Contribution of Hepatic Organic Anion-Transporting Polypeptides to Docetaxel Uptake and Clearance

Hannah H. Lee¹, Brenda F. Leake¹, Wendy Teft², Rommel G. Tirona², Richard B. Kim², and Richard H. Ho¹

Abstract

The antimicrotubular agent docetaxel is a widely used chemotherapeutic drug for the treatment of multiple solid tumors and is predominantly dependent on hepatic disposition. In this study, we evaluated drug uptake transporters capable of transporting radiolabeled docetaxel. By screening an array of drug uptake transporters in HeLa cells using a recombinant vaccinia-based method, five organic anion–transporting polypeptides (OATP) capable of docetaxel uptake were identified: OATP1A2, OATP1B1, OATP1B3, OATP1C1, and Oatp1b2. Kinetic analysis of docetaxel transport revealed similar kinetic parameters among hepatic OATP1B1/b transporters. An assessment of polymorphisms (SNPs) in SLCO1B1 and SLCO1B3 revealed that a number of OATP1B1 and OATP1B3 variants were associated with impaired docetaxel transport. A Transwell-based vectorial transport assay using MDCKII stable cells showed that docetaxel was transported significantly into the apical compartment of double-transfected (MDCKII-OATP1B1/MDR1 and MDCKII-OATP1B3/MDR1) cells compared with single-transfected (MDCKII-OATP1B1 and MDCKII-OATP1B3) cells (P < 0.05) or control (MDCKII-Co) cells (P < 0.001). In vivo docetaxel transport studies in Slo1b2⁻/⁻ mice showed approximately 3.5-fold higher plasma concentrations (P < 0.01) and approximately 3-fold decreased liver-to-plasma ratio (P < 0.05) of docetaxel compared with wild-type (WT) mice. The plasma clearance of docetaxel in Slo1b2⁻/⁻ mice was 83% lower than WT mice (P < 0.05). In conclusion, this study demonstrates the important roles of OATP1B transporters to the hepatic disposition and clearance of docetaxel, and supporting roles of these transporters for docetaxel pharmacokinetics. Mol Cancer Ther; 14(4); 994–1003. ©2015 AACR.

Introduction

Docetaxel is a widely used chemotherapeutic drug for the treatment of multiple solid tumors, including breast, lung, head and neck, stomach, and prostate cancer. There is wide variability in the pharmacokinetics of docetaxel with up to 10-fold difference in drug clearance among patients receiving the same treatment regimens (1). Furthermore, studies have indicated that a mere 50% decrease in docetaxel clearance increased more than 4-fold the odds of developing grade 4 neutropenia (2). Accordingly, this pharmacokinetic variability may be an attribute to differential expression of polymorphic drug-metabolizing enzymes and/or drug-eliminating transporters, but it has still been unclear. Docetaxel is mainly metabolized by the hepatic phase I drug-metabolizing enzyme CYP3A4 and, to a lesser extent, by CYP3A5 (9) and eliminated by multidrug resistance protein 1 (MDR1, ABCB1, and P-glycoprotein; ref. 10). MDR1 is a membrane-localized and ATP-dependent drug efflux transporter with broad substrate specificity and primarily expressed in normal tissues such as the gastrointestinal tract, the liver, the kidney, and the brain (11, 12). Expression of MDR1 in such tissues results in reduced drug absorption (gastrointestinal tract), enhanced elimination into the bile (liver) and urine (kidney), and reduced accumulation of toxic agents (the brain; ref. 11).

Docetaxel is predominantly dependent on hepatic disposition in humans; approximately 75% docetaxel is excreted in bile, but only approximately 5% in urine (13). Until recently, little was known regarding the hepatic uptake of docetaxel. Organic anion–transporting polypeptides (OATP) are primarily expressed in organs of importance to drug disposition such as the liver, intestine, kidney, and brain, and mediate the sodium-dependent drug influx transporter with broad substrate specificity and primarily expressed in normal tissues such as the gastrointestinal tract, the liver, the kidney, and the brain (11, 12). Expression of MDR1 in such tissues results in reduced drug absorption (gastrointestinal tract), enhanced elimination into the bile (liver) and urine (kidney), and reduced accumulation of toxic agents (the brain; ref. 11).

Docetaxel is predominantly dependent on hepatic disposition in humans; approximately 75% docetaxel is excreted in bile, but only approximately 5% in urine (13). Until recently, little was known regarding the hepatic uptake of docetaxel. Organic anion–transporting polypeptides (OATP) are primarily expressed in organs of importance to drug disposition such as the liver, intestine, kidney, and brain, and mediate the sodium-independent transport of a diverse range of amphipathic organic compounds, including bile salts, steroid conjugates, thyroid hormones, anionic peptides, and numerous drugs (14, 15). Where OATP1A2, which is mainly expressed in brain, kidney,
and small intestine, is expressed in cholangiocytes of liver, but not in hepatocytes (16), OATP1B1 and OATP1B3 are expressed highly in the hepatocytes of the liver and their localization is restricted to the basolateral membrane of hepatocytes (17). Accordingly, these transporters facilitate the hepatocellular accumulation of compounds such as drugs before metabolism and biliary secretion, and thus may largely contribute to drug disposition. As hepatic uptake appears to be an important factor in docetaxel clearance, it would be of interest to evaluate hepatic uptake transporters as determinants of docetaxel disposition. Indeed, previous studies indicated that OATP1B3 is capable of transporting docetaxel in vitro (3, 18). Recently, a study also reported that differential expression of the OATP1B family in the human liver regulates the initial step in the elimination of docetaxel, before metabolism (5).

In this study, we identified multiple OATPs capable of transporting docetaxel by screening an array of drug uptake transporters in HeLa cells using a recombinant vaccinia-based method. Among them, we aimed to gain more insight into the importance of hepatic OATPs to the disposition of docetaxel. Thus, we studied the roles of OATP1B transporters in the hepatic uptake, clearance, and plasma exposure of docetaxel in vivo and in vitro.

Materials and Methods

Chemicals and reagents
Radiolabeled [3H]docetaxel (5 Ci/mmol, 15 Ci/mmol; >98% purity) was obtained from Moravek Biochemicals and Radiochemicals. Unlabeled docetaxel (>97% purity) was obtained from Sigma-Aldrich. All other chemicals and reagents, unless stated otherwise, were obtained from Sigma-Aldrich research and were of the highest grade available.

Cell culture and virus preparation
HeLa cells were purchased from the ATCC (July 2012) and cultured in DMEM supplemented with 10% FBS, penicillin (100 U/mL), and streptomycin (100 μg/mL; Invitrogen). The polarized MDCKII (Madin–Darby Canine Kidney II) cells were purchased from the Sigma-Aldrich (January 2013), and we generated several stable cell lines immediately after obtaining the cells. The original bank of MDCKII cells is from Public Health England (PHE; London, UK) and PHE authenticates their cell line, including testing for Mycoplasma by culture isolation, Hoechst DNA staining and PCR, culture testing for contaminant bacteria, yeast and fungi, species verification by DNA barcoding, and identity verification by DNA profiling. In addition, stable cell lines generated with the MDCKII cells for this study were confirmed by protein expression and transport activities using known specific substrates ([1H]estropone-3-sulfate for OATP1B1; [3H]cholecytokinin for OATP1B3). All MDCKII cells were cultured in DMEM containing high glucose and L-glutamine supplemented with 10% heat-inactivated FBS, penicillin (100 U/mL), and streptomycin (100 μg/mL; Invitrogen) and all cells, including HeLa cells, were maintained in a 5% CO2 atmosphere at 37°C in a humidified incubator. Preparation of viral stock of vTF-7 virus was prepared as described previously (19). Briefly, HeLa cells grown to near confluence in 25-cm tissue culture plates were infected with 1 plaque-forming unit (PFU)/10 cells. After an incubation period of 48 h at 37°C, the infected cells were pelleted, homogenized, and recovered through centrifugation, followed by titration of viral stock as described by Blakely and colleagues (20).

Wild-type and variant transporter plasmid construction
Preparation of expression plasmids containing human and rat uptake transporters, including pEF6/V5-His/OATP1B1 and pEF6/V5-His/OATP1B3, has been described previously (21). Briefly, the full open reading frames (ORF) of human and rat transporter cDNAs were obtained by PCR, using AmpliTaq DNA polymerase (PerkinElmer), from cDNA libraries synthesized from a variety of human and rat tissue mRNA, respectively. A pEF6/V5-His/MDR1 expression plasmid was also obtained by the same method as above. Generation of OATP1B1 and OATP1B3 variant expression plasmids used for in vitro functional studies has been described previously (21, 22). For consistency of expression, all transporters were packaged into the pEF6/V5-His/TOPO vector (Invitrogen). The expression plasmids for wild-type (WT) pcDNA3.1(+)/OATP1B1 and pcDNA3.1(+)/OATP1B3 were constructed by excising out the ORFs of the OATP1B1 and OATP1B3 cDNA sequences, respectively, from the plasmids pEF6/V5-His/OATP1B1 and pEF6/V5-His/OATP1B3 with NheI and XhoI, and subcloning into pcDNA3.1 (+) vector (Invitrogen). To generate an expression plasmid for pcDNA3.1-zeo (+)/MDR1 (WT), PCR was first performed with corresponding nucleotides containing start codon and internal EcoR1 site of MDR1 cDNA sequences using plasmid pEF6/V5-His/MDR1 as a template, and PCR products (1,1182nts) were then subcloned into pcDNA3.1-zeo (+) vector (Invitrogen). Second, DNA fragments (1,171-3,843nts) were obtained by digesting MDR1 cDNA with EcoR1 and Not1 from plasmid pEF6/V5-His/MDR1. Finally, pcDNA3.1-zeo (+)/MDR1 (WT) plasmid containing the full ORFs (1,384nts) of MDR1 was generated by inserting the second DNA fragments (1,171-3,843nts) into the first pcDNA3.1-zeo (+)/MDR1(1,1182nts) plasmid digested with the same enzymes described above. All plasmids, including WTs and variants, were verified by sequencing in the DNA Sequencing Facility (VANTAGE) at Vanderbilt University Medical Center.

Measurement of docetaxel transport kinetics
Docetaxel transport kinetics were assessed in HeLa cells recombinantly expressing OATP1B1/b transporters. To measure transport kinetics, [3H]docetaxel uptake during the linear phase (first 3 minutes) was assessed in the presence of various concentrations of unlabeled compound. Transporter-dependent uptake was determined in parallel experiments as the difference in drug uptake between transporter and parental plasmid DNA-transfected HeLa cells. Michaelis–Menten-type nonlinear curve fitting was used to estimate the maximal uptake rate (Vmax) and concentration at which half the maximal uptake occurs (Km) for OATP1B3 and Oatp1b2. For OATP1B1 uptake kinetics, weighted, nonlinear curve fitting was performed using a two-component model comprising of a saturable process and a nonsaturable process. All experiments were carried out in duplicate on at least 2 to 3 experimental days.

Generation of stably transfected MDCKII cells
MDCKII cell lines expressing hepatic uptake transporters of an efflux transporter as well as control cell (MDCKII-Co, MDCKII-MDR1, MDCKII-OATP1B1, MDCKII-OATP1B3, MDCKII-OATP1B1/MDR1, and MDCKII-OATP1B3/MDR1) were generated as follows: To generate the single-transfected cells, MDCKII-OATP1B1 and MDCKII-OATP1B3 cells, MDCKII cells were transfected with the plasmids pcDNA3.1(+)/OATP1B1 or
pcDNA3.1(+) or OATP1B3 using Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s instructions. At 18 to 32 hours after transfection, the cells were split and divided into 10-cm culture dishes with fresh media containing G-418 sulfate (800 μg/mL; Mediatech). After additional selection with G-418 sulfate, single colonies of transfectants were screened for OATP1B1 and OATP1B3 protein expression by immunoblot analysis to detect cell clones with the desired protein expression. Cell clones with highest protein expression comparable with the parental plasmid pcDNA3.1(+) or MDCKII-OATP1B1, or MDCKII-OATP1B3 transfected cells were retransfected with the plasmid pcDNA3.1-zeo(+) or MDCKII-OATP1B3 transfected cells were retransfected with the plasmid pcDNA3.1-zeo(+) or MDCKII-OATP1B3 using the same transfection reagent mentioned above. For generation of MDCKII-MDR1 cells, MDCKII cells were also transfected with the plasmid pcDNA3.1-zeo(+) or MDCKII transfectants were screened for MDR1 expression as well as OATP1B1 and OATP1B3 by immunoblot analysis to detect cell clones with the highest expression. All expression values were normalized to the protein β-actin. Consequently, cell clones with the highest uptake transporters and/or an efflux transporter expression were chosen and used for drug transport studies. Control cells (MDCKII-Co) lacking any insert were obtained by first transfecting the MDCKII cells with pcDNA3.1(+) vector only, followed by retransfecting with pcDNA3.1-zeo(+) vector only.

Preparation of crude cell membrane fractions and cell surface proteins

Protein expression from MDCKII stable cells was assessed by immunoblot analysis of plasma membrane enriched preparations and biotinylated cell surface proteins. Crude cell membrane fractions were conducted as described previously with minor modification (23). Briefly, cells were scraped and collected in hypotonic lysis buffer (5 mmol/L Hepes, pH 7.2, 300 mmol/L mannitol, and 1x protease inhibitor cocktail; Roche) and homogenized with a pellet pestle (Thermo Fisher Scientific) and a syringe with 26G needle. The lysates were centrifuged at 800 × g for 10 minutes to remove cell debris, and the supernatant was saved. The supernatant was then centrifuged at 30,000 × g for 30 minutes to obtain membrane pellets. The membrane pellets were dissolved in the same buffer without mannitol and protein concentration in pellets was determined using the Bicinchoninic Acid Assay (BCA) Protein Assay Kit (Thermo Fisher Scientific). Each 10 μg of extracted membrane proteins was used for immunoblot analysis.

For the isolation of cell surface fractions, cell surface biotinylation was performed as described previously (21). Briefly, an equal number of each MDCKII stable cell was plated into 6-well culture plates. Twenty-four hours later, each well was washed in ice-cold PBS-Ca2+/Mg2+ (138 mmol/L NaCl, 2.7 mmol/L KCl, 1.5 mmol/L KH2PO4, 1 mmol/L MgCl2, 0.1 mmol/L CaCl2, pH 7.4) and treated with sulfo-N-hydroxysuccinimide-Ss-biotin (Thermo Fisher Scientific) for 1 hour at 4°C. The cells were washed with ice-cold PBS-Ca2+/Mg2+ containing 100 mmol/L glucose and lysed with RIPA buffer (10 mmol/L Tris base, 150 mmol/L NaCl, 1 mmol/L EDTA, 0.1% SDS, 1% Triton X-100, pH 8.0) containing 1x protease inhibitor cocktail (Roche). Following centrifugation, 140 μL of streptavidin–agarose beads (Thermo Fisher Scientific) were added to 600 μL of cell lysate and incubated for 1 hour at room temperature. Beads were washed four times with ice-cold lysis buffer, and biotinylated proteins were released from these beads by freshening Laemmli sample buffer (Bio-Rad). Consequently, eluted biotinylated (cell surface expressed) proteins were subjected to immunoblot analysis for detection of OATP1B1, OATP1B3, or MDR1 by specific antibodies.

Immunoblot analysis

To confirm protein expressions from each stable cell line generated, immunoblot analysis was performed as described previously (14). Briefly, crude cell membrane proteins (each 10 μg) and biotinylated fractions were loaded on 10% SDS-polyacrylamide gels and transferred to nitrocellulose membranes (PerkinElmer). After preincubation in PBS containing 0.05% Tween 20 and 5% nonfat dry milk, the blots were first incubated with the polyclonal rabbit anti-OATP1B3 antibody (1:2,500 dilution) and reprobed with different antibodies later, such as the polyclonal rabbit anti-MDR1 antibody (1:2,500 dilution) and the monoclonal anti-MDR1 antibody (1:1,000 dilution; Santa Cruz Biotechnology) at room temperature for 2 hours. The blots were washed with PBS containing 0.05% Tween 20 for 15 minutes (3 × 5 minutes) and then incubated for 1 hours with the secondary antibody an anti-Rabbit IgG for OATP1B1 and OATP1B3 and an anti-mouse IgG antibody for MDR1 conjugated with horseradish peroxidase (HRP; 1:10,000 dilution; Promega). The protein bands were detected using the Western lightning plus-enhanced chemiluminescence ECL (PerkinElmer). As a loading control, the blots were stripped and reprobed with the monoclonal mouse anti-Na+/K+-ATPase α antibody (1:5,000 dilution; Santa Cruz Biotechnology), followed by incubation with an anti-mouse IgG antibody conjugated with HRP (1:10,000 dilution; Promega).

Transport assays

Recombinant vaccinia-based uptake transport assay. Transport assays using a recombinant vaccinia virus were conducted as described previously (19). Briefly, HeLa cells grown in 12-well plates (0.8 × 105 cells/well) were inoculated with vaccinia (vTF-7) at a multiplicity of infection of 10 PFU/cell in Opti-MEM I medium (Invitrogen) and allowed to adsorb for 30 minutes at 37°C. Cells in each well were then transfected with 1 μg transporter cDNA packaged in pEF6/V5-His-TOPO vector (Invitrogen), along with Lipofectin (Invitrogen) and incubated at 37°C for 16 hours. The parental plasmid lacking any insert was used as control. Uptake (radioactivity) of docetaxel was measured after an incubation of 10 minutes. Total radioactivity was determined after the addition of cell lysates to vials containing 5 mL of Biodegradable Scintillation Cocktail (Amersham Biosciences). Retained cellular radioactivity was quantified by liquid scintillation counter (PerkinElmer). Transport activities were expressed in the percentage compared with the vector control. All experiments were carried out in duplicate on at least 2 to 3 experimental days. In each set of experiments, taurocholate uptake into cells transfected to express sodium/taurocholate cotransporting polypeptide (NTCP) was included as a positive control for transfection and expression efficiency. Experience with this assay panel has demonstrated that inclusion of a single positive control is sufficient, as relative activities of each transporter for reference substrates are consistent between experiments. In each set of experiments, docetaxel uptake...
into the cells transfected with the vector only was included as a negative control to ensure that results were not confounded by an effect of the transfection process.

Transwell-based vectorial transport assay. Vectorial transport assays were conducted as described previously with minor modifications (24). MDCKII cells were seeded onto 12-Transwell (diameter 12 mm; pore size 0.4 μm; Corning Incorporated) at an initial density of 0.4 × 10⁶ cells per well and grown for 3 days. Twenty-four hours before transport experiments, cells were treated with 10 mmol/L sodium butyrate (Sigma-Aldrich) to increase protein expression. Transepithelial resistance was measured in each well using a millicell voltammeter (model ERS; Millipore); wells registering a resistance of 200 Ω or greater, after correcting for the resistance obtained in control blank wells, were used in the transport experiments (23). [3H]Docetaxel was dissolved in the uptake buffer Opti-MEM 1 medium (Invitrogen) to a final concentration of 0.1 μmol/L without addition of unlabeled docetaxel. After washing cells with prewarmed uptake buffer, 0.8 mL of uptake buffer without [3H]docetaxel was added to the apical compartments of the cell monolayers. The same amount (0.8 mL) of uptake buffer containing [3H]docetaxel was then added to the basolateral compartments of the cell monolayers. Cells were then incubated at 37°C for given time points. After 0.5, 1, and 2 hours, aliquots (50 μL) were removed from both the apical and basolateral compartments and plates were placed back to the incubator. After 3 hours incubation, additional 50 μL were taken from both compartments and docetaxel radioactivity in media obtained at each time point was then measured by liquid scintillation counter (PerkinElmer). Finally, the cells were washed three times with ice-cold PBS buffer and were lysed with 0.2% SDS solution containing 1 × protease inhibitor cocktail (Roche). Cell lysates were then used to determine the protein concentrations by the BCA Assay Kit (Thermo Fisher Scientific). To measure the activity of intracellular docetaxel, cells in Transwell were incubated for 0.5, 1, 2, and 3 hours after adding radiolabeled docetaxel (final conc. 0.1 μmol/L). The Transwell plates were taken out of the incubator at each time point. Cells were then washed, lysed, followed by measuring the radioactivity of docetaxel and determining the protein concentration as described above. All experiments were performed more than three times in > triplicates.

Docetaxel distribution in Scoltb2−/− mice

Male Scoltb2−/− mice, 21 to 24 weeks of age and male WT littermate controls, were used to determine docetaxel distribution. The radiolabeled [3H]docetaxel (1 mg/kg, specific activity 30 Ci/mmol) dissolved in ethanol/0.9% saline solution was injected i.v. into the tail vein of groups of 4 mice. Blood samples from each mouse were drawn from the saphenous vein at 5 and 15 minutes after injection. After 30 minutes, mice were anesthetized with isoflurane, blood was removed by cardiac puncture and livers were harvested, weighed, and homogenized with PBS (1% w/v BSA). Total radioactivity was determined after the addition of plasma (25 μL) or liver homogenates (500 μL) to vials containing 5 mL of Ultima Gold Scintillation Cocktail (PerkinElmer LAS Canada Inc.). Docetaxel clearance after i.v. injection was calculated as dose/AUC, where AUC is the area under the plasma concentration-time profile from t = 0 to ∞. The protocols for the animal experiments were approved by the University of Western Ontario Animal Care Committee.
and V_{max}. Interestingly, kinetic analysis for OATP1B1 suggested two kinetic components for transport. An Eadie–Hofstee plot together with curve fitting indicated that, for OATP1B1, transport kinetics at concentrations up to 300 μmol/L are described by a high-affinity, low-capacity component ($K_m = 0.43 \pm 1.32$ μmol/L, $V_{\text{max}} = 37.7 \pm 47.2$ pmol/mg/min) together with a nonsaturable component that is low affinity, high capacity (Fig. 2A). Transport of docetaxel into HeLa cells transfected with OATP1B3 or Oatp1b2 was time-dependent and saturable with an K_m of 14 ± 6.5 μmol/L and 20.8 ± 7.4 μmol/L, respectively, and a maximum velocity V_{max} of 480 ± 90, and 1,548 ± 186 pmol/mg/min, respectively (Fig. 2B and C).

OATP1B1 and OATP1B3 variants differentially transport docetaxel in vitro.

Each panel of OATP1B1 (Supplementary Table S1) and OATP1B3 (Supplementary Table S2) nonsynonymous variants was expressed in HeLa cells and evaluated for differential transport of docetaxel in vitro. A number of variants were associated with significantly impaired docetaxel uptake when compared with the WT reference alleles, SLCO1B1*1a or SLCO1B3*1. pertaining to SLCO1B1 encoding OATP1B1, most notably, the common alleles, SLCO1B1 521T>C (‘5) and 388A>G/521T>C (‘15), demonstrated significantly reduced docetaxel uptake (Fig. 3A). The two reference alleles, SLCO1B1 388G>A (‘1a) and SLCO1B1 388A>G (‘1b), exhibited equivalent docetaxel transport activity. Regarding SLCO1B3 encoding OATP1B3, several nonsynonymous SNPs were associated with impaired docetaxel transport in vitro, including SLCO1B3 699G>A, 1559A>C, 1679T>C, and 334T>G/699G>A (Fig. 3B).

Protein expression of all stable MDCKII cell lines

To investigate the directional transport activity of docetaxel, we generated MDCKII cell lines stably expressing hepatic uptake transporters OATP1B1 or OATP1B3 and/or an efflux transporter MDR1. OATP1B1, OATP1B3, and MDR1 protein expression from stable cells are shown in Fig. 4. All cell lines expressed the proteins of predicted molecular weights, whereas no significant amounts of any protein of interest were detectable in control cells (MDCKII-Co) lacking any insert. OATP1B1 in crude cell membrane fractions (Fig. 4A) showed one glycosylated form with an apparent molecular weight of 84 kDa and one unglycosylated form (58 kDa), but only glycosylated form 85 kDa was detected in cell surface proteins (Fig. 4B). These results support the previous reports that 58 kDa of OATP1B1 is an ER-attached immature form (14, 25). In this study, we did not detect constitutive OATP1B1 or OATP1B3 protein expression (Fig. 4A and B) as well as OATP1A2 in control cells by immunoblot analysis, consistent with previous reports (26–28). Furthermore, transcriptional expression of constitutives OATP1A2 and OATP1B1 had been previously noted in MDCK cells, but not in MDCKII cells (29).

Vectorial docetaxel transport is dependent on OATP1B uptake and MDR1 efflux

For vectorial transport assay, $[^{3}H]$docetaxel was administered to the basal compartment of cell monolayers of control (MDCKII-Co), single (MDCKII-OATP1B1, MDCKII-OATP1B3, and MDCKII-MDR1), and double (MDCKII-OATP1B1/MDR1 and MDCKII-OATP1B3/MDR1)-transfected cells. There was no...
significant difference between MDCKII-Co and MDCKII-OATP1B1 or MDCKII-OATP1B3 cells at incubation of 0.5 hours, but after 0.5 hours the apical docetaxel accumulation in MDCKII-OATP1B1 and MDCKII-OATP1B3 cells was significantly higher compared with MDCKII-Co cells (Fig. 5A and B). In contrast, at 0.5 hours, docetaxel transported into the apical compartment of double-transfected MDCKII-OATP1B1/MDR1 and MDCKII-OATP1B3/MDR1 cells was significantly higher than in single-transfected MDCKII-OATP1B1 and MDCKII-OATP1B3 cells, respectively (P < 0.001 for OATP1B1; P < 0.01 for OATP1B3). This pattern continued up to 3 hours. Interestingly, the apical docetaxel was significantly higher in MDCKII-MDR1 cells expressing MDR1 only than in MDCKII-Co cells at 0.5 and 1 hours time points, but uptake appeared to be saturable at later time points, reflecting efficient active uptake at early time points. Intracellular docetaxel was significantly lower in the double-transfected MDCKII-OATP1B1/MDR1 (P < 0.001) and MDCKII-OATP1B3/MDR1 cells (P < 0.01) compared with the single-transfected MDCKII-OATP1B1 and MDCKII-OATP1B3 cells at all time points, respectively. Accordingly, considerably higher amounts of docetaxel were found in the apical compartment of double-transfected MDCKII-OATP1B1/MDR1 and MDCKII-OATP1B3/MDR1 cells compared with single-transfected MDCKII-OATP1B1 and MDCKII-OATP1B3 cells (Fig. 5A and B). Vectorial transport studies were also conducted up to 4 hours incubation time. In this experiment, cellular translocation of docetaxel was markedly greater when [3H]docetaxel was administrated to the basal side of all cultured cells, including single- and double-transfected cells, and its presence measured on the apical side (basal-to-apical) compared with addition of docetaxel to the opposite compartment (apical-to-basal). Moreover, the amount of docetaxel transported into the basal side (apical-to-basal) was maintained at baseline over time.

Skelb2^{−/−} mice significantly alter docetaxel disposition

We performed experiments in Skelb2^{−/−} mice to assess the role of hepatic OATP1B to the in vivo disposition of docetaxel. As the initial article describing Skelb2^{−/−} mice demonstrated modest gender-dependent differences in Skol1a4 and Skolb1 expression in female Skelb2^{−/−} mice only (30), we used male Skelb2^{−/−} mice for docetaxel transport experiments to eliminate any confounding by compensatory effects in other Oatp transporters. Male Skelb2^{−/−} mice (ages 21–24 weeks) and male WT littermate controls were used for docetaxel distribution experiments. As shown in Fig. 6A, there were significantly higher plasma docetaxel levels in mice lacking Oatp1b2 expression at given time points assessed. The plasma AUC in Skelb2^{−/−} mice was approximately 5.5-fold greater than in WT mice (mean docetaxel plasma AUC ± SD: WT, 340 ± 149 ng·h/mL; Skelb2^{−/−}, 62 ± 8 ng·h/mL, P < 0.05). Although there was no significant difference in docetaxel liver concentrations in Skelb2^{−/−} mice compared with WT mice (data not shown), the liver-to-plasma ratio was approximately 3-fold decreased (Fig. 6B) in Skelb2^{−/−} mice (P < 0.05). The plasma clearance of docetaxel in Skelb2^{−/−} mice was 83% lower than WT mice (mean plasma clearance ± SD: WT mice, 473 ± 124 mL/h/kg; Skelb2^{−/−} mice, 73 ± 35 mL/h/kg; P < 0.05).

Discussion

In this study, we conducted a systematic evaluation to define relevant OATP transporters responsible for docetaxel uptake and clearance. We identified multiple OATPs, including human OATP1A2, OATP1B1, OATP1B3, and OATP1C1, capable of transporting docetaxel in vitro. Rat Oatp1b2 was also capable of docetaxel transport in vitro and in vivo. As OATP1B1 and OATP1B3 are expressed primarily at the basolateral membrane of hepatocytes (17), this would suggest potential important roles for these transporters in the hepatic uptake of docetaxel. Kinetic analysis of docetaxel transport revealed similar kinetic parameters among OATP1B1/b transporters. In addition, a MDCKII stable cell system revealed an effective transcellular transport activity of docetaxel.
mediated by recombinant human OATP1B and MDR1 transporters in double-transfected cells.

Contrary to our findings, previous studies demonstrated that docetaxel is a substrate for OATP1B3, not OATP1B1, in studies of the Xenopus laevis oocyte transporter expression system (3, 18). The reason underlying the discrepancies is unclear, but may be related to intrinsic differences in expression systems or time points at which uptake was determined. In addition, we previously indicated differential hepatic expression patterns for OATP1B1 and OATP1B3: In immunohistochemical analysis using normal human liver sections, OATP1B1 exhibited a diffuse staining pattern throughout liver sections whereas OATP1B3 showed a more restricted staining pattern with the greatest degree of expression being confined to perivenous distribution (14). Although OATP1B1 and OATP1B3 are important determinants of hepatic uptake of drug substrates, it is unclear whether the differences in hepatic expression have significant clinical implications for drug disposition. Congruent with our results, a recent study reported by de Graan and colleagues (5) indicated that docetaxel uptake was facilitated by OATP1B1 and OATP1B3 in HEK293 or CHO cells expressing these transporters whereas only OATP1B3 constructs in Xenopus laevis oocytes, but not OATP1B1, exhibited docetaxel transport, illustrating that differences in expression systems may account for discrepancies in docetaxel substrate specificity.

Mice deficient in Oatp transporters have been generated and functionally characterized for in vivo transport of endogenous or xenobiotic OATP substrates (30, 31). Mouse Oatp1b2 is orthologous to human OATP1B1 and OATP1B3 (32). Slco1b2−/− mice are fertile, develop normally, and have no overt phenotypic abnormalities (30). However, these mice significantly altered the hepatic disposition of the prototypical OATP drug substrates

![Figure 4.](image)

Figure 4. Immunoblot analyses of OATP1B1, OATP1B3, and MDR1 expressions in MDCKII-control cells (Co), single (OATP1B1, OATP1B3, and MDR1) and double (OATP1B1/MDR1 and OATP1B3/MDR1) cell lines. Crude cell membrane fractions (A) and biotinylated cell surface proteins (B) were subjected to 10% SDS polyacrylamide gels, and then transferred onto nitrocellulose membranes. The blots were probed or reprobed with different antibodies, including OATP1B1, OATP1B3, MDR1, and Na⁺/K⁺-ATPase α antibodies. Whereas OATP1B1 in crude cell membrane fractions showed one glycosylated form 84 kDa and one unglycosylated form 58 kDa, only a glycosylated form 85 kDa of OATP1B1 was detected in cell surface proteins (arrows). OATP1B3 showed one band with approximately 120 kDa and MDR1 one with 170 kDa. Human liver extracts were used as a positive control.

![Figure 5.](image)

Figure 5. Vectorial transport and intracellular accumulation of radiolabeled docetaxel. [³H]Docetaxel (0.1 μmol/L) was administered to the basal compartment of monolayers of MDCKII-control (Co), single (MDR1, OATP1B1, and OATP1B3) and double (OATP1B1/MDR1 and OATP1B3/MDR1) cell lines. After 0.5, 1, 2, and 3 hours of incubation, translocation of docetaxel into the apical compartment (A and B) and intracellular accumulation of docetaxel (C and D) are shown. Whereas apical docetaxel was significantly higher in MDCKII-OATP1B1/MDR1 and MDCKII-OATP1B3/MDR1 cells compared with MDCKII-OATP1B1 and MDCKII-OATP1B3 cells, respectively, at all time points, intracellular docetaxel was significantly lower in MDCKII-OATP1B1/MDR1 and MDCKII-OATP1B3/MDR1 cells. Data, mean ± SE (n = 6 for vectorial transport study; n = 4 for intracellular accumulation study); *, P < 0.05; **, P < 0.01; and ***, P < 0.001 versus MDCKII-Co cells; †, P < 0.05; ††, P < 0.01; and †††, P < 0.001 versus MDCKII-MDR1 cells; ‡, P < 0.05; ‡‡, P < 0.01; and ‡‡‡, P < 0.001 versus MDCKII-OATP1B1 cells; §, P < 0.05; §§, P < 0.01; and $$$, P < 0.001 versus MDCKII-OATP1B3 cells.
pravastatin and rifampin in vivo (30). Another Oatp mouse model, Slco1a1b^{-/-} mice, significantly decreased the hepatic uptake of drug substrates such as methotrexate and fexofenadine (31). These studies illustrate the important roles of these animal models for understanding the in vivo roles of hepatic OATP transporters in drug disposition.

Accordingly, we further extended the findings from our in vitro experiments in Slco1b2^{-/-} mice to assess the role of hepatic OATPs to the in vivo disposition of docetaxel. The plasma AUC in Slco1b2^{-/-} mice was approximately 5.5-fold greater than in WT mice whereas the liver-to-plasma ratio was approximately 3-fold decreased in Slco1b2^{-/-} mice. Importantly, the plasma clearance of docetaxel in Slco1b2^{-/-} mice was 83% lower than WT mice. Although a previous study demonstrated a dramatically increased uptake of drug substrates such as methotrexate and fexofenadine by Slco1b2^{-/-} mice, the liver-to-plasma ratio was approximately 3-fold lower in Slco1b2^{-/-} mice. Importantly, the plasma clearance of docetaxel in Slco1b2^{-/-} mice was 83% lower than WT mice. Although a previous study demonstrated a dramatically increased uptake of drug substrates such as methotrexate and fexofenadine by Slco1b2^{-/-} mice, the liver-to-plasma ratio was approximately 3-fold lower in Slco1b2^{-/-} mice. Importantly, the plasma clearance of docetaxel in Slco1b2^{-/-} mice was 83% lower than WT mice. Although a previous study demonstrated a dramatically increased uptake of drug substrates such as methotrexate and fexofenadine by Slco1b2^{-/-} mice, the liver-to-plasma ratio was approximately 3-fold lower in Slco1b2^{-/-} mice. Importantly, the plasma clearance of docetaxel in Slco1b2^{-/-} mice was 83% lower than WT mice. Therefore, the apparent mechanisms for impaired function for many functionally relevant OATP1B1 variants, including the 521T-C variant, are due to either decreased protein expression or impaired trafficking of the protein to the membrane (21). The pharmacokinetics of a growing number of drugs appear to be dependent on SLCO1B1 521T-C genotype, including pitavastatin, rosuvastatin, fexofenadine, ezetimibe, and nateglinide (40–44). Notably, this allele was associated with a significant increased risk for simvastatin-induced myopathy in a genomewide association study (45). More recently, functionally relevant nonsynonymous polymorphisms have also been identified in SLCO1B3 and associated with impaired in vitro transport of substrates such as cholesteryl ester (CCK8) and rosuvastatin (22). Two variants, 1559A-C and 1679G-C, were associated with significantly reduced total and cell surface protein expression. However, the clinical relevance of genetic heterogeneity in SLCO1B3 to drug disposition is unclear at this time.

We explored the potential roles of SLCO1B1 and SLCO1B3 SNPs to docetaxel disposition. Either of two reference alleles, A388 (OATP1B1^{1a}) or G388 (OATP1B1^{1b}), demonstrated equivalent transport activity. A number of SLCO1B1 SNPs were associated with impaired docetaxel transport in vitro. In particular, the commonly occurring 521T-C (5') variant as well as the *15 variant (1b*15), were both associated with significantly impaired docetaxel transport activity. Furthermore, several SLCO1B3 variants, including 1559A-C and 1679G-C, were also associated with significantly impaired docetaxel transport. Interestingly, as docetaxel has been demonstrated to be an OATP1B3 substrate, SLCO1B3 SNPs have also been evaluated in relation to docetaxel disposition and response. Baker and colleagues (3) found no significant association between six nonsynonymous SNPs in SLCO1B3 and docetaxel clearance in a population of Caucasian adult oncology patients. In contrast, Kiyotani et al.
Accordingly, our individual variability in docetaxel disposition and response. In vitro and docetaxel. Moreover, we indicate that commonly occurring roles in the hepatic uptake, clearance, and plasma exposure of docetaxel. In addition, we suggest that docetaxel is transported demonstrating that hepatic OATP1B transporters play significant roles in the disposition of docetaxel in vivo, which may contribute to the oft-witnessed wide interindividual variability in docetaxel disposition and response. Accordingly, our findings reveal important insights into the relevance of hepatic OATPs to the clinical pharmacology of docetaxel. In addition, we suggest that docetaxel is transported by multiple OATPs, which may also play important roles on docetaxel disposition, pharmacokinetics, and toxicities.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: H.H. Lee, W. Tefi, R.G. Tirona, R.B. Kim, R.H. Ho
Development of methodology: H.H. Lee, R.H. Ho
 Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): B.F. Leake, W. Tefi, R.H. Ho
 Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): H.H. Lee, W. Tefi, R.G. Tirona, R.B. Kim, R.H. Ho
 Review, review, and/or revision of the manuscript: H.H. Lee, W.G. Tirona, R.B. Kim, R.H. Ho
 Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): B.F. Leake
 Other (conducted experiments): H.H. Lee

Grant Support

This project was supported by grants from Hyundai Hope on Wheels (to R.H. Ho), NIH R01 GM099924 (to R.H. Ho), and Canadian Institutes of Health Research (CIHR) grants (MOP-8975 and DSEN-PREVENT FRN-117588; to R.B. Kim).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 26, 2014; revised January 21, 2015; accepted February 10, 2015.

Published OnlineFirst February 18, 2015.

© 2015 American Association for Cancer Research. mct.aacrjournals.org Downloaded from

References

transporting polypeptide 1B3 polymorphisms and assessment of substrate specificity. Pharmacogenomics Genomics 2011;1,2:103–14.
Molecular Cancer Therapeutics

Contribution of Hepatic Organic Anion-Transporting Polypeptides to Docetaxel Uptake and Clearance

Mol Cancer Ther 2015;14:994-1003. Published OnlineFirst February 18, 2015.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-14-0547

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2015/02/18/1535-7163.MCT-14-0547.DC1

Cited articles
This article cites 46 articles, 12 of which you can access for free at:
http://mct.aacrjournals.org/content/14/4/994.full#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/14/4/994.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://mct.aacrjournals.org/content/14/4/994.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.