<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2271</td>
<td>Highlights of This Issue 2271</td>
<td></td>
</tr>
<tr>
<td>2273</td>
<td>SMALL MOLECULE THERAPEUTICS</td>
<td>Ping Chen, Nathan V. Lee, Wenyue Hu, Meiromg Xu, Rose Ann Ferre, Hieu Lam, Simon Bergqvist, James Solowiej, Wade Diehl, You-Ai He, Xiu Yu, Asako Nagata, Todd VanArsdale, and Brion W. Murray</td>
</tr>
<tr>
<td>2282</td>
<td>Spectrum and Degree of CDK Drug Interactions Predicts Clinical</td>
<td>Yilin Zhang, Shravan Kumar Sritraman, Hilary A. Kenny, Ed Luther, Vladimir Torchilin, and Ernst Lengyel</td>
</tr>
<tr>
<td>2282</td>
<td>Reversal of Chemoresistance in Ovarian Cancer by Co-Delivery of a P-Glycoprotein Inhibitor and Paclitaxel in a Liposomal Platform</td>
<td>Xiaojun Liu, Yingjun Jiang, Billie Nowak, Sarah Hargis, and William Plunkett</td>
</tr>
<tr>
<td>2294</td>
<td>A Novel Small Molecule Activator of Nuclear Receptor SHP Inhibits HCC Cell Migration via Suppressing Ccl2</td>
<td>Zhihong Yang, Angela N. Koehler, and Li Wang</td>
</tr>
<tr>
<td>2302</td>
<td>Mechanism-Based Drug Combinations with the DNA Strand–Breaking Nucleoside Analog CNDAC</td>
<td>Bangladesh Barasertib (AZD1152), a Small Molecule Aurora B Inhibitor, Inhibits the Growth of SCLC Cell Lines In Vitro and In Vivo</td>
</tr>
<tr>
<td>2323</td>
<td>BPR1373, an Oral Multiple Tyrosine Kinase Inhibitor, Targets c-KIT for the Treatment of c-KIT–Driven Myeloid Leukemia</td>
<td>\begin{itemize} \item Li-Tzong Chen, Chiu-Tong Chen, Weir-Torn Jiaang, Tsai-Yun Chen, Joseph H. Butterfield, Neng-Yao Shih, John Tsu-An Hsu, Hui-You Lin, Sheng-Fung Lin, and Hui-Jen Tsai \end{itemize}</td>
</tr>
<tr>
<td>2334</td>
<td>Debio 0617B Inhibits Growth of STAT3-Driven Solid Tumors through Combined Inhibition of JAK, SRC, and Class III/V Receptor Tyrosine Kinases</td>
<td>Maximilien Murone, Anne Vaslin Chesses, Antoine Attinger, Raghuvree Ramachandra, Shankar J. Shetty, Girish Daginakatte, Saumitra Sengupta, Sivapriya Marappan, Samiulla Dohdheri, Stefania Rigotti, Yogeshwar Bachhav, Silvano Brienza, Peter Traxler, Marc Lang, Michel Aguet, Vincent Zorete, Olivier Michielin, Courtney Nicholas, Faye M. Johnson, Murali Ramachandra, and Andres McAllister</td>
</tr>
<tr>
<td>2344</td>
<td>Characterization of LY3023414, a Novel PI3K/mTOR Dual Inhibitor Eliciting Transient Target Modulation to Impede Tumor Growth</td>
<td>Michele C. Smith, Mary M. Mader, James A. Cook, Philip Iversen, Rose Ajamie, Everett Perkins, Laura Bloem, Yvonne Y. Yip, David A. Banda, Philip P. Waid, Douglas J. Zeckner, Debra A. Young, Manuel Sanchez-Feliz, Gregory P. Donoho, and Volker Wachek</td>
</tr>
<tr>
<td>2357</td>
<td>2357</td>
<td>2365</td>
</tr>
<tr>
<td></td>
<td>Trabectedin Is Active against Malignant Pleural Mesothelioma Cell and Xenograft Models and Synergizes with Chemotherapy and Bcl-2 Inhibition In Vitro</td>
<td>Mir A. Hoda, Christine Pinker, Yawen Dong, Karin Schelch, Petra Heffener, Kushtrim Kryeziu, Sushilla van Schoonhoven, Thomas Klikovits, Viktoria Laszlo, Anita Rozsas, Judit Oszvar, Walter Klepetko, Balazs Döme, Michael Grusch, Balazs Hegedus, and Walter Berger</td>
</tr>
<tr>
<td></td>
<td>Irreversible Inhibition of EGFR: Modeling the Combined Pharmacokinetic–Pharmacodynamic Relationship of Osimertinib and Its Active Metabolite AZ5104</td>
<td>James W.T. Yates, Susan Ashton, Darren Cross, Martine J. Mellor, Stew J. Powell, and Peter Ballard</td>
</tr>
<tr>
<td></td>
<td>Lurbinectedin Specifically Triggers the Degradation of Phosphorylated RNA Polymerase II and the Formation of DNA Breaks in Cancer Cells</td>
<td>Gema Santamaria Nuñez, Carlos Mario Genes Robles, Christophe Giraudon, Juan Fernando Martinez-Leal, Emmanuel Compe, Frederic Cion, Pablo Aviles, Carlos Maria Calmarini, and Jean-Marc Egly</td>
</tr>
</tbody>
</table>
Table of Contents

Large Molecule Therapeutics

2413
In Vivo Antitumor Activity of a Recombinant IL7/IL15 Hybrid Cytokine in Mice
Yinhong Song, Yalan Liu, Rong Hu, Min Su, Debra Rood, and Laijun Lai

2422
In Vitro and In Vivo Efficacy of a Novel CD33-Targeted Thorium-227 Conjugate for the Treatment of Acute Myeloid Leukemia
Urs B. Hagemann, Katrine Wickstroem, Ellen Wang, Adam O. Shea, Kristine Sponheim, Jenny Karlsson, Timothy Harrison, Gerard C. Hanna, Karl T. Butterworth, Kevin M. Prise, and Daniel B. Longley

Cancer Biology and Signal Transduction

2432
FLIP: A Targetable Mediator of Resistance to Radiation in Non–Small Cell Lung Cancer

2442
Hypoxia-Driven Mechanism of Vemurafenib Resistance in Melanoma
Yong Qin, Jason Roszik, Chandrani Chattopadhyay, Yuuri Hashimoto, Chengwen Liu, Zachary A. Cooper, Jennifer A. Wargo, Patrick Hwu, Suhendan Ekmekcioglu, and Elizabeth A. Grimm

2455
The Tyrosine Kinase Inhibitor Imatinib Augments Extracellular Fluid Exchange and Reduces Average Collagen Fibril Diameter in Experimental Carcinoma
P. Olof Olsson, Renata Gustafsson, René in ’t Zandt, Tomas Friman, Marco Maccarana, Emil Tykesson, Åke Oldberg, Kristofer Rubin, and Sebastian Kalamajski

2465
FTY720 (Fingolimod) Inhibits HIF1 and HIF2 Signaling, Promotes Vascular Remodeling, and Chemosensitizes in Renal Cell Carcinoma Animal Model
Cécile Gosalder, Isabelle Ader, and Olivier Cuvillier

2475
TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics

Companion Diagnostics and Cancer Biomarkers

2486
EGFR and RB1 as Dual Biomarkers in HPV-Negative Head and Neck Cancer

2498
Genomic Landscape of Malignant Mesotheliomas
Shumei Kato, Brett N. Tomson, Timon P.H. Buys, Sheryl K. Elkin, Jennifer L. Carter, and Razelle Kurzrock

2508
Receptor Tyrosine Kinase Phosphorylation Pattern–Based Multidrug Combination Is an Effective Approach for Personalized Cancer Treatment
Xiaoxiao Sun, Qiaoling Song, Li He, Lei Yan, Jingli Liu, Qing Zhang, and Qiang Yu

Models and Technologies

2521
Preclinical Modeling of KIF5B–RET Fusion Lung Adenocarcinoma
Qingling Huang, Valentina E. Schneeberger, Nooreen Luetterke, Chengliu Jin, Roha Afzal, Mikalai M. Budzheviich, Rilesh J. Makanji, Gary V. Martinez, Tao Shen, Lichao Zhao, Kar-Ming Fung, Eric B. Haura, Domenico Coppola, and Jie Wu

2530
Biodistribution and Targeting of Anti-ST4 Antibody–Drug Conjugate Using Fluorescence Molecular Tomography
Anand Giddabasappa, Vijay R. Gupta, Rand Norberg, Parul Gupta, Mary E. Spilker, Joann Venlident, Brian Rago, Jeetendra Eswaraka, Mauricio Leal, and Puja Sapra

2541
Development and Application of a Novel Model System to Study "Active" and "Passive" Tumor Targeting
Amarath Mukherjee, Binod Kumar, Koji Hatano, Luisa M. Russell, Bruce J. Tock, Peter C. Seazon, Alan K. Meeker, Martin G. Pomper, and Shawn E. Lupold

AC icon indicates Author Choice
For more information please visit www.aacrjournals.org
ABOUT THE COVER

A liposomal platform encapsulating both the third generation P-gp inhibitor tariquidar and paclitaxel was developed to overcome paclitaxel resistance in ovarian cancer cells. Liposomal paclitaxel-treated cells had a diffuse pattern of β-tubulin expression (shown in green). Treatment with liposomal tariquidar/paclitaxel resulted in cell rounding and ring-like β-tubulin formations around the nucleus. The liposomal encapsulated tariquidar and paclitaxel synergistically inhibited cell viability, blocked proliferation, and caused G2-M arrest in paclitaxel-resistant ovarian cancer cell lines. For details, see the article by Zhang, Sriraman, and colleagues on page 2282.
Molecular Cancer Therapeutics

15 (10)

Updated version
Access the most recent version of this article at:
http://mct.aacrjournals.org/content/15/10

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/15/10. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.