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Abstract
Aurora A kinase orchestrates multiple key activities, allowing cells to transit successfully into and through

mitosis. MLN8237 (alisertib) is a selective Aurora A inhibitor that is being evaluated as an anticancer agent in

multiple solid tumors and heme-lymphaticmalignancies. The antitumor activity ofMLN8237when combined

with docetaxel or paclitaxel was evaluated in in vivo models of triple-negative breast cancer grown in

immunocompromised mice. Additive and synergistic antitumor activity occurred at multiple doses of

MLN8237 and taxanes. Moreover, significant tumor growth delay relative to the single agents was achieved

after discontinuing treatment; notably, durable complete responses were observed in some mice. The tumor

growth inhibition data generated with multiple dose levels of MLN8237 and paclitaxel were used to generate

an exposure–efficacymodel. Exposures ofMLN8237 andpaclitaxel achieved in patientsweremapped onto the

model after correcting for mouse-to-human variation in plasma protein binding and maximum tolerated

exposures. This allowed rank ordering of various combination doses of MLN8237 and paclitaxel to predict

which pair would lead to the greatest antitumor activity in clinical studies. The model predicted that 60 and

80 mg/m2 of paclitaxel (every week) in patients lead to similar levels of efficacy, consistent with clinical

observations in some cancer indications. Themodel also supportedusing the highest dose ofMLN8237 that can

be achieved, regardless of whether it is combinedwith 60 or 80mg/m2 of paciltaxel. Themodeling approaches

applied in these studies can beused to guidedose-schedule optimization for combination therapies using other

therapeutic agents. Mol Cancer Ther; 13(9); 2170–83. �2014 AACR.

Introduction
Antimitotics are among the most successful classes of

chemotherapy used in cancer care. This class of agents,
including the taxanes, vinca alkaloids, and epothilones, is
used to treat diverse solid and hematologic malignancies
as single agents or as part of combination regimens.
Paclitaxel (brand name Taxol), a taxane, identified in the

1960s and was first approved for use in patients with
metastatic ovarian cancer in 1992 and in 1994 in patients
withmetastatic breast cancer. Paclitaxel binds tob-tubulin
and prevents the disintegration of spindle microtubules
during mitosis (1), thereby preventing the normal
assembly/disassembly dynamics necessary for spindle
microtubules to appropriately attach chromosomal kine-
tochores and subsequently segregate the sister chroma-
tids to the daughter cells. As a result, cells treated with
paclitaxel arrest in mitosis via the activation of the spin-
dle-assembly checkpoint and either undergo apoptosis
directly out of mitosis or exit mitosis without completion
of cytokinesis, a process known as mitotic slippage (2, 3).
In the latter case, these cells can die by apoptosis, arrest by
senescence or reenter the cell cycle by endoreduplication.
Docetaxel (brand name Taxotere) is a more soluble and
potent synthetic derivative of paclitaxel and was
approved for use in breast cancer in 1998. At the cellular
level, docetaxel and paclitaxel share a similar mechanism
of action.

In addition to agents that directly perturb microtubule
dynamics, anticancer therapies are being developed to
directly inhibit enzymes that drive normal mitotic pro-
gression (4).Among these targets are theAurorakinases, a
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family of serine/threonine kinases that comprises 3 iso-
forms, Aurora A, Aurora B, and Aurora C. As Aurora C
expression is predominantly limited to germ cells, most
attempts at targeting the Aurora kinases have focused on
developing selective inhibitors of Aurora A, Aurora B, or
both (5, 6).
Aurora A mediates multiple steps throughout mitosis,

including centrosome maturation and separation, mitotic
entry, formation of mitotic spindle poles and spindles,
alignment of chromosomes during metaphase, and their
subsequent separation during anaphase (7–11). The out-
comes associated with targeted inhibition of Aurora A
kinase have been studied using multiple experimental
modalities, including RNA interference, antibody micro-
injection, targeted knockout in mice, and with use of
small-molecule inhibitors (12–17). In mitosis, Aurora A
inhibition causes abnormal formation of the mitotic spin-
dles, resulting in mitotic arrest that is mediated by acti-
vation of the spindle-assembly checkpoint. The fate of
these arrested cells can vary, and includes apoptosis
directly out of mitosis, exit from mitosis without under-
going cytokinesis resulting in G1 tetraploidy, or complet-
ed cytokinesis albeitwith severe chromosome segregation
defects. In the latter 2 outcomes, the abnormal mitotic
divisions can lead to deleterious aneuploidy resulting in
cell death or senescence (13, 18).
MLN8237 (alisertib) is a selective ATP competitive

inhibitor of Aurora A kinase (19) studied in a number of
phase I and II clinical trials as a single agent and in
combination with other therapeutics, including paclitaxel
in recurrent ovarian cancer (NCT01091428) and with
docetaxel in prostate and other advanced solid cancers
(NCT01094288). Multiple preclinical studies demonstrat-
ed beneficial antitumor activity in cultured tumor cells
and in efficacy studies in vivo when combining Aurora
kinase inhibitors or Aurora kinase–targeted RNA inter-
ference in a variety of solid and heme-lymphatic cancer
models with paclitaxel and docetaxel (20–30). Aurora A
inhibition using the selective Aurora A kinase inhibitor
MLN8054 or RNA interferencewas shown to abrogate the
spindle-assembly checkpoint mediated mitotic delay
induced by paclitaxel (31). These cells rapidly exited
mitosis without completing cytokinesis via mitotic slip-
page and enter the G1 portion of the cell cycle with a
tetraploid DNA content. Interestingly, Aurora A over-
expression also abrogated the spindle-assembly check-
point in the presence of microtubule-perturbing agents
(32, 33).
Here, we demonstrate in preclinical models that the

Aurora A kinase inhibitor MLN8237 significantly
enhances the preclinical antitumor activity of docetaxel
and paclitaxel in triple-negative breast cancer models.
Triple-negative breast cancers are characterized as not
expressing estrogen receptor, progesterone receptor, or
HER-2; therefore, these tumors are not susceptible to
hormone- or HER-2–targeted therapies. Treatment strat-
egies for triple-negative breast cancer include multiple
chemotherapeutic agents, including taxanes (34).

Although these agents do provide some benefit to
patients, there remains a significant unmet need in this
population; therefore, alternative options need to be test-
ed, including combination therapy. Here, we build a
quantitative translational exposure–efficacy model using
both preclinical and clinical data for MLN8237 and pac-
litaxel to guide combination dose and schedule strategies
for these agents in patients in order to optimize the
potential antitumor activity.

Materials and Methods
Tumor cell culture and primary human tumors

MDA-MB-231 cells were obtained from the ATCC
and cultured in DMEM supplemented with heat inacti-
vated 10% FBS and 1% L-glutamine (Life Technologies).
MDA-MB-231 cells were purchased in 2002 and in-
house testing showed them to be free of mycoplasma
and murine pathogens. All experiments were con-
ducted with low-passage cells from recently resuscitat-
ed frozen stocks. MDA-MB-231 cells (2 � 106) were
injected orthotopically into the mammary fat pad of
NCr nude mice. The primary human tumor xenografts
PHTX-02B and PHTX-14B were developed at Takeda
Pharmaceuticals International Co. from tumors that
were originally obtained from patients with breast can-
cer through the Cooperative Human Tissue Network
and were passed by trocar subcutaneously into the flank
of NOD SCID mice.

In vivo efficacy studies
MDA-MB-231, PHTX-02B, or PHTX-14B tumor-bearing

mice (n ¼ 10 animals per group) were dosed orally (p.o.)
with vehicle (10%HPbCDþ 3.5% NaHCO3) or MLN8237
(3, 10, or 20mg/kg) for 21daysusing aoncedaily schedule
(every day) or for 3 days on/4 days off over 3 consecutive
weeks. Docetaxel (5 and 10 mg/kg) and paclitaxel (5,
10, 15, 20, and 30mg/kg)were administered intravenous-
ly (i.v.) on a once weekly schedule (every week) for a total
of 3 doses. Tumor growth was measured using vernier
calipers. Tumor growth inhibition (TGI) was determined
as the average change in vehicle treated tumors (DVehicle)
minus the average change in test agents treated tumors
(DTreated) divided by DVehicle and expressed as a per-
centage. Tumor growth delay (TGD)was the difference in
the number of days required for each test agent treatment
group to reach an average tumor volume of 1,000 mm3

relative to the vehicle-treated group. Drug combinations
were assessed for synergy using observed area under the
curve (AUC) values from the efficacy studies over the 21
days of dosing. The change in AUC relative to the control
was calculated for both single-agent treatment groups as
well as the combination group. The interaction between
the 2 compounds was then assessed by comparing the
change in AUC observed in the combination group to
the sumof the changes observed in both single agents. The
synergy score for the combination of MLN8237 (M) and
either taxane (T) was defined as 100 � [mean(AUCMT) �
mean(AUCM) � mean(AUCT) þ mean(AUCvehicle)]/
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mean(AUCvehicle). A 2-sided t test was used to determine
if the synergy score was significantly different from zero.
If the synergy scorewas less thanzero and theP-valuewas
below 0.05, then the combination was considered to be
synergistic. If the synergy scorewas above zero and the P-
value was below 0.05, then the combination was consid-
ered to be subadditive or antagonistic. Otherwise the
combination was considered to be additive.

Immunohistochemistry
MDA-MB-231 or PHTX-14B tumor-bearingNCr female

nude or NOD SCID mice were dosed with MLN8237 at
10 mg/kg or docetaxel at 5 mg/kg or the 2 agents com-
bined. Tumor tissue was harvested after multiple days of
treatment and fixed in 10% neutral buffered formalin.
Tumor sections were stained for phosphorylation of His-
tone H3 on serine 10 (pHisH3; Millipore) and MPM2
(Millipore) as described previously (35). The number of
cells positive for pHistH3were counted and averaged in 5
fields of view and DAPI nuclear staining was used to
estimate the total number of cells in the fields. Apoptotic
cells in tumor xenograft sections were evaluated by
immunohistostaining using cleaved caspase-3 (Asp 175)
antibody (Cell Signaling) and were quantified using
Aperio Image analysis software (Leica Microsystems Vis-
ta). For histopathologic evaluation, 5-mm sections of for-
malin fixed, paraffin-embedded tumor samples were
stained with hematoxylin and eosin (H&E) using a Leica
Autostainer XL (Leica Biosystems). Regions of interest
were manually drawn on H&E images using Aperio
software to exclude areas of artifacts. Definiens Tissue
Studio software (Definiens) was then used to identify
tumor versus nontumor regions.

Pharmacokinetics
Female Balb/c nude mice bearing the MDA-MB-231

tumor (approximately 500 mm3) received a single dose of
vehicle (10% HPbCD) p.o., MLN8237 p.o., docetaxel, or
paclitaxel i.v., or a combination of MLN8237 p.o. with
docetaxel or paclitaxel i.v. Whole blood and tumor sam-
pleswere collected at specified timepoints. Blood samples
were collected into tubes containing EDTA and placed on
ice then centrifuged for 5 minutes at 10,000 rpm. Plasma
was removed into fresh tubes and stored at �80�C.
Tumors were dissected from the mice, weighed, and
immediately frozen on dry ice. Homogenates were pre-
pared in diH2O from frozen tumors using a FastPrep24
tissue homogenizer. Plasma and tumor homogenates
were thawed at room temperature and the concentration
of MLN8237 and paclitaxel or docetaxel in mouse plasma
and tumor samples was determined by HPLC with MS-
MS detection.

Pharmacokinetic (PK) analysiswas performed inNON-
MEM (Icon plc). Plasma concentrations after a single dose
of MLN8237 were fitted to a 2-compartment model with
absorption, and plasma concentrations after a single dose
of paclitaxel were fitted using a 2-compartment model
with saturable clearance.

Exposure-efficacy modeling
Total MLN8237 exposures (AUC0-21d) on each dosing

regimen (every day and 3 days on/4 days off), and total
paclitaxel exposures (AUC0-21d) from every week dosing,
were calculated from simulations of plasma concentration
based on the fitted PK models. The simulated plasma
concentration time courses for paclitaxel after i.v. dosing
and for MLN8237 after p.o. dosing are shown in Supple-
mentary Fig. S1A and S1B respectively, and the PK para-
meters used are shown in Supplementary Fig. S1C. Free
fractions in female Balb/cNudemice of 3.4% and 4.2% for
paclitaxel and MLN8237, respectively, were determined
using rapid equilibrium dialysis. Kinetic tumor xenograft
volume data were converted to TGI using Eq. (1). The TGI
valueswerefitusingPharsightPhoenix (Certara) software
with a combination Emax model defined by Eq. (2), where
AUCMLN and AUCTax represent the total cycle-free expo-
sures of MLN8237 and paclitaxel, respectively. Supple-
mentary Table S1 contains a list of the best-fit parameters.
The resulting best fits are shown in Supplementary Fig. S2.

%TGI ¼ Vtreated;21d � Vtreated;0d

Vcontrol;21d � Vcontrol;0d
� 100%: ð1Þ

%TGIðAUCMLN;AUCTaxÞ

¼ EmaxMLNAUCMLN

AUCMLN þ EC50MLN
þ EmaxTaxAUCTax

g

AUCTax
g þ EC50Tax

g

Clinical exposures were estimated for MLN8237 and
paclitaxel as follows. The total cycle AUC ofMLN8237 for
doses of 10 to 50mg twice a day administered on days 1 to
3, 8 to 10, 15 to 17 of 28-day cycles was calculated based on
a previously reported geometric mean apparent oral
clearance of 4.45 L/h in patients with advanced nonhe-
matologicmalignancies (36). The correspondingunbound
plasma exposureswere calculated based on a free fraction
of 2.5% in human plasma using rapid equilibrium dialy-
sis. The total cycle AUC of paclitaxel for doses of 60 to
90 mg/m2 administered on days 1, 8, and 15 of 28-day
cycles was calculated based on a previously reported
clearance of 5.5 mL/min/kg (�223 mL/min/m2; ref. 37).
The corresponding unbound plasma exposures were cal-
culated based on a free fraction of 4.4% in human plasma
using rapid equilibrium dialysis. For comparison with
unbound preclinical exposures, a scaling was applied to
the unbound clinical exposures factor based on the
unbound exposure ratio between mouse and human as
well as on the maximum tolerated dose between mouse
and humans for MLN8237 (20 mg/kg twice a day every
day for 21 days and 50 mg twice a day for 7 days on a 21-
day schedule, respectively) and paclitaxel (30 mg/kg
every week for 3 weeks and 80 mg/m2 every week for
3 weeks on a 28-day schedule, respectively).

Results
The antitumor activity of MLN8237 combined with

docetaxel was tested in xenograft and primary human
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Figure 1. MLN8237 combined with docetaxel results in antitumor activity in three models of triple-negative breast cancer, including the cell line xenograft
MDA-MB-231 (A), the primary human breast tumor xenograft PHTX-02B (B), and the primary human breast tumor xenograft PHTX-14B (C). Mice were treated
for 21 days with MLN8237 (p.o., every day), docetaxel (i.v., every week� 3), or the combination of both at the indicated doses. Tumors were measured twice
weekly with vernier calipers; error bars, SEM. The dotted line box indicates the 21-day treatment period.
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tumor–derived triple-negative breast tumor models in
immunocompromised mice. In most mouse strains, the
maximum tolerated dose forMLN8237 is 30mg/kgdosed
every day or 20 mg/kg dosed twice a day with an 8-hour
break between doses. The maximum tolerated dose for
docetaxel was determined to be 15 mg/kg dosed once
weekly (every week) as doses above this led to body
weight loss exceeding 10%. In the MDA-MB-231 xeno-
graft, 3 and 10 mg/kg MLN8237 (every day � 21 days)
combined with 5 and 10 mg/kg docetaxel (every week,
days 1, 8, and 15) led to synergistic antitumor activity
(Fig. 1A and Table 1). Importantly, MLN8237 at 3 and
10 mg/kg combined with 10 mg/kg docetaxel led to
regressions and prolonged TGD (difference in days
between the control and treated groups to reach 1,000
mm3), and in somemice tumors never reformed even after
discontinuing treatment. In comparison, MLN8237 dosed
at themaximum tolerated dose inmice bearing theMDA-
MB-231 xenograft did not lead to regressions (19). In the
primary human tumor xenograft PHTX-02B, 10 and 20
mg/kgMLN8237 (every day� 21 days) combined with 5
mg/kg docetaxel (every week days 1, 8, and 15) led to
additive or synergistic antitumor activity (Fig. 1B

and Table 1). Additive or synergistic antitumor activity
also occurred in the PHTX-14B xenograft with 10 and
20 mg/kg (every day � 21 days) MLN8237 and 5 and
10 mg/kg (every week days 1, 8, and 15) docetaxel, with
sustained tumor regressions occurring only in the com-
bination regimens (Fig. 1C and Table 1). The doses for all
treatment regimens tested were well tolerated as total
body weight loss in the mice never exceeded 10%.

To ensure that the beneficial antitumor activity
observed with the MLN8237 and docetaxel combination
was not because of an increase in the exposure of one drug
in the presence of the other, the PK profile of both drugs
was tested in mice bearing the MDA-MB-231 xenograft
after a single dose of 10 mg/kg MLN8237, 5 mg/kg
docetaxel, or the combination of both (Fig. 2A). In plasma
and tumor tissue, the exposures of both MLN8237 and
docetaxel were similar whether dosed alone or in combi-
nation with the other agent.

MLN8237 and docetaxel lead to a transient accumula-
tion of cells inmitosis. Therefore, the effect of a single dose
of MLN8237 and docetaxel alone or combined on the
tumor mitotic index was evaluated in mice bearing the
MDA-MB-231 xenograft. Tumor mitotic index was

Table 1. Antitumor activity summary of MLN8237 combined with docetaxel

Model

MLN8237 dose
(every day or
3 on/4 off)

Docetaxel
dose (every
7 days � 3) TGIc (%)

TGD
(days)d

Outcome
(AUC)e

MDA-MB-231a 3 mg/kg 5 mg/kg 54.2 7 Synergistic
10 mg/kg 5 mg/kg 91.8 >48 Synergistic
10 mg/kg 5 mg/kg 67.3 11 Synergistic
3 mg/kg 10 mg/kg 112.7 46 Synergistic

10 mg/kg 10 mg/kg 117.9 >106 Synergistic
10 mg/kg 10 mg/kg 106.1 >41 Synergistic

PHTX-02Bb 10 mg/kg 5 mg/kg 95.2 35 Synergistic
20 mg/kg 5 mg/kg 101.7 51 Synergistic
20 mg/kg 5 mg/kg 99.3 49 Additive
20 mg/kg 3 on/4 off 5 mg/kg 103.9 >51 Synergistic

PHTX-14Bb 10 mg/kg 5 mg/kg 123.4 >45 Synergistic
20 mg/kg 5 mg/kg 125.4 >45 Synergistic
10 mg/kg 10 mg/kg 128 >45 Synergistic
20 mg/kg 10 mg/kg 134 >45 Synergistic
3 mg/kg 3 on/4 off 5 mg/kg 85.6 38 Additive
20 mg/kg 3 on/4 off 5 mg/kg 123 >60 Synergistic
3 mg/kg 3 on/4 off 10 mg/kg 121.5 >60 Additive
20 mg/kg 3 on/4 off 10 mg/kg 140.1 >76 Synergistic

aOrthotopicMDA-MB-231 xenograftsweregrown in the fat padof nudemice and treatedwithMLN8237administeredorally for 21days
with docetaxel dosed i.v. once per week.
bPrimary breast cancer models were grown subcutaneously in SCID (PHTX-14B) or NOD (PHTX-02B) mice and treated withMLN8237
administered orally for 21 days with docetaxel dosed i.v. once per week.
cTGI ¼ (D treated/D control) � 100/D control, was calculated on the last day of treatment.
dTGD, the difference in days between the control and the treated groups to reach 1,000 mm3. > denotes that the treatment group was
terminated before reaching 1,000 mm3.
eSynergy analysis based on the AUC values days 0 to 20.
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evaluated using 2 independent markers for mitotic cells,
pHistH3, and a mitotic-specific antigen MPM2. In all
cases, the mitotic index increased within 2 hours after
dosing; however, there were no notable differences in the
mitotic index in the combination relative to the single
agents (Fig. 2B).
As nomarked change in themitotic indexwas observed

with combined MLN8237 and docetaxel relative to the
single agents in MDA-MB-231 model, the effect of the
MLN8237 and docetaxel combination on tumor morphol-
ogy was evaluated after treating PHTX-14B and MDA-
MB-231 tumor-bearing mice with 10 mg/kg MLN8237
(every day � 10 days), 5 mg/kg docetaxel (every week
days 1 and 8), or the combination of MLN8237 and
docetaxel (Fig. 3). In the PHTX-14B tumors, the combina-

tion of MLN8237 and docetaxel led to marked changes in
tumor morphology, with increased mitotic and multi-
nucleated cells and significant fibrosis (Fig. 3A). In
regions of the tumors where viable cells remained, there
was a significant increase in nontumor tissue that com-
prised necrotic and fibrotic regions along with stromal
infiltrate (Fig. 3B). Only a modest increase in apoptotic
cells as determined by cleaved caspase-3 staining was
observed with single-agent docetaxel and the combina-
tion (Supplementary Fig. S3), potentially because of the
transient nature of this marker during the apoptotic
cascade. The morphologic effects of the combination
were less evident in the MDA-MB-231 model, however
mitotic and multinucleated cells were observed (Fig. 3C
and D).
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MLN8237 (10 mg/kg), docetaxel (5 mg/kg), or the combination of both, was administered to mice bearing MDA-MB-231 xenografts. Blood and tumor
samples were taken at multiple times out to 24 hours. A, MLN8237 and docetaxel concentrations are shown in both the plasma and the MDA-MB-231
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One of the primary dose limiting toxicities of MLN8237
in patients with cancer is myelosuppression (38, 39).
Therefore, there is risk for overlapping toxicity when
combiningMLN8237 with docetaxel or paclitaxel as mye-
losuppression is a common dose-limiting toxicity for
taxanes as well. One path toward reducing the risk of
overlapping toxicity is to decrease the dosing frequency
for MLN8237. Therefore, the antitumor activity of
MLN8237 dosed intermittently (3 days on/4 days off)
with docetaxel once every week for 3 consecutive weeks
was evaluated. In the PHTX-02B model, 20 mg/kg
MLN8237 dosed 3 days on/4 days off with 5 mg/kg
docetaxel (every week days 1, 8, and 21) resulted in
significant TGI and TGD relative to the single agents
(Fig. 4A and Table 1). MLN8237 dosed 3 days on/4 days
off with docetaxel dosed weekly resulted in synergistic
antitumor activity in the PHTX-14Bmodel as well (Fig. 4B
and Table 1). In fact, the extent of antitumor activity (TGI
and TGD) achieved with the combination in both models
with the 3 days on/4 days off schedule equaled that
observed when MLN8237 was dosed consecutively for

21 days at an identical total daily dose. These data support
dosing MLN8237 on an intermittent schedule as a poten-
tial means to minimize overlapping dose-limiting toxici-
ties whilemaintaining antitumor activity when combined
with weekly taxanes.

The in vivo antitumor activity of MLN8237 was also
tested in combinationwith paclitaxel in theMDA-MB-231
and PHTX-14B xenografts (Fig. 5 and Table 2). The max-
imum tolerated dose for paclitaxel was determined to be
30 mg/kg dosed once every week as doses above this led
to body weight loss exceeding 10%. In the MDA-MB-231
xenograft, 3, 10, and 20 mg/kgMLN8237 (every day� 21
days) combined with 5, 10, 15, 20, or 30 mg/kg paclitaxel
(everyweekdays 1, 8, and15) led to additive or synergistic
antitumor activity (Fig. 5A and Table 2). With 10 and
20 mg/kgMLN8237, paclitaxel at 20 and 30 mg/kg led to
substantial TGD (Table 2). In the primary human tumor
xenograft PHTX-14B, 20 mg/kg MLN8237 (every day)
combined with 10 and 20 mg/kg paclitaxel (every week)
led to synergistic antitumor activity (Fig. 5B and Table 2)
with TGD extending beyond the observation period. The
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antitumor activity of MLN8237 dosed intermittently (3
days on/4 days off) with paclitaxel once every week for 3
consecutive weeks was also evaluated. In the MDA-MB-
231 model, 20 mg/kg MLN8237 dosed 3 days on/4 days
offwith 20mg/kgpaclitaxel (everyweekdays 1, 8, and21)
resulted in additive TGI relative to the single agents
(Supplementary Fig. S4). Total body weight loss in mice
for all MLN8237 and paclitaxel treatment regimens never
exceeded 10%. In addition, no PK drug–drug interaction
betweenMLN8237 andpaclitaxelwas observed inmice as
the PK profiles for each agent in plasma and MDA-MD-
231 tumor tissue were similar whether dosed alone or
in combination with the other agent (Supplementary
Fig. S5).
The durable antitumor activity of MLN8237 combined

with both docetaxel and paclitaxel in preclinical tumor
models presented provided part of the rationale for eval-
uating the safety and antitumor activity of MLN8237
combined with paclitaxel in patients with recurrent ovar-
ian cancer (NCT01091428). In this clinical study,
MLN8237 was dosed twice a day 3 days on/4 days off

concomitantly with paclitaxel dosed weekly (every week
� 3) at 60 or 80mg/m2 on a 28-day schedule (40). To guide
dose-schedule selection for combinedMLN8237 and pac-
litaxel inpatientswith cancer, an exposure–efficacymodel
based on nonclinical and clinical data were developed to
predict which MLN8237/paclitaxel combinations results
in the greatest antitumor efficacy. An exposure–efficacy
surface plot (Fig. 6A) and isobologram (Fig. 6B) relating
MLN8237 and paclitaxel exposures to TGI was generated
from in vivo efficacy studies in tumor-bearing mice (Table
2). The free-fraction corrected clinical exposures of
MLN8237 dosed twice a day based on previously pub-
lished PK data (36, 39) and the clinical exposures of
paclitaxel at 60 or 80 mg/m2 doses of paclitaxel deter-
mined from its human plasma clearance (37, 41) were
mapped onto the isobologram by correcting for mice–
human variation in plasma protein binding and maxi-
mum tolerated exposures for both agents. A combination
Emax exposure–efficacymodel provided a reasonable fit to
the data, as is shown in the diagnostic plots (Supplemen-
tary Fig. S2).
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This translational approach demonstrated allowed
placing the clinically achieved exposures of the combina-
tion in the context of the preclinically observed antitumor
efficacy. Placed in this context, themodel predicted that 80
and 60 mg/m2 of paclitaxel lead to similar levels of
efficacy (Fig. 6B and C), consistent with clinical observa-
tions in some cancer indications (42, 43). In contrast,
placing the MLN8237 exposures in the context of the
preclinical antitumor efficacy suggests that increasing the
dose of MLN8237 from 10 to 50 mg twice a day would
result in increasing antitumor activity (Fig. 6B andC). This
approach allows for rank ordering various combination
doses and schedules ofMLN8237 andpaclitaxel to predict
which pair leads to the greatest antitumor activity. For
example, overlapping toxicities could prevent escalation
of MLN8237 to a biologically active exposure range when
combined with 80 mg/m2 paclitaxel. If reducing the dose
of paclitaxel to 60 mg/m2 can mitigate overlapping toxi-
cities allowing for higher MLN8237 doses, the transla-
tional approach demonstrated here suggests that this
would also result in increased antitumor activity relative
to 80 mg/m2 single-agent paclitaxel.

Discussion
Antimitotic therapies are a mainstay for cancer care, as

they are used broadly in both solid and heme-lymphatic
cancers. Traditionally, these therapies have comprised
agents that directly target microtubules, and include the
taxanes, vinca alkaloids, and epothilones. Recently,
encouraging activity has been observed with microtu-
bule-perturbing agents such as the microtubule destabi-

lizer mono-methyl aurastatin E conjugated to antibodies,
including brentuximab vedotin and trastuzumab-DM1
for treating CD30þ lymphomas and Her2þ breast cancer
respectively (44, 45). Despite the success of antimitotic
therapies across many indications, strategies to improve
response rates and extend responses in patients are need-
ed. Here, we demonstrated improved antitumor activity
and extended duration of response in multiple triple-
negative breast cancer models by combining 2 classes of
antimitotic agents, taxanes, and the Aurora A kinase
inhibitor MLN8237.

Mice bearing 3 xenograft models of triple-negative
breast cancer, including 2 primary models, were treated
with various doses ofMLN8237 combinedwith docetaxel
or paclitaxel. In each tumormodel, the combination led to
greater TGI relative to the single agents, additive or
synergistic antitumor activity while dosing, and pro-
longed TGD after discontinuing treatment. Notably, in
several cases, the combination of MLN8237 and either
taxane led to tumor regressions and in some mice the
tumors never reformed after discontinuing treatment;
outcomes that did not occur with the single agents when
dosed at the individual maximum tolerated dose.

In MDA-MB-231 tumor xenografts treated with com-
bined MLN8237 and docetaxel, there was no notable
difference in the mitotic index, necrotic and fibrotic con-
tent, or stromal infiltrate compared with tumors treated
with the single agents after 10 days of dosing. It is possible
that the timing of this analysis in this tumormodelwas not
optimal to capture the events underlying the antitumor
activity observed after 21 days of dosing. However, the
impact of this combination on tumor morphology was
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more evident in the PHTX-14B tumor xenograft as a
histopathologic assessment revealed distinct tissue mor-
phology changes in combination treated tumors relative
to the single-agent treated tumors, including increased
nontumor tissue (necrotic cells, fibrosis, stromal infiltrate)
and multinucleated tumor cells. The multinucleated phe-
notype is consistent with previous observations in cul-
tured tumor cells, demonstrating that concurrent Aurora
A kinase inhibition using the selective small-molecule
inhibitor MLN8054 or siRNA with microtubule-perturb-
ing agents, including taxanes, caused cells to exit mitosis
via mitotic slippage (31). Cells that exit mitosis by mitotic
slippage enter the G1 stage of the cell cycle with a tetra-
ploid DNA content often accompanied bymultiple nuclei
because of hyper-karyokinesis that can occur when the
nuclear membrane reforms (2, 4). Depending on several
underlying genetic factors, these cells can reenter the cell
cycle and undergo another round of DNA replication
through a process known as endoreduplication where
they subsequently are characterized as polyploid (>4N).
Therefore, the multinucleated phenotype observed in the
tumor tissue with combined MLN8237 and docetaxel
suggests that the mechanism elucidated in cell culture
withAuroraA inhibition combinedwith taxanes occurs in
in vivo tumor models as well.

MLN8237 has been evaluated in multiple PI and PII
clinical studies (36, 39, 46, 47). In the first-in-human P1
study, a partial response was achieved in one patient
with platinum and radiation refractory ovarian cancer
that lasted for greater than 1 year (38). Single-agent
MLN8237 was subsequently investigated in a phase II
study in patients with platinum-resistant or platinum-
refractory ovarian, primary peritoneal, and fallopian
tube cancers (48). In this study, objective responses
occurred in 10% of patients (n ¼ 3 of 31) as determined
by Response Evaluation Criteria in Solid Tumors
(RECIST) and/or reduction in plasma CA-125, warrant-
ing further MLN8237 studies in this indication in com-
bination with other therapeutics, including with
taxanes.

MLN8237 was tested in combination with weekly
paclitaxel in patients with recurrent ovarian cancer
(NCT01091428; ref. 40). Given that myelosuppression
is a common adverse event for both MLN8237 and
paclitaxel, weekly paclitaxel (every week � 3 28-day
cycle) was selected for this study as it is known to have a
decreased incidence of myelosuppression relative to
paclitaxel dosed once every 3 weeks (49, 50). For
MLN8237, an intermittent schedule of 3 days on (twice
a day)/4 days off was selected for combining with

Table 2. Antitumor activity summary of MLN8237 combined with paclitaxel

Model
MLN8237
dose (every day)

Paclitaxel dose
(every 7 days � 3) TGIc (%)

TGD
(days)d

Outcome
(AUC)e

MDA-MB-231a 20 mg/kg 30 mg/kg 101.4 35 Synergistic
20 mg/kg 20 mg/kg 94.3 26 Synergistic
20 mg/kg 20 mg/kg 96.3 24 Synergistic
20 mg/kg 15 mg/kg 85.7 16 Additive
20 mg/kg 10 mg/kg 45.87 4 Additive
20 mg/kg 5 mg/kg 43.6 4 Additive
10 mg/kg 30 mg/kg 102.4 31 Synergistic
10 mg/kg 20 mg/kg 81.9 13 Additive
10 mg/kg 15 mg/kg 85.6 14 Additive
10 mg/kg 10 mg/kg 42.3 4 Additive
3 mg/kg 20 mg/kg 69.2 10 Additive
3 mg/kg 20 mg/kg 60.5 7 Additive
3 mg/kg 10 mg/kg 21.7 2 Additive
3 mg/kg 5 mg/kg 20.8 2 Additive

PHTX-14Bb 20 mg/kg 20 mg/kg 103 >14 Synergistic
20 mg/kg 10 mg/kg 84 >14 Synergistic
3 mg/kg 20 mg/kg 72 >14 No data

aOrthotopicMDA-MB-231 xenograftsweregrown in the fat padof nudemice and treatedwithMLN8237 administeredorally for 21days
with paclitaxel dosed i.v. once per week.
bPrimary breast cancer models were grown in SCID mice and treated with MLN8237 administered orally for 21 days with paclitaxel
dosed i.v. once per week.
cTGI ¼ (D treated/D control) � 100/D control, was calculated on the last day of the treatment.
dTGD, the difference in days between the control and the treated groups to reach 1,000 mm3. > denotes that the treatment group was
terminated before reaching 1,000 mm3.
eSynergy analysis based on the AUC values days 0 to 20.
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weekly paclitaxel, rather than using the single-agent
MLN8237 recommended schedule of days 1 to 7 on a
21-day cycle (38, 39). This intermittent schedule allows
for concurrent administration of MLN8237 with weekly
paclitaxel, which may be necessary for amplifying the
mitotic defects caused by this combination. Importantly,
this intermittent MLN8237 schedule may also further
reduce the risk for overlapping toxicities such as mye-
losuppression. Previous studies modeling hematologic
toxicity by assessing the PK–absolute neutrophil count
(ANC) relationship in rats using methods similar to
those described by Friberg and colleagues (51) pre-
dicted MLN8237 dosed on an intermittent schedule of
3 days on (twice a day)/4 days off concomitantly with
the weekly taxanes will decrease the incidence of
dose limiting neutropenia compared with a 7-day con-
tinuous schedule (52). Moreover, the approximate 23-
hour mean steady-state half life of the drug in patients
allows for near complete MLN8237 clearance during the
4-day break, which should allow for reversion of mye-
losuppressive effects caused by MLN8237 (38). In our
in vivo efficacy experiments we showed that MLN8237
dosed 3 days on/4 days off was synergistic when
combined with weekly docetaxel. Of note, the extent
of the antitumor activity for docetaxel combined with
MLN8237 dosed 3 days on/4 days off was nearly iden-
tical to that of MLN8237 dosed for 21 consecutive
days. Importantly the intermittent dosing schedule
enabled a significant decrease in the total dose of
MLN8237 by 57%. In the MDA-MB-231 model, contin-
uous dosing of MLN8237 led to slightly greater antitu-
mor activity relative to dosing 3 days on/4 days off
when combined with paclitaxel, however, both
MLN8237 schedules led to additive antitumor activity.
We developed an exposure–efficacy model to relate

MLN8237 and paclitaxel exposures to antitumor activ-
ity using TGI from the efficacy studies performed with
the MDA-MB-231 xenograft. This model was transla-
tionally applied in context of clinical exposures of pac-
litaxel and MLN8237 after interspecies corrections for
plasma protein binding and maximum tolerated expo-
sures of the 2 agents. An isobolographic representation
of the response surface was used to rank order pairs of
doses of the 2 agents in the combination setting. This
translational PK-efficacy analysis predicted that the
combination of MLN8237 and paclitaxel at the doses
explored in the clinic will have greater antitumor activ-
ity than the single agent standard dose for paclitaxel (80
mg/m2) and MLN8237 (50 mg twice a day; Fig. 6C). In
addition, the modeling predicted that 80 and 60 mg/m2

paclitaxel lead to similar levels of efficacy alone or in
combination with MLN8237. Several observations have
been reported that paclitaxel as a single agent or in
combination with other therapeutics dosed weekly at 60
mg/m2 provides similar efficacy to paclitaxel at 80 mg/
m2, however 60 mg/m2 is better tolerated (42, 43). The
model also predicted that higher doses of MLN8237
with either dose of paclitaxel will lead to increased

antitumor activity. Therefore, in patients, if higher
doses of MLN8237 can be achieved with 60 mg/m2

rather than 80 mg/m2 of paclitaxel, the model predicts
increased antitumor activity. In addition, an exposure
related pharmacodynamic effect in tumors was demon-
strated during phase 1 testing of MLN8237 (39), sug-
gesting that the doses of MLN8237 between 30 and 50
mg twice a day are likely to result in biologically active
exposures in regard to Aurora A kinase inhibition in
tumors. Therefore, both the exposure–efficacy model
and the phase 1 pharmacodynamic results support
using higher doses of MLN8237 when combined with
paclitaxel.

Viewed from a broader perspective, more generalized
applications of the quantitativemodel-based translational
pharmacology approach applied in this analysis of the
MLN8237–paclitaxel combination are readily apparent.
As dose-escalation studies in patient populations with
advanced cancers can be resource and time-consuming,
and not all dose pairs can be clinically evaluated, it is
envisioned that systematic analysis of the exposure–effi-
cacy surface for antitumor activity in preclinical xenograft
models may represent a key enabler for clinical develop-
ment of oncology drug combinations. These results, when
coupled with clinical PK, pharmacodynamics, and safety
data analyses, offer potential to objectively guide priori-
tization and optimization of dose finding in combination
phase I trials to support qualification of the therapeutic
window for optimal benefit-risk balance in anticancer
drug development.
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