Highlights of This Issue 219

SMALL MOLECULE THERAPEUTICS

221 Folate Receptor–Targeted Polymeric Micellar Nanocarriers for Delivery of Orlistat as a Repurposed Drug against Triple-Negative Breast Cancer
Ramasamy Paulmurugan, Rohith Bhethanabotla, Kaushik Mittra, Rammohan Devulapally, Kira Foygel, Thillai V. Sekar, Jeyarama S. Ananta, Tanik F. Massoud, and Abraham Joy

232 Optimization of RGD-Containing Cyclic Peptides against αvβ3 Integrin
Yan Wang, Wenwu Xiao, Yonghong Zhang, Leah Meza, Harry Tseng, Yoshikazu Takada, James B. Ames, and Kit S. Lam

241 A Cyclin-Dependent Kinase Inhibitor, Dinaclib, Impairs Homologous Recombination and Sensitizes Multiple Myeloma Cells to PARP Inhibition
David A. Alagpulinsa, Srinivas Ayyadevara, Shmuel Yaccoby, and Robert J. Shmookler Reis

LARGE MOLECULE THERAPEUTICS

251 GC1118, an Anti-EGFR Antibody with a Distinct Binding Epitope and Superior Inhibitory Activity against High-Affinity EGFR Ligands
Yangmi Lim, Jiho Yoo, Min-Soo Kim, Minkyu Hur, Eun Hee Lee, Hyung-Suk Hur, Jae-Chul Lee, Shi-Nai Lee, Tae Wook Park, Kiyubyn Lee, Ki Hwan Chang, Kuglae Kim, Yinglin Kang, Kwang-Won Hong, Se-Ho Kim, Yeon-Gil Kim, Yeup Yoon, Do-Hyun Nam, Heekyoung Yang, Dong Geon Kim, Hyun-Soo Cho, and Jonghwa Won

CANCER BIOLOGY AND SIGNAL TRANSDUCTION

264 2-Deoxy-Glucose Downregulates Endothelial AKT and ERK via Interference with N-Linked Glycosylation, Induction of Endoplasmic Reticulum Stress, and GSK3β Activation
Krisztina Kovacs, Christina Decatur, Marcela Toro, Dien G. Pham, Huaping Liu, Yuqi Jing, Timothy G. Murray, Theodore J. Lampidis, and Jaime R. Merchan

276 RON Nuclear Translocation under Hypoxia Potentiates Chemoresistance to DNA Double-Strand Break–Inducing Anticancer Drugs
Hong-Yi Chang, Ting-Chia Chang, Wen-Ya Huang, Chung-Ta Lee, Chia-Jui Yen, Yu-H-Shyan Tsai, Tsong-Shin Tsai, Shu-Hui Chen, and Nan-Haw Chow

287 EZH2 Inhibition Blocks Multiple Myeloma Cell Growth through Upregulation of Epithelial Tumor Suppressor Genes
Henar Hernando, Kathy A. Gelato, Ralf Lesche, Georg Beckmann, Silke Koehr, Saskia Otto, Patrick Steigemann, and Carlo Stresemann

299 Inhibition of Class I Histone Deacetylases 1 and 2 Promotes Urothelial Carcinoma Cell Death by Various Mechanisms
Marie Pinkernell, Michele J. Hoffmann, René Deen, Karl Köhrer, Tanja Aren, Wolfgang A. Schula, and Günter Niegisch

COMPANION DIAGNOSTICS AND CANCER BIOMARKERS

313 Human Leukocyte Antigen–Presented Macrophage Migration Inhibitory Factor Is a Surface Biomarker and Potential Therapeutic Target for Ovarian Cancer

323 Choline Kinase Alpha (CHKA) as a Therapeutic Target in Pancreatic Ductal Adenocarcinoma: Expression, Predictive Value, and Sensitivity to Inhibitors
José M. Mazarico, Víctor J. Sánchez-Arevalo Lobo, Rosy Favicchio, William Greenhalgh, Estéhne Costello, Enrique Carrillo-de Santa Pau, Miriam Manqué, Juan C. Lacal, Eric Aboagye, and Francisco X. Real

MODELS AND TECHNOLOGIES

334 Target Identification in Small Cell Lung Cancer via Integrated Phenotypic Screening and Activity-Based Protein Profiling
Jianrong Li, Bin Fang, Fumi Kinose, Yun Bai, Jae-Young Kim, Yian A. Chen, Uwe Rix, John M. Koomen, and Eric B. Haura
RETRACTION

Retraction: Pharmacologic Inactivation of Kinase Suppressor of Ras1 Sensitizes Epidermal Growth Factor Receptor and Oncogenic Ras-Dependent Tumors to Ionizing Radiation Treatment

ABOUT THE COVER

Orlistat is a FDA-approved antiobesity drug that shows anticancer effect in a wide range of cancers. However, off-target effects and poor bioavailability hinder its clinical translation as a repurposed new drug against triple-negative breast cancer (TNBC). Orlistat loaded in HEA-b-EHA polymeric micellar-nanoparticles improved the solubility, bioavailability, and therapeutic efficacy of orlistat in vitro in cells and in vivo in tumor xenografts of TNBC in mice. The cover image shows a schematic illustration of the orlistat-loaded HEA-b-EHA polymeric micelles with different functional moieties used for tumor targeting (folic acid) and imaging (DyLight-747-B1-NIR Dye) in living animals. The results of this study indicate that the orlistat packaged in HEA-b-EHA micellar-NP is a highly promising new drug formulation for TNBC therapy. For details, see the article by Paulmurugan and colleagues on page 221.
Molecular Cancer Therapeutics

15 (2)

| Updated version | Access the most recent version of this article at: http://mct.aacrjournals.org/content/15/2 |

E-mail alerts	Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions	To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions	To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/15/2. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.