Efficacy of PARP Inhibitor Rucaparib in Orthotopic Glioblastoma Xenografts Is Limited by Ineffective Drug Penetration into the Central Nervous System

Karen E. Parrish\(^1\), Ling Cen\(^2\), James Murray\(^3\), David Calligaris\(^4\), Sani Kizilbash\(^5\), Rajendar K. Mittapalli\(^1\), Brett L. Carlson\(^2\), Mark A. Schroeder\(^3\), Julieann Sludden\(^3\), Alan V. Boddy\(^3\), Nathalie Y.R. Agar\(^4,6,7\), Nicola J. Curtin\(^3\), William F. Elmquist\(^1\), and Jann N. Sarkaria\(^1\)

Abstract

PARP inhibition can enhance the efficacy of temozolomide and prolong survival in orthotopic glioblastoma (GBM) xenografts. The aim of this study was to evaluate the combination of the PARP inhibitor rucaparib with temozolomide and to correlate pharmacokinetic and pharmacodynamic studies with efficacy in patient-derived GBM xenograft models. The combination of rucaparib with temozolomide was highly effective in vitro in short-term explant cultures derived from GBM12, and, similarly, the combination of rucaparib and temozolomide (dosed for 5 days every 28 days for 3 cycles) significantly prolonged the time to tumor regrowth by 40% in heterotopic xenografts. In contrast, the addition of rucaparib had no impact on the efficacy of temozolomide in GBM12 or GBM39 orthotopic models. Using Madin-Darby canine kidney (MDCK) II cells stably expressing murine BCRP1 or human MDR1, cell accumulation studies demonstrated that rucaparib is transported by both transporters. Consistent with the influence of these efflux pumps on central nervous system drug distribution, Mdr1a/b\(^{-/-}\) Bcrp1\(^{-/-}\) knockout mice had a significantly higher brain to plasma ratio for rucaparib (1.61 ± 0.25) than wild-type mice (0.11 ± 0.08). A pharmacokinetic and pharmacodynamic evaluation after a single dose confirmed limited accumulation of rucaparib in the brain is associated with substantial residual PARP enzymatic activity. Similarly, matrix-assisted laser desorption/ionization mass spectrometric imaging demonstrated significantly enhanced accumulation of drug in flank tumor compared with normal brain or orthotopic tumors. Collectively, these results suggest that limited drug delivery into brain tumors may significantly limit the efficacy of rucaparib combined with temozolomide in GBM. Mol Cancer Ther; 14(12); 2735–43. ©2015 AACR.

Introduction

Temozolomide chemotherapy combined with radiation followed by temozolomide alone can significantly extend survival for a subset of patients with glioblastoma multiforme (GBM). Unfortunately, essentially all patients recur following therapy, and the median survival for patients with GBM is slightly longer than 1 year (1, 2). One novel therapeutic strategy being explored to extend the survival for these patients is inhibition of DNA repair by PARP inhibitors during chemotherapy. PARP1 and 2 are nuclear enzymes that play key roles in the modulation of DNA repair. In response to a variety of DNA damages, PARP binds to sites of DNA damage, catalyzes the poly(ADP-ribosyl)ation of target proteins and recruits DNA repair proteins to these sites. Consistent with the importance of PARP in DNA repair, inhibition of PARP activity in combination with temozolomide or other chemotherapy agents can markedly enhance the efficacy of therapy (3–7). These studies have driven significant interest in developing PARP inhibitors for clinical use in combination with cytotoxic chemotherapies.

At least eight small-molecule inhibitors targeting PARP have been developed as clinical drugs by major pharmaceutical companies and are being tested for cancer indications in clinical trials (8). The first PARP inhibitor to be evaluated in clinical trials was rucaparib (AG014699). Multiple preclinical studies have demonstrated that rucaparib can markedly enhance the efficacy of temozolomide in a variety of solid tumor models (9–11). In a phase I clinical trial, rucaparib was well tolerated in combination with temozolomide in patients with advanced melanoma, and a pharmacodynamic analysis demonstrated robust suppression of PARP activity in peripheral tumors at clinically achievable doses (12). In a subsequent phase II study of patients with metastatic melanoma treated with both rucaparib and temozolomide, the combination was safe and was associated with an improvement in...
progression-free survival when compared with historical controls (13). Clinical trials in patients with metastatic breast and advanced ovarian cancer are currently evaluating rucaparib, both as a single agent and in combination with platinum-based chemotherapy (14–19). In anticipation of developing a clinical trial for patients with GBM, we performed a preclinical evaluation of rucaparib in combination with temozolomide in GBM xenograft models. Our results demonstrate that rucaparib is excluded from the central nervous system (CNS) by the blood–brain barrier (BBB) and has limited efficacy in an orthotopic GBM xenograft model.

Materials and Methods

In vitro neurosphere formation assay

Short-term explant cultures of GBM12 were seeded in triplicate in a 96-well plate in neural stem cell serum-free media (A10509-01, Life Technologies). Temozolomide with or without rucaparib were added 24 hours later. The number of neurospheres formed was counted in each well after 14 days (20).

In vitro accumulation

In vitro intracellular accumulation experiments were conducted in vector controlled Madin-Darby canine kidney II (MDCKII) cells or MDCKII cells that overexpress either human multidrug resistance protein 1 (MDR1) or murine Breast Cancer Resistance Protein (BCRP1) as previously described (21). Bcrp1-transfected cells were a gift from Dr. Alfred Schinkel circa 2003 (The Netherlands Cancer Institute) and MDR1-transfected cells were provided by Dr. Piet Borst in circa 1996 (The Netherlands Cancer Institute). Studies using radiolabeled prazosin and vinblastine were used as positive controls for Bcp and MDR1 function to authenticate cells were a gift from Dr. Alfred Schinkel circa 2003 (The Netherlands Cancer Institute) and MDR1-transfected cells were provided by Dr. Piet Borst in circa 1996 (The Netherlands Cancer Institute). Mdr1a/b-positive controls for Bcrp and MDR1 function to authenticate cells were a gift from Dr. Alfred Schinkel circa 2003 (The Netherlands Cancer Institute) and MDR1-transfected cells were provided by Dr. Piet Borst in circa 1996 (The Netherlands Cancer Institute)

GBM xenograft model and therapy response evaluation

All animal experiments were reviewed and approved by the Mayo Clinic or University of Minnesota Institutional Animal Care and Use Committee. Drug efficacy was evaluated using GBM patient–derived xenografts from the Mayo panel using either orthotopic or flank glioblastoma xenograft models (22). All patient-derived xenograft cell lines were obtained from patients at the Mayo Clinic and maintained exclusively by serial passage in mice. Mice with established intracranial xenografts for GBM12, GBM14, GBM39, GBM43, and GBM59 were randomized into treatment groups of 10 mice each and treated with either placebo, rucaparib (1 mg/kg days 1–5 every 28 days × 3 cycles), temozolomide (50 mg/kg days 1–5 every 28 days × 3 cycles), or temozolomide concurrent with rucaparib. Rucaparib was a gift from Pfizer, dissolved in dimethylsulfoxide and diluted in saline for intraperitoneal injection. Temozolomide was purchased from the Mayo Clinic Pharmacy, suspended in Ora-plus (Paddock Laboratories), and administered by oral gavage. All intracranial tumor-bearing animals used for therapy evaluation were observed daily and euthanized once they reached a moribund condition. Treatment of flank tumor xenografts was essentially the same with the exception that tumor volume was measured three times weekly. The endpoint for the flank study was time for tumors to exceed 1,000 mm³. To evaluate BBB integrity in orthotopic tumors, mice were injected with TexasRed-3 kDa dextran conjugate, euthanized by saline perfusion 10 minutes later, and then processed as described previously (23).

Steady-state assessment of rucaparib in brain

The steady state brain distribution of rucaparib was evaluated in wild-type, and Mdr1a/b−/− Bcrp1−/− mice. Rucaparib (5 mg/mL in DMSO) was administered at a rate of 5 µg/hour using rucaparib-loaded osmotic mini pumps (Durect Corporation) as described previously (24). Animals were euthanized 48 hours after pump implantation, and plasma and brain were flash frozen and stored at −80°C until analysis by LC/MS-MS.

Analysis of rucaparib samples by LC/MS-MS Assay

Brain samples were homogenized in 5% bovine serum albumin and samples (cell lysate, plasma, or brain homogenate) were spiked with an internal standard (dasatinib). After extraction in ice-cold ethyl acetate, the organic supernatant was dried under nitrogen, reconstituted in the mobile phase (70:30 of 20 mmol/L ammonium formate with 0.1% formic acid: acetonitrile), and injected onto the column (Phenomenex Synergi Polar 4 µ polar-RP 80A column; 75 × 2 mm). The ionization was conducted in positive mode and the m/z transitions were 292 and 401 for rucaparib and dasatinib, respectively.

Evaluation of rucaparib pharmacokinetics and PARP activity in xenografts

An initial evaluation of rucaparib pharmacokinetics was performed in mice with orthotopic GBM12 xenografts treated with a single 1 mg/kg dose of rucaparib. Plasma, liver, and brain were harvested and flash frozen at 0, 60, 120, 360, and 1,440 minutes after injection. Rucaparib levels were measured by LC/MS as described previously (11, 12). The same tissue samples were processed in a PARP enzymatic assay (9, 11, 12). Briefly, tumor, brain, and liver homogenates were diluted (1:9,000, 1:2,000, and 1:3,000, respectively) and incubated with a double-stranded oligonucleotide and excess NAD⁺. The formation of ADP-ribose polymer was quantified by immunoblotting with the antiPAR 10H Ab (kind gift from Alex Burkle, University of Konstanz) and normalized to protein levels (BCA assay) in the homogenate.

Matrix-assisted laser desorption/ionization mass spectrometric imaging analysis

Mice with established tumors received a single dose of rucaparib (10 mg/kg) intraperitoneally and brain, liver, and tumor were snap frozen in liquid nitrogen. Twelve micron cryosections were thaw mounted onto ITO-coated microscopic slides (Bruker Daltonics) for MALDI MSI and onto optical slides for hematoxylin and eosin staining. After sample drying in a desiccator, a 2,5-dihydroxybenzoic acid matrix (DHB, 160 mg/mL solution in methanol/0.2% TFA 70:30 v/v) was deposited using a TM sprayer (HTX imaging) with the following conditions: flow rate,
Figure 1. Efficacy of rucaparib combined with temozolomide in GBM xenograft models. A, effects of rucaparib in combination with temozolomide were evaluated using short-term explant culture obtained from GBM12 xenograft tumor in a neurosphere formation assay. B, mice with GBM12 flank xenografts were randomized and treated with placebo, rucaparib (1 mg/kg/day), or placebo, temozolomide 50 mg/kg/day, or placebo, temozolomide 50 mg/kg/day and treated with placebo, rucaparib (1 mg/kg days 1–5) given over three 28 day cycles. Rucaparib significantly potentiated temozolomide-induced tumor regrowth delay in a flank tumor model of GBM12. Median time for tumor to exceed a 1,000 mm³ size endpoint for placebo, temozolomide, and temozolomide/rucaparib treatment was 32, 86, and 121 days, respectively (Fig. 1A; \(P = 0.0148 \) and \(P < 0.0001 \)). Using these same GBM12 cells, flank xenografts were established and mice were randomized to therapy with placebo or temozolomide (50 mg/kg days 1–5) given with or without rucaparib (1 mg/kg days 1–5) given over three 28 day cycles. Rucaparib significantly potentiated temozolomide-induced tumor regrowth delay in an orthotopic model for GBM12 (27). Therefore, subsequent studies focused on evaluating whether exclusion of rucaparib from the brain and orthotopic brain tumors might contribute to the lack of efficacy observed in the orthotopic xenograft models.

Statistical analysis
The data are presented as mean ± standard deviation of the mean. A two-sample \(t \) test was used to compare continuous measures across groups. Survival distributions were estimated using the Kaplan–Meier method. The log-rank test was used to compare survival across groups. The criteria for statistical significance were taken as two-tailed \(P \) values < 0.05.

Results
Efficacy of rucaparib in vitro and in vivo
The combination of rucaparib and temozolomide was evaluated initially in the Mayo GBM12 primary GBM xenograft line. This MGMT hypermethylated xenograft line is sensitive to temozolomide and is highly responsive to the temozolomide-sensitizing effects of the PARP inhibitor veliparib (26). In a neurosphere formation assay, rucaparib significantly enhanced the efficacy of temozolomide in GBM12 cells in vitro. The unbound concentration required to inhibit 50% (IC\(\text{50} \)) neurosphere formation was 3.3 ± 0.4 \(\mu \text{mol/L} \) for monotherapy with temozolomide while the IC\(\text{50} \) was reduced to 2.7 ± 0.3 and 1.9 ± 0.3 \(\mu \text{mol/L} \) temozolomide when used in combination with 1 and 3 \(\mu \text{mol/L} \) rucaparib, respectively (Fig. 1B). In contrast, the addition of rucaparib to temozolomide therapy in GBM12 orthotopic xenografts was ineffective (median survival: placebo 16 days, temozolomide 68 days and temozolomide/rucaparib 81 days, \(P < 0.01 \), respectively (Fig. 1B). In contrast, the addition of rucaparib to temozolomide therapy in GBM12 orthotopic xenografts was ineffective (median survival: placebo 16 days, temozolomide 68 days and temozolomide/rucaparib 81 days, \(P = 0.88 \), Fig. 1C). A similar lack of efficacy was observed in four other primary GBM xenograft models, including GBM39 (Fig. 1D and Supplementary Fig. S2). The combination of temozolomide and the PARP inhibitor veliparib is highly effective in orthotopic models for both GBM12 and GBM39 (26, 27), and a similar sensitizing effect for veliparib/temozolomide combination is observed in heterotopic model for GBM12 (27). Therefore, subsequent studies focused on evaluating whether exclusion of rucaparib from the brain and orthotopic brain tumors might contribute to the lack of efficacy observed in the orthotopic xenograft models.

Intracellular accumulation of rucaparib
The ATP-binding cassette (ABC) transporters multidrug resistance 1 (MDR1) and breast cancer resistance protein (BCRP1)
are located in the luminal membrane of brain capillary endothelial cells and function within the BBB to limit drug accumulation in the brain (28–30). The intracellular accumulation of rucaparib was evaluated in MDCKII vector controlled (WT) and MDR1- or BCRP1-overexpressing cell lines to determine whether rucaparib was a substrate for these efflux pumps. The intracellular accumulation of rucaparib in MDCKII WT and MDR1 or BCRP1 overexpressing cell lines was compared with prototypical substrates for these two efflux pumps to determine the efflux liability of rucaparib. Intracellular drug accumulation was significantly reduced in MDR1-expressing cells in comparison with vector controlled cells, for both vinblastine (20.1 ± 2.6% of control, P < 0.05) and rucaparib (32.0 ± 7.4% of control, P < 0.05, Fig. 2A). Cotreatment with a specific MDR1 inhibitor LY335979 abolished the diminished uptake of either vinblastine or rucaparib in the MDR1 overexpressing line. Similarly, BCRP1 overexpression resulted in a marked suppression of intracellular accumulation of prazosin (16.8 ± 1.4% of control, P < 0.05) and rucaparib (14.5 ± 5.2% of control, P < 0.05), and cotreatment with the specific BCRP1 inhibitor Ko143 eliminated any differential uptake between the vector controlled and BCRP1 overexpressing lines (Fig. 2B). These data show that rucaparib is a substrate for both MDR1 and BCRP1 efflux pumps.

Brain distribution in FVB wild-type and Mdr1a/b1−/−;Bcrp1−/− mice

Steady-state concentrations in brain and plasma were determined in wild-type (WT) and in triple knockout (TKO: Mdr1a/b1−/−;Bcrp1−/−) mice. The TKO mice lack expression of MDR1 and BCRP1 proteins and comparison with wild-type mice will show the influence of these efflux transporters on rucaparib brain delivery. After a 48-hour continuous intraperitoneal infusion via osmotic pump, brain and plasma concentrations of rucaparib were determined in both WT and TKO mice (Fig. 3A). Brain accumulation of rucaparib was significantly increased in the TKO mice (brain to plasma ratio of 1.61 ± 0.25) as compared with wild-type mice (brain to plasma ratio of 0.11 ± 0.08; P = 0.0001, see Fig. 3B). In conjunction with the in vitro data, these in vivo data clearly show that MDR1 and BCRP1 activity at the BBB significantly limits the accumulation of rucaparib within the CNS.

Pharmacokinetic and pharmacodynamic analysis of rucaparib

The accumulation of rucaparib and effects on PARP inhibition were evaluated in mice with established orthotopic xenografts. Plasma and tissue distribution was quantified over the course of 24 hours after a single intraperitoneal injection of drug (Fig. 4A and B). The concentration of rucaparib in plasma was highest at the first 60-minute time point (0.34 μmol/L) and exhibited a half-life of 1.5 hours. Distribution of rucaparib at 60 minutes was similar in the tumor-injected hemisphere (0.35 μmol/L), significantly higher in liver (11.05 μmol/L), and markedly lower in the contralateral brain hemisphere (0.08 μmol/L). Interestingly, in the tumor-injected hemisphere, rucaparib showed a significant retention even at 6 hours (0.23 μmol/L) and an apparent half-life of 13.0 hours. Albeit at much lower levels, rucaparib also accumulated in normal brain, but levels were undetectable by 360 minutes after injection. Thus, in comparison with liver tissue levels, rucaparib had significantly lower accumulation in normal brain and intermediate accumulation in tumor-bearing brain.

Rucaparib causes prolonged suppression of PARP activity, even after short exposure (31), and because of this, the inhibitory effects of rucaparib on PARP activity in tissues can be measured directly in a PARP enzyme activity assay. Using the same tissue samples processed for drug level determination, the extent of PARP activity suppression was evaluated and reported here as the pmol of PAR formation per μg of protein (Fig. 4C). Baseline PARP activity was highest in the tumor-injected hemisphere (41.4 pmol/μg protein) in comparison with the contralateral hemisphere (11.8 pmol/μg protein) or liver (7.4 pmol/μg protein). The extent of PARP activity suppression was greatest in liver, in which PARP activity was reduced to 3% of baseline for several hours and recovered to 68% of baseline by 24 hours (Fig. 4D). Tissues recovered included liver and both hemispheres of the brain: the hemisphere contralateral to tumor injection is largely free of tumor and the tumor-injected hemisphere is significantly replaced by tumor (see Fig. 5). The entire tumor-bearing hemisphere was used in this analysis due to the highly infiltrative and semisolid properties of GBM12, which preclude reliable dissection of tumor from the
surrounding brain tissue. PARP activity in the normal brain was reduced only to 62% of baseline at 60 minutes and recovered to baseline by 360 minutes after injection. In contrast, the tumor-injected hemisphere PARP activity was reduced to 50% of baseline but remained suppressed at this level for 24 hours. Thus, while PARP inhibition was more profound in liver, inhibition of PARP activity in the tumor-injected hemisphere was sustained for a longer duration.

BBB integrity in GBM12 orthotopic xenograft

Maintenance of tight junctions between brain capillary endothelial cells is critical for the preservation of a BBB, and the integrity of these tight junctions often is disrupted in GBM. Therefore, the integrity of the BBB was assessed in orthotopic GBM12 xenografts using Texas Red-3 kDa dextran conjugate, which accumulates in brain only in regions of tight junction disruption. Ten minutes after Texas Red–dextran administration, mice were euthanized and brains were removed for sectioning and analysis by confocal microscopy. As seen in Fig. 5, the distribution of Texas Red–dextran within the tumor was heterogeneous, with significant portions of the tumor demonstrating robust Texas Red–dextran accumulation, while other tumor regions had little to no accumulation. These data demonstrate that subregions of GBM12 orthotopic tumors have a relatively intact BBB.

Distribution of rucaparib in flank and orthotopic tumors

The distribution of rucaparib in flank and orthotopic GBM12 tumors was evaluated using two-dimensional MALDI-MSI (Fig. 6). Thirty minutes after a single intraperitoneal dose, homogeneous and high-level accumulation of rucaparib was observed in flank tumors (Fig. 6A, n = 2). In contrast, no appreciable rucaparib signal was observed either in orthotopic tumors (n = 3) or adjacent normal brain (Fig. 6B), while biomolecules associated with tumor or normal brain could be readily detected (Fig. 6i–iii). These data demonstrate that accumulation of rucaparib into both normal brain and orthotopic GBM12 tumors was below the level of detection for the MALDI-MSI technique compared with robust detection of drug in flank tumors.

Discussion

The combination of PARP inhibitors and temozolomide has been investigated in many cancers including glioblastoma multiforme (3–7, 26). We previously demonstrated robust chemosensitizing effects of the PARP inhibitor veliparib in primary GBM orthotopic and flank tumor xenograft models, including the MGMT methylated GBM12 and GBM39 primary xenograft orthotopic models (26, 27). Consistent with previous in vivo studies in colorectal cancer, neuroblastoma and medulloblastoma, rucaparib substantially potentiated temozolomide in flank tumor models of GBM12 (9–11). However, rucaparib did not potentiate temozolomide in orthotopic GBM models of GBM12, GBM 39, or three other primary GBM xenograft lines. The stark contrast in efficacy of the combination in the GBM12 flank versus orthotopic models and the biochemical data demonstrating liability for exclusion from brain distribution by BBB efflux pumps suggests that limited distribution of rucaparib into brain tumors may account for the lack of efficacy of rucaparib in the orthotopic models.

GBM tumors are characterized by heterogeneous disruption of the BBB. Under normal conditions, radiographic contrast material is physically excluded from the brain by tight junctions between brain capillary endothelial cells that form a physical BBB. Tumor-induced cytokines such as VEGF (alternatively known as vascular permeability factor) lead to disruption of tight junctions in regions of tumor that allow contrast material to accumulate in essentially all GBM (32). However, the extent
of contrast accumulation within an individual tumor can be highly heterogeneous, and neurosurgical studies have demonstrated that significant tumor burden is present in adjacent regions of tumor outside the contrast enhancing portion of GBM (33–35). Moreover, beyond any radiographic abnormality, isolated tumor cells infiltrate into normal brain tissue where the BBB is intact (23, 36). Similar to radiographic contrast, Texas Red 3 kDa–dextran can only accumulate in brain tumor regions with a disrupted BBB (23, 37). As in the clinical scenario, the Texas Red signal in GBM12 intracranial tumors is highly heterogeneous with lack of red fluorescence in significant portions of the tumor. Similar results have been observed in other orthotopic xenograft and genetically engineered models of glioma (23). Collectively, these data demonstrate that GBM12, and likely the other orthotopic xenograft models studied have at least some regions of tumor residing behind an intact BBB.

Drug efflux pumps expressed on the luminal surface of endothelial cells provide a biochemical BBB that complements the physical BBB provided by tight junctions between endothelial cells. MDR1 and BCRP1 are ATP-binding cassette (ABC) transporters in brain capillary endothelial cells that limit brain penetration of lipophilic drugs by actively transporting substrate molecules back into the bloodstream (38, 39). Using the canine kidney distal tubule–derived MDCKII epithelial cell line overexpressing either MDR1 or BCRP1, exclusion of rucaparib from the respective cells and reversal of this effect by specific efflux pump inhibitors demonstrates that rucaparib is an efflux substrate for both pumps. Consistent with the importance of these efflux pumps for exclusion of rucaparib from the
brain, there was an almost 20-fold increase in the brain-to-plasma ratio in Mdr1a/b−/−Bcrp1−/− knockout mice. A recent study also reported that efflux transport at the BBB restricted brain delivery of rucaparib (40); the current study extends these results by linking limited brain delivery of rucaparib with a lack of treatment efficacy for an otherwise active drug. Numerous other small-molecule inhibitors are excluded from the brain via the efflux activities of MDR1 and BCRP at the BBB (21, 23, 39, 41–45), and similar to the approach taken here, in vitro screening for efflux liability may be an effective way to rapidly identify drugs that are more than likely to have limited brain penetration.

The impact of limited drug distribution into normal brain on treatment efficacy for brain tumors has been evaluated in several previous preclinical studies. In a comparison of a PDGF-driven glioma model established in the same FVB mouse models used in this study, significantly higher drug delivery into the brain of the PDGFR inhibitor dasatinib was associated a significant improvement in survival for tumor-bearing Mdr1a/b−/−Bcrp1−/− knockout mice compared with wild-type mice (23). In a murine GL261 model for glioma, the brain impenetrant drug, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), significantly delayed tumor growth of subcutaneous GL261 tumors, but provided no survival extension in intracranial GL261 tumors (46). Similarly, the Wee1 inhibitor MK-1775 combined with temozolomide chemotherapy provided no sensitizing effect in another Mayo GBM xenograft line (GBM22), despite significant sensitizing effects observed in flank models (47). For both the MK-1775 study in GBM22 and the

Figure 6.
MALDI-MSI of drug distribution. Mice with established GBM12 flank (A) or orthotopic brain tumors (B) were euthanized thirty minutes after a single dose of rucaparib and processed for MALDI-MSI. Black dotted lines delineate the outline of the tumor tissue in each H/E-stained sister section. White dotted lines delineate the outline of the tissue section from H&E-stained sections. Top, (i) red and green color intensities indicate relative levels of heme, a marker of vasculature, (m/z 616.1768 ± 0.001) and rucaparib (m/z 324.1507 ± 0.001), respectively. Middle, (ii) shows the distribution of an ion detected in tumor tissue (m/z 401.3452 ± 0.001). Bottom, (iii) displays the distribution of an ion detected throughout both brain and flank tumor sections (m/z 630.6187 ± 0.001). Results are representative of 3 mice for the orthotopic tumor and 2 mice for the GBM12 flank conditions, respectively.
current study in GBM12, the results suggest that limited accumulation of chemo- or radio-sensitizing drugs within orthotopic brain tumors may have profound impact on limiting the enhancement of a highly active and brain-penetrant therapy such as temozolomide.

The dosage regimen used in this study was derived to mimic the dosing schedule for both rucaparib and temozolomide that is used in the clinic. This dosage regimen was the highest dose of rucaparib (1 mg/kg i.p.) that was tolerated for chronic administration of rucaparib with 50 mg/kg per os temozolomide (this provides similar exposure in mice as a dose of 150 mg/m² in humans). The maximum rucaparib plasma concentrations following a single 1 mg/kg dose in our preclinical study are about 4 to 5 times lower than the Cmax in humans reported in the literature (12). Interestingly, even when the rucaparib dose was escalated to 10 mg/kg, rucaparib was still below the limit of detection in the brain by MALDI-MSI. At 1 mg/kg, the exposure of rucaparib in the flank tumor was sufficient to reduce tumor growth, indicating that this dose of rucaparib is not in the subtherapeutic range, but that active efflux at the BBB limits rucaparib brain distribution and efficacy.

Exclusion of drugs from the central nervous system and regions of brain tumors is a significant barrier for development of effective novel therapeutic agents for primary or metastatic brain tumors. At least 7 PARP inhibitors are being assessed in clinical trials but only veliparib (7, 26) and E7016 (48) are known to significantly penetrate the BBB. In a recent study that examined three PARP inhibitors, olaparib was identified as an mDR1 substrate (49). On the basis of the data presented here and the biochemical chemistry of mDR1 within the BBB, these data suggest that olaparib should have limited brain penetration. Consistent with this assumption, a recent phase 0 trial measuring olaparib levels in resected GBM demonstrated a correlation between olaparib concentration and BBB disruption, as measured by dynamic contrast enhancement magnetic resonance imaging (50). Although the conclusion reached by these authors was that olaparib should be suitable for brain tumor therapy, extrapolation of the current data with rucaparib would predict limited efficacy of olaparib or other brain impenetrant PARP inhibitors when combined with temozolomide in GBM.

Disclosure of Potential Conflicts of Interest
D. Calligaris is a consultant/advisory board member for BayesianDx. N.Y.R. Agar is a consultant/advisory board member for Bayesian Dx and inviBo. N. Curtin has ownership interest (including patents) in Clovis. J.N. Sarkaria reports receiving commercial research grants from Basilea, Sanofi, Genentech, Beigene, Lilly, and Merck. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: K.E. Parrish, L. Cen, R.K. Mittapalli, W.F. Elmquist, J.N. Sarkaria
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): K.E. Parrish, L. Cen, J. Murray, D. Calligaris, B.L. Carlson, M.A. Shroeder, J. Sludden, A.V. Boddy, N.Y.R. Agar, N. Curtin, J.N. Sarkaria
Writing, review, and/or revision of the manuscript: K.E. Parrish, L. Cen, D. Calligaris, S. Kizilbash, R.K. Mittapalli, A.V. Boddy, N.Y.R. Agar, N. Curtin, W.F. Elmquist, J.N. Sarkaria
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): J. Murray, B.L. Carlson, J.N. Sarkaria
Study supervision: B.L. Carlson, N. Curtin, J.N. Sarkaria

Grant Support
This work was supported in part by grants to J.N. Sarkaria from the Mayo Foundation, the NIH (CA141121 and CA127716) and the Brain Tumor Funders Consortium. This work was also supported in part by grants to W.F. Elmquist from the NIH (CA138437) and to both J.N. Sarkaria and W.F. Elmquist from the NIH (NS079721). N.Y.R. Agar was funded by the National Institute of Health Director’s New Innovator Award (1DP2OD007383-01). Dana-Farber PLGA Foundation, and Daniel E. Pon- ton fund for the Neurosciences. K.E. Parrish was supported by the Ronald J. Sawchuk, Edward G. Rippie and American Foundation for Pharmaceutical Education Pre-Doctoral Fellowships.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received July 1, 2015; revised September 11, 2015; accepted September 14, 2015; published OnlineFirst October 5, 2015.

References

Efficacy of PARP Inhibitor Rucaparib in Orthotopic Glioblastoma Xenografts Is Limited by Ineffective Drug Penetration into the Central Nervous System

Karen E. Parrish, Ling Cen, James Murray, et al.

Mol Cancer Ther 2015;14:2735-2743. Published OnlineFirst October 5, 2015.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-15-0553

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2015/10/02/1535-7163.MCT-15-0553.DC1

Cited articles
This article cites 48 articles, 21 of which you can access for free at:
http://mct.aacrjournals.org/content/14/12/2735.full#ref-list-1

Citing articles
This article has been cited by 12 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/14/12/2735.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://mct.aacrjournals.org/content/14/12/2735.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.