combined with gefitinib on cell viability in EGFR exon 19-deletion mutant PC-9 cells (36) and wild-type EGFR NCI-H322 cells. After K-756 treatment, Axin1 was stabilized in PC-9 and NCI-H322 cells, indicating that TNKS was inhibited in the cells (Supplementary Table S2) and stabilized Axins and suppressed active β-catenin. When the cells were cultured for long-term (72, 120, and 144 hours) with 1 μmol/L of K-756 and XAV939, the extent of Axin stabilization and active β-catenin inhibition level was lower in XAV939-treated cells compared with K-756–treated cells (Supplementary Fig. S3C). These results suggested that K-756 was more effective in inhibiting TNKS under long-term culture conditions. We did cell-cycle analysis of K-756 and IWR-1 in COLO 320DM cells and the compounds tended to increase G$_{1}$–M phase population in the cells (Supplementary Fig. S3D).

K-756 inhibits Wnt/β-catenin signaling in colon cancer cell xenografts in mice

To investigate whether K-756 inhibits Wnt/β-catenin signaling in vivo, we performed pharmacokinetic analysis in Balb/c mice. K-756 was administered orally at 1, 10, and 100 mg/kg, and after indicated time points plasma was collected and the plasma concentration of K-756 was analyzed. As a result, the plasma concentration at 100 mg/kg exceeded the plasma concentration converted IC$_{50}$ of DLD-1/TCF-Luc cells for 7 hours (Supplementary Fig. S4A). As Wnt/β-catenin signal inhibition of K-756 was observed at 24 hours in the in vitro assays, we assumed that 100 mg/kg was not enough for full signal inhibition in vivo. Therefore, we decided to orally administer K-756 at 100, 200, and 400 mg/kg to detect in vivo Wnt/β-catenin signal inhibition in cancer cell xenograft mice. We created DLD-1/TCF-Luc cell xenografts in SCID mice. Vehicle (0.5% MC400) or K-756 was administered orally once a day for 3 days at 100, 200, and 400 mg/kg. The Wnt/β-catenin signal inhibition in the tumor was detected by measuring FGF20 and LGR5, whose expressions were inhibited in vitro (Fig. 2A and Supplementary Fig. S4B), and luciferase activity. The expression of FGF20 and reporter activity were significantly decreased at doses of 100 mg/kg and above at 3-day administration (Fig. 2A and C). The expression of LGR5 was significantly decreased at doses of 200 mg/kg and above at 3-day administration (Fig. 2B). The maximum inhibitory activity was reached with the administration of K-756 at a dose of 400 mg/kg at 3-day administration (Fig. 2A–C). The Wnt/β-catenin signal inhibition at a dose of 400 mg/kg was observed from 1-day administration (Supplementary Fig. S4C–S4E).

K-756 shows a synergistic effect with gefitinib on cell viability in NSCLC cells

Casas-Selves and colleagues reported that TNKS shRNA showed a combination effect with an EGFR inhibitor (gefitinib) in NSCLC cells (35). We therefore studied the effect of K-756 combined with gefitinib on cell viability in EGFR exon 19-deletion mutant PC-9
Fig. S5A). K-756 decreased active β-catenin in PC-9 cells but it did not clearly decrease in NCI-H322 cells. Thus, we detected Wnt/β-catenin downstream genes DHR59 and CEMIP and their expression levels were changed after K-756 treatment (Supplementary Fig. S5B). Therefore, we assumed that K-756 inhibited Wnt/β-catenin via TNKS inhibition in both PC-9 and NCI-H322 cells. To explore the effect of the combination of K-756 and gefitinib, cells were cotreated with K-756 and gefitinib for 72 hours. A single treatment of K-756 did not inhibit the cell viability of either of the cells. A single treatment of gefitinib inhibited both cell lines, while PC-9 cells showed higher sensitivity. Cotreatment of K-756 and gefitinib synergistically enhanced the cell death of PC-9 and NCI-H322 cells, in comparison with a single treatment of gefitinib (Fig. S5A and B). When PC-9 and NCI-H322 cells were cotreated with K-756 and gefitinib, the CI values at ED₅₀ were 0.21 and 0.18, respectively. The data points with 0.1 < CI < 0.3 describe the strong synergism of K-756 and gefitinib (26).

Discussion
Since the discovery of Wnt/β-catenin pathway regulation by TNKS, the development of TNKS inhibitors has gained much attention due to their potential use as cancer therapeutics (20). Several compounds with different structures and binding modes have been discovered to date (31, 34, 37). In this study, we discovered K-756 during the course of Wnt/β-catenin pathway reporter screening and a gene expression profile analysis (Figs. 1C and 2A). K-756 stabilized Axin1 and 2 and decreased active β-catenin (Fig. 2B), through a mechanism that was similar to that of a TNKS inhibitor, XAV939. An enzyme activity assay of TNKS (Fig. 2C) and a co-crystal structure analysis of TNKS1 with K-756 (Fig. 2D and E) identified K-756 as a novel TNKS inhibitor.

TNKS belongs to the PARP family; its natural ligand is β-NAD⁺ (19). The TNKS inhibitor binds to two pockets: the nicotinamide pocket and the induced pocket (32). Nicotinamide pocket composing residues are conserved among the PARP family enzymes, including TNKS; thus, the nicotinamide pocket binders such as XAV939 show less selectivity to TNKS (16, 33). On the contrary, the induced pocket binders such as IWR-1 show high selectivity to TNKS due to the uniqueness of the pocket, which is only conserved in TNKS (33). The co-crystal structure of TNKS1 with K-756 revealed that K-756 binds to the induced pocket and that the 677-dimethoxyquinozoline moiety of K-756 stacks with Phe1188 and His1201, which forms a hydrophobic pocket. K-050, an inactive analogue of K-756, lacks the 677-dimethoxyquinozoline structure, thus its binding ability to TNKS is considered to be lost.

Because of its binding mode, K-756 showed high selectivity to TNKS among the other PARP family enzymes. PARP1/2 inhibitor was proven to be effective in the treatment of BRCA-mutated cancer patients; however, its side effects such as the induction of genome instability may be a matter of concern (38). Therefore, a highly selective TNKS inhibitor like K-756 may be a better candidate for the development of anticancer therapeutics than a less selective TNKS inhibitor like XAV939. Moreover, the results of our study suggested that the induced pocket binders such as K-756 and IWR-1 were more effective in inhibiting cell growth in long-term cultured cells. This might be due to their nicotinamide noncompetitive inhibition of TNKS.

In this study, we attempted to prove the concept of a TNKS inhibitor as an anticancer therapeutic agent. Unexpectedly, not all APC-mutated Wnt/β-catenin pathway–activated cells were susceptible to Wnt/β-catenin pathway inhibition. It was reported that XAV939 inhibited the colony formation of DLD-1 cells with a low serum condition (16). However, K-756 did not induce cell growth inhibition under our experimental conditions. COLO 320DM and SW403 cells were susceptible to CTNNB1 siRNA, which indicates that the cell growth of these cell lines is dependent on the Wnt/β-catenin pathway (Fig. 3A). K-756 induced cell growth inhibition in these cell lines, which proved the antiproliferative activity of K-756 (Fig. 3B). The factors that define the susceptibility to TNKS inhibitors remain to be elucidated. Scholer-Dahirel and colleagues suggested that PI3K mutation status may define the Wnt/β-catenin dependency of colon cancer cells (39). Lau and colleagues suggested that the APC mutation status of colon cancer cells may define their sensitivity to a TNKS inhibitor (18). The verification of the factors that underlie the susceptibility to TNKS inhibitors will enable us to find a potential target segment for use as a monotherapy.

Combination treatment is an alternative strategy to find a potential target segment of TNKS inhibitors. K-756 was found to affect NSCLC cells when it was applied in combination with gefitinib. NSCLC accounts for 85% to 90% of lung cancer cases,
and the 5-year survival rate of patients with metastatic NSCLC remains low (40). Gefitinib, which is an EGFR inhibitor, is one of the treatment options for NSCLC patients, however, most patients relapse after treatment. A compound that synergizes with gefitinib might therefore make the treatment more durable and effective. K-756 showed a synergistic effect with gefitinib in both EGFR wild-type and mutant NSCLC cells (Fig. 5A and B). The synergistic effect of K-756 was seen at a concentration consistent with that which achieved Wnt/β-catenin signal inhibition. It has been demonstrated that CTNNB1 siRNA also shows a synergistic effect with gefitinib (35). It is therefore assumed that this synergistic effect occurs due to Wnt/β-catenin inhibition. A TNKS inhibitor was also reported to show synergistic effects with a MEK inhibitor (18) and a PI3K/Akt inhibitor (41, 42). The mechanism underlying these combination effects may be due to crosstalk between the Wnt/β-catenin pathway and the EGFR, MAPK, or Akt pathways. A single TNKS inhibitor may be effective in particular cancer cells whereas, when used in combination with other molecular targeted drugs, it may be effective for treating various types of cancer.

Not many TNKS inhibitors have been studied in vivo. XAV939 and IWR-1 are known to be metabolically unstable (43, 44). The most studied TNKS inhibitor is G007-LK; however, it was administered intraperitoneally (18). The oral administration of K-756 was effective in inhibiting the Wnt/β-catenin pathway in DLD-1/TCF-Luc cell xenografts in mice (Fig. 4A-C). As the Wnt/β-catenin pathway is also important in cancer cell differentiation (45) and antitumor immunity (46), future in vivo studies may reveal other effects of a TNKS inhibitor, which cannot be detected in vitro studies. Also the intestinal toxicity, which was observed with G007-LK, should be studied with other chemotypes to see if it is an on-target effect of TNKS inhibition. Collectively, an orally administrable and selective compound such as K-756 could be a valuable lead compound for further development of more potent derivatives, which is expected to be an anticancer therapeutic.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: R. Okada-Iwasaki, Y. Watanabe, H. Ishida, R. Nakai, A. Asai

Development of methodology: R. Okada-Iwasaki, Y. Watanabe, R. Nakai

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): R. Okada-Iwasaki, Y. Takahashi, Y. Watanabe, H. Ishida

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): R. Okada-Iwasaki, Y. Takahashi, Y. Watanabe, I.-i. Saito, R. Nakai

Writing, review, and/or revision of the manuscript: R. Okada-Iwasaki, Y. Takahashi, Y. Watanabe, H. Ishida, R. Nakai, A. Asai

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): R. Okada-Iwasaki, Y. Watanabe, H. Ishida

Study supervision: J.-i. Saito, R. Nakai, A. Asai

Acknowledgments

The authors thank Mr. Michihiko Suzuki and Mr. Kazuki Asanome for their interest and support of this study.

Grant Support

This work was supported by Kyowa Hakko Kirin Co. Ltd.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received December 7, 2015; revised April 7, 2016; accepted April 9, 2016; published OnlineFirst April 25, 2016.
Okada-Iwasaki et al.

Molecular Cancer Therapeutics

The Discovery and Characterization of K-756, a Novel Wnt/β-Catenin Pathway Inhibitor Targeting Tankyrase

Ryoko Okada-Iwasaki, Yuichi Takahashi, Yasuo Watanabe, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-15-0938

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2016/04/23/1535-7163.MCT-15-0938.DC1

Cited articles
This article cites 46 articles, 17 of which you can access for free at:
http://mct.aacrjournals.org/content/15/7/1525.full#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/15/7/1525.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://mct.aacrjournals.org/content/15/7/1525.
Click on “Request Permissions” which will take you to the Copyright Clearance Center's (CCC) Rightslink site.