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Abstract

Patients with non–small cell lung cancer (NSCLC) EGFRmuta-
tions have shown a dramatic response to EGFR inhibitors (EGFR-
TKI). EGFR T790M mutation and MET amplification have been
recognized asmajormechanisms of acquired resistance to EGFR-
TKI. Therefore, MET inhibitors have recently been used in
NSCLC patients in clinical trials. In this study, we tried to
identify the mechanism of acquired resistance to MET inhibi-
tors. We analyzed the antitumor effects of two MET inhibitors,
PHA-665752 and crizotinib, in 10 NSCLC cell lines. EBC-1
cells with MET amplification were the only cells that were
sensitive to both MET inhibitors. We established PHA-
665752–resistant EBC-1 cells, namely EBC-1R cells. Activation
of KRAS, EGFR, and FGFR2 signaling was observed in EBC-1R
cells by FISH and receptor tyrosine kinase phosphorylation

antibody arrays. EBC-1R cells also showed overexpression of
ATP-binding cassette subfamily B member 1 (ABCB1) as well
as phosphorylation of MET. EBC-1R cells grew as cell spheres
that exhibited cancer stem cell–like (CSC) properties and
epithelial–mesenchymal transition (EMT). The level of miR-
138 that targeted ABCB1 was decreased in EBC-1R cells. ABCB1
siRNA and the ABCB1 inhibitor elacridar could reduce sphere
numbers and suppress EMT. Elacridar could also reverse resis-
tance to PHA-665752 in EBC-1R cells. Our study demonstrated
that ABCB1 overexpression, which was associated with CSC
properties and EMT, was involved in the acquired resistance to
MET inhibitors. Inhibition of ABCB1 might be a novel ther-
apeutic strategy for NSCLC patients with acquired resistance to
MET inhibitors. Mol Cancer Ther; 14(11); 2433–40. �2015 AACR.

Introduction
Lung cancer is the most frequent cause of cancer-related death

in Japan andworldwide (1). Recently, oncogenic drivermutations
in non–small cell lung cancer (NSCLC) patients, such as EGFR
mutation and anaplastic lymphoma kinase gene (ALK) fusion
gene, have been identified (2–4). Several tyrosine kinase inhibi-
tors (TKI) are currently approved or are under clinical develop-
ment for the treatment of NSCLC. Our group and others have
recently reported that first-line gefitinib treatment in advanced
NSCLC patients with EGFRmutations improved progression-free
survival (PFS) in randomized phase III studies (5, 6). Unfortu-
nately, despite this initial and marked response, most NSCLC
patients become resistant to EGFR-TKIs. Two major mechanisms
of acquired resistance to EGFR-TKIwere identified inpatientswith
NSCLC (7, 8). About half of resistant tumors develop a secondary

EGFR mutation in exon20 T790M, which prevents effective inhi-
bition by EGFR TKIs due to steric hindrance or an increased
binding affinity for ATP (7). An additional 5% to 10% of tumors
from refractory patients undergo MET gene amplification, which
causesHER3-dependent activation of the signaling cascade down-
stream of EGFR despite its inhibition by TKIs (8).

MET is a proto-oncogene that encodes a receptor tyrosine
kinase, c-MET. c-MET is the receptor for hepatocyte growth factor
(HGF). The binding of HGF to c-MET leads to cellular responses,
including cell proliferation, motility, migration, and invasion
(9, 10). In lung cancer,MET can be activated by HGF stimulation
(11). Our recent study demonstrated thatMET amplification and
gene copy number gains showed a short response to gefitinib
treatments in lung adenocarcinoma with EGFR mutation (12).
Recently, MET inhibitors have been administered to NSCLC
patients who are na€�ve or resistant to EGFR TKIs in a clinical trial
(13). This phase II study showed that PFS was longer in the group
treatedwith erlotinib plus theMET inhibitor tivantinib than in the
group treatedwith erlotinib alone, especially among patientswith
KRAS mutations (13). Recent studies showed mechanisms of
resistance to MET inhibitors, including mutation in the MET
activation loop (Y1230), bypassed EGFR activation, and MET
and KRAS gene amplification (14, 15). However, the molecular
mechanisms of the acquired resistance to MET inhibitors in
NSCLC are not completely understood.

In this study, we aimed to identify a novel molecular
mechanism for acquired resistance to MET inhibitors and
demonstrate potential therapeutic strategies. We established
MET inhibitor–resistant NSCLC cells (EBC-1R). EBC-1R cells
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showed overexpression of ATP-binding cassette subfamily B
member 1 (ABCB1) with cancer stem cell (CSC)-like properties
and epithelial–mesenchymal transition (EMT) phenotype.
Inhibition of ABCB1 could overcome the stem cell–like abil-
ities and resistance to MET inhibitors in NSCLC cells. ABCB1
may be a critical and novel therapeutic target for resistance to
MET inhibitors in NSCLC cells.

Materials and Methods
Cell culture

Nine lung adenocarcinoma cell lines (A549, LC-2/ad, PC-9, PC-
14, ABC-1, HCC-827, NCI-H441, NCI-H1648, and RERF-LC-MS)
and one EBC-1 squamous carcinoma line were used in this study.
A549 and LC-2/ad were obtained from RIKEN Cell Bank. PC-9
and PC-14 were obtained from Immuno-Biological Laboratories.
ABC-1, RERF-LC-MS, and EBC-1were obtained from the Japanese
Collection of Research Bioresources (Osaka, Japan). HCC-827,
NCI-H441, andNCI-H1648 were obtained from the ATCC. These
cell lines were obtained from2003 to 2011, amplified and frozen,
and one aliquot of each was thawed for this project, although no
authentication was done by the authors. All cells were routinely
screened for the absence of mycoplasma. These cell lines were
maintained inRPMI1640medium(Gibco) orminimumessential
medium eagle supplemented with 10% FBS at 37�C in a humid-
ified incubator. EBC-1 cells were incubated with increasing con-
centrations of PHA-665752 by stepwise methods. Cells that
survived incubation with 5 mmol/L PHA665752 were stored for
further analysis and referred to as PHA665752-resistant cells
(EBC-1R).

Drugs and growth inhibition assay
The MET inhibitor PHA-665752 and the ABCB1 inhibitor

elacridar were purchased from Santa Cruz Biotechnologies. The
dual ALK andMET inhibitor crizotinib was obtained from Selleck
Chemicals. To evaluate the sensitivity to PHA-665752 and crizo-
tinib in vitro, cells were plated (5,000 cells/well) in 96-well tissue
culture plates and incubated for 24 hours before being exposed to
different concentrations of PHA-665752 or vehicle (DMSO). The
cells were incubated with various concentrations of PHA-665752
or crizotinib at 37�C for 72 hours. After incubation at 37�C for 72
hours, MTS was added to each well and incubated at 37�C for 2
hours, after which absorbance was measured at a test wavelength
of 450 nm using a microplate reader (Dynatech MR7000, Dyna-
tech). The IC50 value was calculated by SigmaPlot12 (HULINKS,
Inc.). Each experiment was performed independently three times.
The corrected absorbance of each sample was calculated and
compared with that of the untreated control.

Western blot analysis
Cells were lysed in buffer containing 50 mmol/L Tris–HCl, pH

7.6, 150 mmol/L NaCl, 0.1% SDS, 1% Nonidet P-40, and 0.5%
sodium deoxycholate. Western blot analysis was performed as
previously described (16). ABCB1, KRAS, and vimentin antibo-
dies were obtained from Santa Cruz Biotechnologies. MET, p-
MET, AKT, p-AKT, p-MEK, EGFR, p-EGFR, and E-cadherin anti-
bodies were purchased from Cell Signaling Technology. b-Actin
was obtained from Sigma Aldrich.

RNA extraction and microarray analysis
Total RNAwas extracted using TRIzol reagent (Invitrogen) from

frozen cells as previously described (17, 18). High-density oligo-

nucleotide array analysis was carried out using Affymetrix HG-
U133A GeneChips (22,282 probe sets), as previously described
(16). We performed human receptor tyrosine kinases (RTK)
phosphorylation antibody arrays including 71 antibodies (Ray-
Biotech, Inc.). Total RNA was also used for hybridization on
miRNAmicroarray chips containing 768 probes with the TaqMan
Array HumanMicroRNA Aþ BCards Set v3.0 (Life Technologies)
on a 7900 Real Time PCR System (Applied Biosystems), as
previously described (19). Ct values were provided from all
miRNAs represented on the cards, and fold changes in expression
were calculated using the DDCt method. Expression levels of
MammU6 on the array card were defined as positive controls for
the purpose of calculation of DDCt.

The microarray data have been deposited in NCBIs Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo/) and are accessible through GEO Series accession number
GSE66604 (released March 7, 2015).

Real-time quantitative reverse transcription PCR
ABCB1, ABCG2, ALDH1, and CD44 expression levels were

measured by real-time quantitative reverse transcription PCR
(qRT-PCR) using TaqMan Gene Expression Assay (Applied Bio-
systems). GAPDHwas determined as an internal control (Applied
Biosystems). Expression levels of miRNAs were measured using
TaqMan MicroRNA Assay (Applied Biosystems). RNU66 expres-
sion level was determined as an internal control (Applied Bio-
systems). Gene and miRNA expression were quantified as 2�DDCt

value (20).

Ologonucleotide transfection
The miR-374a and miR-138 mimics (miR-374a mimic and

miR-138 mimic) and their negative control were synthesized by
Ambion. All precursors were treated with Lipofectamine 2000
transfection reagent 24 hours after seeding, according to the
manufacturer's instructions (Life Technologies). The precursor
complexes were transfected into cells at a final concentration of
40 nmol/L.

FISH
Gene copy numbers (GCN) and amplification of cMET,

KRAS, and EGFR genes were examined by FISH. Tissue sec-
tions were then hybridized with cMET, KRAS, EGFR, CEP7,
CEP12, and D7Z1 probes (LSI Chemical Medience Corpora-
tion). Numbers of fluorescence signals were counted indepen-
dently by two investigators under an Axio Vision microscope
(Carl Zeiss).

Sphere formation assays in serum-free culture
A total of 1.25 � 104 cells were plated in 24-well plates with

Ultra-Low Attachment surface (Corning Inc.), and cultured in
serum-free minimum essential medium Eagle (Sigma-Aldrich)
with 20 ng/mL EGF and 10 ng/mL basic fibroblast growth factor
(Sigma-Aldrich). The numbers of spheres exceeding 150 mm in
diameter in each well were counted under a microscope after 14
days of culturing.

Statistical analysis
Data were expressed as mean (SD) of three independent

experiments and evaluated with the Student t test.
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Results
Effect of MET inhibitors on NSCLC cell lines and establishment
of PHA-665752–resistant NSCLC cells

We first evaluated the antitumor effects of PHA-665752 and
crizotinib in 10 NSCLC cell lines. On the basis of the IC50 by
growth-inhibitory assays, only EBC-1 cells were sensitive (IC50 <
0.1 mmol/L) to bothMET inhibitors (Table 1). The EBC-1 cell line
had been established from a metastatic skin tumor of a patient
with lung squamous cell cancer by Watanabe Y in Okayama
University in 1985. EBC-1 cells have been reported to contain
genomic amplification ofMET (21).We evaluated protein expres-
sion levels of MET and EGFR signal pathway molecules in the 10
NSCLC cell lines by Western blot analysis (Fig. 1A). Total MET
protein expression was increased in EBC-1, NCI-H1648, and two
EGFR-mutant cell lines (PC-9 and HCC-827). MET phosphory-
lation (p-MET) was enhanced in only EBC-1 cells. MET protein
expression statuswas also evaluated in 6 additional squamous cell
carcinoma cell lines. EBC-1was the only cell line that had elevated
levels of both p-MET andMET among 7 squamous cell carcinoma
cell lines (Supplementary Fig. S1). PHA-665752 reduced the level
of p-MET in EBC-1 cells in a time-dependent manner (Fig. 1B).

Next, we established PHA-665752–resistant EBC-1R cells from
EBC-1 cells by the stepwise method. After 3 months' selection, we
established EBC-1R cells (Fig. 1C). EBC-1R cells showed resistance
to PHA-665752 with an IC50 of 5 mmol/L, which is an approx-
imately 160-fold increase over the IC50 of the parental EBC-1 cells
(Fig. 1C). EBC-1R cells were further maintained without PHA-
665752 exposure for one month. The IC50 value of the EBC-1R
cells without PHA-665752 exposurewas stillmore than 1mmol/L.

We next evaluated the protein expression of downstream
molecules in the MET and EGFR pathways in EBC-1R cells.
Increased levels of p-MET, MET, KRAS, and AKT phosphorylation
(p-AKT) were observed in EBC-1R cells by Western blotting (Fig.
1D). FISH analysis ofMET,KRAS, and EGFR genes was performed
to examine the mechanism of overexpression of these proteins.
MET gene copy number gain was not increased in EBC-1R cells;
however, increased copy number gains of KRAS and EGFR genes
were observed in EBC-1R cells (Supplementary Table S1).

To further clarify the signaling mechanism associated with
sensitivity to PHA-665752, RTKs phosphorylation expression
profiles were investigated in the same set of 10 NSCLC cell lines.
The phosphorylation status of four RTKs associated with PHA-
665752 sensitivity is shown in Table 2 (fold change of >1.5 and
<0.5). Phosphorylation of FGFR1 and FGFR2 was enhanced in
EBC-1R cells. We confirmed upregulation of FGFR2 gene expres-
sion in EBC-1R cells by qRT-PCR analysis (Fig. 1E). We also
examined the effect of the FGFR-inhibitor, nintedanib, on the
drug sensitivity to PHA-665752 in EBC-1 and EBC-1R cells.
Nintedanib combined with PHA-665752 did not have an effect

on drug-sensitive EBC-1 cells (Supplementary Fig. S2A). In con-
trast, nintedanib could reverse the resistance to PHA-665752 in
EBC-1R cells with overexpressed FGFR2 (Supplementary Fig.
S2B). FGFR2 might contribute to the resistance to PHA-
665752, probably by bypassing pathway activation (22). These
findings suggested that activation of KRAS as a downstream
molecule of MET and activation of EGFR and FGFR2 signaling
by a MET-independent bypass pathway are partially involved in
the resistance to PHA-665752.

Overexpressed ABCB1 in EBC-1R cells with stem cell–like
properties and EMT

To identify genes associated with resistance to PHA-665752 in
EBC-1R cells, gene expression profiles were studied in the parental
EBC-1 and EBC-1R cells by cDNAmicroarrays. The gene encoding
ABCB1 (ATP-binding cassette transporter belonging to subfamily
B member 1), which belongs to the ATP-binding cassette trans-
porter family, was among the most upregulated genes in EBC-1R
cells (Table 2). ABCB1 has recently been reported to be associated
with CSC-like properties (23).We confirmed that theABCB1 gene
was significantly overexpressed in EBC-1R cells by qRT-PCR
analysis (Fig. 2A). To confirm the robustness of ABCB1 over-
expression in EBC-1R cells, cloned EBC-1R cells derived from a
single cell by limiting dilution were used. Three independent
clones also showed ABCB1 overexpression by qRT-PCR analysis
(Supplementary Fig. S3). Genes encoding other stem cell–related
markers, ABCG2 and CD44 genes, were slightly upregulated in
EBC-1R cells (Fig. 2A). We next evaluated sphere formation
activities of EBC-1R cells to confirm CSC-like properties. We
found that EBC-1R cells grew as cell spheres (Fig. 2B). The
presence of CSC-like properties was closely related to EMT
(23). Therefore, we evaluated the expression levels of EMT mar-
kers in EBC-1R cells. The level of mesenchymal cell marker
vimentin was increased in EBC-1R cells, resulting in the EMT
phenotype (Fig. 2C). These findings showed that EBC-1R cells
exhibited CSC-like properties and EMT.

miRNAs associated with drug sensitivity to PHA-665752
miRNAs, small noncoding RNAs that act as posttranscriptional

regulators of gene expression, are involved in cancer progression
and drug resistance (24–26). To identify the miRNAs that were
altered in EBC-1R cells, miRNA expression profiling was per-
formed. Twenty-three miRNAs were downregulated in EBC-1R
cells (<0.5 fold changes; Supplementary Table S2). We next
proceeded to identify potential targets using Target Scan 5.2
(http://www. targetscan.org/), a comprehensive resource of
miRNA target predictions and expression profiles. We found that
miR-10b, miR-130b, and miR-15a commonly target MET. KRAS
could be predicted as a target of miR-504 and miR-135b. FGFR2

Table 1. IC50 values in 10 NSCLC cell lines responding to PHA665752 and crizotinib

Cell lines EBC-1 A549 LC-2/ad PC-9 PC-14 HCC827 NCI-H441 NCI-H1648 ABC-1 RERF-LC-MS

Pathology SQ AC AC AC AC AC AC AC AC AC
PHA665752 0.03 3.5 3.7 3.9 4.6 9.4 17.7 20.5 33.8 100
IC50 (mmol/L)

Crizotinib <0.01 24 4.1 3.8 26.7 19.9 12.1 19.6 20 27.9
IC50 (mmol/L)

MET amplification þ � � � � � þ þ � �
KRAS mutation � þ þ � � � þ � � �
EGFR mutation � � � þ � þ � � � �
Abbreviations: AC, adenocarcinoma; SQ, squamous cell carcinoma.
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could be predicted as a target of miR-125. Furthermore, ABCB1
could be predicted as a target of miR-374a by Target Scan andwas
previously reported as a target of miR-138 (27). We confirmed
downregulation of miR-374a, miR-138, and miR-125 in EBC-1R
cells by qRT-PCR (Fig. 3A). We next examined whether over-
expression of miR-374a and miR-138 using miRNA mimics
reduced the level of ABCB1. Treatment with miR-138 mimic
downregulated the protein expression of ABCB1, resulting in
increased E-cadherin and reduced vimentin in EBC-1 cells on
Western blot analyses (Fig. 3B andC).However, overexpressionof
miR-374a did not result in these changes (Fig. 3B and C). These
findings suggested that expression of miR-138 consequently
played a key role in the resistance to PHA-665752 by targeting
ABCB1 in NSCLC cells.

Downregulation of ABCB1 reverses resistance to MET
inhibitors

Finally, we evaluated whether ABCB1 inhibition restores the
CSC and EMT abilities, resulting in sensitivity to PHA-665752 in
EBC-1R cells. ABCB1-siRNA could successfully inhibit ABCB1
expression in EBC-1R cells, resulting in induction of E-cadherin
(Fig. 4A). We also found that oncosphere numbers were signif-
icantly decreased after treatment with siABCB1 (Fig. 4B). Next, we
examined the effect of ABCB1 inhibitor elacridar on the CSC-
property and EMT phenomenon in EBC-1R cells. ABCB1 protein

expression was knocked down by elacridar at a concentration of
more than 0.5 mmol/L (Fig. 4C). Elacridar increased E-cadherin
expression and reduced vimentin expression (Fig. 4C). Onco-
sphere numbers were significantly decreased after elacridar treat-
ment of EBC-1R cells (Fig. 4D).We evaluated the effect of elacridar
combined with PHA-665752 on the p-MET level. The p-MET was
completely inhibited by treatment of elacridar with PHA-665752
(Fig. 4E). Furthermore, we evaluated whether elacridar could
reverse the resistance of EBC-1R cells to PHA-665752. EBC-1 cells
showed noABCB1 expression; therefore, elacridar combinedwith
PHA-665752 did not have an effect on drug-sensitive EBC-1 cells
(Fig. 4F). In contrast, elacridar could suppress the CSC abilities
andEMT, resulting in overcoming the resistance toMET inhibitors
in EBC-1R cells (Fig. 4G). These results suggest that ABCB1
overexpression, which was associated with CSC and EMT, was
mainly involved in the resistance to PHA-665752, and inhibition
of ABCB1 is a novel therapeutic strategy for overcoming the
resistance of NSCLC cells to MET inhibitors.

ABCB1 overexpression was involved in cancer progression in
squamous cell carcinoma patients

We further investigated the relationship between ABCB1 pro-
tein expression and tumor progression of squamous cell carcino-
ma. ABCB1 expression was not found in any of the 7 squamous
cell carcinoma cell lines (Supplementary Fig. S1). We also

EBC-1 A549 LC-2/ad PC-9 PC-14 HCC827 NCI- NCI- ABC-1 RERF-
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Figure 1.
Protein levels ofmolecules in theMETandEGFRsignal pathways in 10NSCLC cell lines andestablishment of PHA-665752–resistant NSCLC cells. A, protein levels of p-
MET, MET, KRAS, p-EGFR, EGFR, p-AKT, and AKT were examined by Western blot analysis. Significantly higher levels of p-MET and MET were found in
EBC-1 cells. B, protein levels of p-MET and MET in EBC-1 cells after treatment with PHA-66575 (0.03 mmol/L) from 24 to 48 hours. The p-MET level significantly
decreased after PHA-665752 treatment in a time-dependent manner. C, PHA-665752–resistant EBC-1 cells (EBC-1R). EBC-1R cells are resistant to PHA-665752 with
an IC50 of 5.0 mmol/L, which represents an approximately160-fold increase compared with the IC50 of the parental EBC-1 cells. Data, mean � SD from three
independent experiments. D, high protein levels of p-MET, MET, KRAS, and p-AKT in EBC-1R cells. E, FGFR2 gene was overexpressed in EBC-1R cells on qRT-PCR.
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evaluated ABCB1 protein expression in 50 squamous cell carci-
noma patients with stage I or III by immunohistochemical anal-
ysis (Supplementary Fig. S4). No specimens were observed to be
positive for ABCB1 in 32 stage I squamous cell carcinoma patients
(Supplementary Table S3). On the other hand, 6 (33%) of 18
squamous cell carcinoma patients with stage III were positive for
ABCB1 (Supplementary Table S3). These results support that
ABCB1 expression was involved in tumor progression andmetas-
tasis as well as drug resistance in squamous cell carcinoma
patients.

Discussion
MET gene activation is involved in resistance to anticancer

agents, including EGFR-TKI, in NSCLC (8). MET amplification
causes resistance to gefitinib by driving ERBB3-dependent acti-
vation of PI3K (8). Therefore, several MET inhibitors have been
administered to EGFR-TKI–na€�ve or resistant NSCLC patients in
clinical trials (13, 28). PFSwas longer in the group treatedwith the
MET inhibitor tivantinib combined with erlotinib than in the
group treated with erlotinib alone in a phase II study (13).
Another phase II trial showed that MET-positive NSCLC patients
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Figure 2.
EBC-1R cells exhibit both CSC-like
properties and EMT features. A,
ABCB1, ABCG2, and CD44 gene
expression levels in EBC-1 and EBC-1R
cells by qRT-PCR. TheABCB1 level was
significantly higher in EBC-1R cells
than in EBC-1 cells. B, EBC-1R cells
acquiredhigh ability to form spheres in
suspension culture in the sphere
formation assay. C, the levels of ABCB1
and mesenchymal marker vimentin
were increased in EBC-1R cells on
Western blot analysis.

Table 2. Differentially expressed genes and genes encoding RTKs between EBC-1 and EBC-1R cells

Gene EBC-1R/EBC-1 Fold change Gene EBC-1R/EBC-1 Fold change

ABCB1 Up 155 PRSS2 Down 0.13
TMEM45A Up 10 CALB2 Down 0.14
AKR1C2 Up 10 FST Down 0.14
HMOX1 Up 9.7 ENPP1 Down 0.17
CCDC80 Up 8.3 ETV1 Down 0.17
ABI3BP Up 7.4 Let-7a2 Down 0.17
CCL2 Up 7.1 PLXNA4 Down 0.18
LCN2 Up 7.0 SLC14A1 Down 0.19
IL6 Up 6.9 BLID Down 0.19
CROT Up 6.4 DUSP6 Down 0.19

RTK EBC-1R/EBC-1 Fold change RTK EBC-1R/EBC-1 Fold change
FGFR2 Up 2.7 ROR2 Down 0.4
FGFR1 Up 1.6 MCSF2 Down 0.3

NOTE: Gene expression profiles were studied by cDNA microarrays. The expression of RTKs was studied by RTK arrays.
Abbreviations: Down, gene downregulated in EBC-1R cell line; up, gene upregulated in EBC-1R cell line.
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by IHC showed significantly longer PFS andOS by treatment with
MET monoclonal antibody onartuzumab (28). Therefore, MET
inhibitors may be attractive for treating NSCLC patients with
overexpressed MET. Understanding the mechanism of resistance
to MET inhibitors may have a clinical benefit for NSCLC patients
receiving MET inhibitors.

In this study, we established a MET inhibitor PHA-665752–
resistant-EBC-1R cell line from the parental EBC-1 cell line. We
found several acquired resistant mechanisms to MET inhibitors
using EBC-1R cells. KRAS, EGFR, and FGFR2 activation were
observed in EBC-1R cells. A previous study already reported that
KRAS gene amplificationwas observed using the same EBC-1 cells
as a mechanism of resistance to PHA-665752 (15). KRAS ampli-
fication may be involved in the acquired resistance to PHA-
665752 as KRAS is a downstream molecule of MET. Activation
of p-EGFR bypassing the need for MET signaling was observed in
PHA-665752–resistant cells (14, 15). FGFR signaling alteration
has been reported in several human cancers (29). EGFR and
FGFR2 activation may have contributed to the resistance to
PHA-665752 by a MET-independent bypass pathway in this
study.

We ultimately identified that ABCB1 overexpression in EBC-
1R cells was mainly involved in the acquired resistance to MET
inhibitors. ABCB1 belongs to the ATP-binding cassette trans-
porters that use the energy of ATP hydrolysis to transport
substrates across cell membranes, and ABCB1 overexpression
results in diminished efficacy of anticancer drugs (30). Previ-
ous studies reported that increased ABCB1 conferred resistance
to chemotherapeutic agents in several cancers (31–33). ABCB1
is also closely correlated with CSC-like properties and is one of
the CSC markers (23). Cells with CSC-like properties, which
are characterized by the capacity for pluripotency and self-
renewal, have been attracting interest as a source of cancer cells
(34). The significance of CSC-like properties has been reported

in NSCLC (35, 36). EGFR-mutant NSCLC cells exhibited CSC-
like properties with EMT after the failure of gefitinib treatments
(23). We found that EBC-1R cells showed high levels of sphere
formation and EMT phenotype. The appearance of CSC-like
properties, which is associated with ABCB1 activation, may
be an important mechanism of acquired resistance to MET
inhibitors.

The ABCB1 inhibitor elacridar was initially developed as a
multidrug reversal agent to restore sensitivity to chemotherapeu-
tic agents in multidrug–resistant tumor cells (37). Elacridar
inhibited ABCG2 as well as ABCB1 and has been used in preclin-
ical and clinical settings (38, 39). Elacridar can also significantly
increase plasma pharmacokinetics and brain distribution of sev-
eral drugs, including dasatinib (40), gefitinib (41), and sunitinib
(42). In this study, ABCB1 knockdown reduced the numbers of
oncospheres and suppressed EMT features in EBC-1R cells. Ela-
cridar also reversed the acquired resistance to PHA-665752 in
EBC-1R cells. These findings suggest that ABCB1 overexpression,
which is associated with CSC-like property and EMT features, is a
critical mechanism of acquired resistance to MET inhibitors.
Therefore, ABCB1 inhibition targeting the subpopulation with
CSC-like property may be an attractive approach to resensitize
MET inhibitor–resistant NSCLC cells to MET inhibitors. In addi-
tion, ABCB1 inhibitors may increase the concentration of MET
inhibitors in EBC-1R cells, resulting in the possibility of reduced
cell viability. Some portion of NSCLC cells with acquired resis-
tance to EGFR-TKI exhibited CSC-like properties with EMT. The
combination of driver gene mutation inhibitor and ABCB1 inhi-
bition targeting CSC-like property may be an attractive strategy to
NSCLC with driver gene mutation.

We found that ABCB1 expression was regulated by miR-138.
miR-138 was reported to act as a tumor suppresser and serve as
a therapeutic target in head and neck squamous cell carcinoma
patients (43) and be involved in regulation of ABCB1
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Figure 3.
miR-138was involved in the resistance of EBC-1 cells to PHA-665752. A, expressionofmiR-374a,miR-138, andmiR-125bwas decreased in EBC-1R cells on qRT-PCR. B,
miR-374a or miR-138 was overexpressed after treatment with miR-374a mimic or miR-138 mimic, respectively, in EBC-1R cells from 24 to 72 hours on
qRT-PCR. C, treatment of EBC-1R cells with miR-138 mimic reduced ABCB1 expression, resulting in increased E-cadherin and decreased vimentin
expression on Western blotting.

Sugano et al.

Mol Cancer Ther; 14(11) November 2015 Molecular Cancer Therapeutics2438

on June 17, 2021. © 2015 American Association for Cancer Research. mct.aacrjournals.org Downloaded from 

Published OnlineFirst September 8, 2015; DOI: 10.1158/1535-7163.MCT-15-0050 

http://mct.aacrjournals.org/


transcription (27). Therapy targeting miR-138 may be a ther-
apeutic approach to inhibit ABCB1 in NSCLC cells.

In conclusion, ABCB1 overexpression, which was associated
withCSC-like properties and EMT,may be a criticalmechanismof
the acquired resistance of NSCLC cells to MET inhibitors. Our
study demonstrated that ABCB1 inhibition might be a novel
therapeutic strategy to overcome the resistance of NSCLC cells
to MET inhibitors.
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