








posttranslational modifications and cofactors (18, 34), as
well as a vast number of other cellular components that
can also affect the drug and the substrate. In addition,
nonspecific drug targets present in the WCE may selec-
tively decrease the potency of compounds with a tenden-
cy to adsorb on different surfaces. This screening strategy
should result in an increased stringency of the assay and
allow the elimination of promiscuous inhibitors. The
increased reactional complexity in the hTDP1WCE assay
still maintained a high specificity for the TDP1 reaction, as
we did not detect any nonspecific nucleolytic degradation
of the DNA substrate even at high concentrations ofWCE
(Fig. 2B).

Because the phosphotyrosine catalytic excision by
TDP1 produces a single product (N14P, see Fig. 2A), we
were also able to perform multiple loadings. With 12-
minute intervals between each loading, up to 600 samples
could be analyzed on a single sequencing gel (see repre-
sentative image in Fig. 2C). WCE screening of the 986

qHTS positive hits led to the confirmation of 10 lead
compounds with IC50 values below 111 mmol/L (Figs.
1C and 2C), indicating that our biochemical assay based
on WCE can serve as a robust and efficient secondary
screen for the large number of positive hits selected from
qHTS assays.

Importance of reaction buffer for TDP1 assays
Our original qHTS assay was run in a buffer required

for an optimal signal by the AlphaScreen technology
and compatibility with robotic liquid handling (see
buffer components in Table 1; ref. 31). On the other
hand, WCE conditions could be adapted to more phys-
iologic and stringent buffer conditions, including the
use of serum albumin, metal chelating agents, and
reducing agents. Table 1 outlines the differences in
TDP1 kinetics between these two buffer conditions (the
qHTS and WCE buffers). Figure 3A and B shows rep-
resentative Lineweaver–Burk double-reciprocal plots

Figure 2. WCE TDP1 assay.
A, schematic representation of
the 14-mer single-stranded
TDP1 substrate bearing a 30-
phosphotyrosine (N14Y, closed
triangles). In the presence of WCE,
endogenous TDP1 excises the
terminal tyrosine to generate a 14-
mer 30-phosphate DNA product
(N14P, open triangles). B,
representative gel showing the
concentration-dependent
appearance of the N14P product in
the presence of hTDP1 WCE. This
reaction is specific of TDP1
because it is absent withWCE from
TDP1 knockout cells (TDP1�/�).
WCE concentrations were from
900 mg/mL in 3-fold decrements.
C, representative gel showing
the concentration-dependent
inhibition of TDP1 by positive hits
(horizontal brackets). Because of
the specificity of the TDP1 reaction
in WCE, 10 consecutive loadings
of 14 compounds tested at 3
concentrations were performed
on the same gel.
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allowing the determination of KM values of 3,936 nmol/L
in the HTS buffer versus 80 nmol/L in the WCE buffer
(Table 1). This approximately 50-fold difference in KM

indicates that TDP1 recognizes its substrate distinctly
more efficiently in theWCE buffer than in the HTS buffer.
On the other hand, the turnover constants did not vary
significantly for the two conditions. TDP1 had a kcat value
of 11 and 7 per second in the HTS and WCE buffers,
respectively (Table 1). The resulting kcat/KM values of
2.8 � 106 in the HTS buffer and 87.5 � 106 L/mol per
second in the WCE buffer suggest that TDP1 performs
approximately 30-foldbetter in theWCEbuffer than in the
HTS buffer (Table 1).
The enhanced catalytic activity of TDP1 in the WCE

buffer probably explains, at least in part, why some
compounds tested in the WCE buffer failed to inhibit
TDP1 below 100 mmol/L drug concentration, as recom-
binant TDP1 gave a similar difference when it was used
under these buffer conditions. This is illustrated inFig. 3C,
which shows that compound NCGC00183964 inhibits
recombinant TDP1 with an IC50 of 3.2 � 0.4 mmol/L in
the HTS buffer, whereas its IC50 was 81 mmol/L in the
WCE buffer, a 25-fold reduction in potency. Together,
these experiments demonstrate the enhanced stringency
of the TDP1 assays in WCE buffer over the HTS buffer.
To compare the WCE and recombinant TDP1 assays,

IC50 values for the 10 compounds presented in Fig. 1
were determined in both assays (Supplementary Table
S1). A correlation can be established between the IC50

values determined in the WCE assay and in the recom-
binant TDP1 assay (Fig. 3D; P value¼ 0.0063 and Pearson
and Spearman coefficients ¼ 0.79 and 0.68, respectively).
IC50 values determined in the WCE assay were approx-
imately 5-fold higher than those determined in the
recombinant TDP1 assay (Fig. 3D) reflecting the higher
stringency of the hTDP1 WCE assay over the recombi-
nant TDP1 assay.

TDP2 counter-screening assay
To test the selectivity of TDP1 inhibitors active in the

WCE assay, we set up a counter-screening assay with

TDP2. TDP2 (encoded by the TTRAP/TDP2 gene) was
recently discoveredas a keyenzyme involved in the repair
of Top2-mediated DNA lesions as it excises the Top2
catalytic tyrosine residue from a trapped Top2-DNA
complex (35–39). Similarly to TDP1, TDP2 cleaves a phos-
photyrosine bond to generate a phosphate product, but
this cleavage occurs preferentiallywith an opposite polar-
ity comparedwithTDP1 (Fig. 4AandB; refs. 33, 35, 40, 41).
Therefore, both enzymes are phosphotyrosine-proces-
sing enzymes with opposite preferential polarities (30-Y
for TDP1 and 50-Y for TDP2; Fig. 4A). In addition, both
enzymes preferentially process the same type of single-
stranded DNA substrates(8, 33), which makes TDP2 a
relevant counter-screening target for TDP1 inhibitors.
Moreover, TDP2 is structurally unrelated to TDP1
(10, 40–42). TDP2 requires magnesium for its catalytic
activity (33, 35), which is not the case for TDP1. There-
fore, TDP2 was chosen as an appropriate counter-
screening enzyme for testing the specificity of our TDP1
inhibitors.

The 10 compounds active in the hTDP1WCEassays can
be structurally categorized in two groups (Fig. 1C). Two
analogs derived from these two groups, NCGC00183974
(Fig. 1D) and JLT048 (CAS# 664357-58-8; Fig. 1D), both
inhibited recombinant TDP1 at low micromolar concen-
trations (Table 2 and Fig. 4C), and their potency was
maintained in the WCE assay (Table 2). When tested in
parallel against TDP1 and TDP2, JLT048 also inhibited
TDP2, albeit with higher IC50 values (Fig. 4C and D, Table
2). NCGC00183974wasmore selective for TDP1with only
marginal activity against TDP2 at 111mmol/L (Fig. 4C and
D, Table 2).

Cellular combination treatment with CPT
To determine whether the two compounds could

potentiate the cytotoxic effect of a Top1 inhibitor,
NCGC00183974 (Fig. 5A) and JLT048 (Fig. 5B) were
tested in combination with CPT in DT40 hTDP1 cells
for cytotoxicity. We observed no synergistic effect, in
contrast to the PARP inhibitor, veliparib, which showed
the expected strong synergismwith CPT (26, 27; Fig. 5C).

Table 1. Kinetics parameters

Buffer
KM

(nmol/L)
kcat (per
second)

kcat/KM

(L/mol
per second)

HTS buffer 1 � PBS, PH 7.4
80 mmol/L KCl 3,936 11 2.8 � 106

0.01% Tween-20

WCE buffer 50 mmol/L Tris-HCL, pH 7.5
80 mmol/L KCl
2 mmol/L EDTA 80 7 87.5 � 106

1 nmol/L DTT
40 mg/mL BSA
0.01% Tween-20
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The two compounds also did not exhibit any cytoto-
xicity, suggesting that they do not enter cells efficiently
and/or are inactivated. Therefore, further structural
optimization is warranted to improve their cellular
profile.

Discussion
TDP1 and TDP2 are two relatively new DNA repair

enzymes, which are rational pharmacologic targets (see
Introduction). Here, we report our screening approach
including the development of a novel WCE gel-based
assay and counter-screening with TDP2, which led to the

identification of two novel TDP1 inhibitors that could
serve as the basis for further development.

The new WCE assay has the advantage of using native
endogenous human TDP1 enzyme in a cellular environ-
ment with its cofactors, binding partners (11, 34) and
posttranslational modifications (43, 44). It is therefore
likely to be more biologically relevant than assays based
on recombinant TDP1, as exemplified by the fact that the
protein kinase inhibitor, 7-hydroxystaurosporine (UCN-
01),was found to inhibit Chk2purified fromcell extract by
immunoprecipitation while being ineffective against the
recombinant Chk2 enzyme (45). WCE also incorporates a
complex cellular mixture, which promotes the adsorption

Figure 3. Differential kinetics of
TDP1 reactions in the presence of
differentbuffers. A, theLineweaver–
Burk double-reciprocal plot
obtained for recombinant TDP1 in
the presence of HTS buffer or WCE
buffer. B, intersecting curves in the
origin area of the Lineweaver–Burk
double-reciprocal plot presented in
A. C, concentration response
inhibitory curves obtained for
NCGC00183964 in HTS and WCE
buffers. D, correlation between
recombinant TDP1 (REC) and
endogenous TDP1 (WCE) inhibition
by the compounds presented in
Fig. 1 and Supplementary Table S1.
The regression line is represented
by a solid line, and dashed lines
correspond to 95% confidence
interval.
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of nonspecific small molecules inhibitors to different
cellular proteins and components, providing a more bio-
logically relevant model of inhibitor distribution. The
WCE assay is simpler and cheaper than assays using
recombinant enzymes that require purification steps. In
the present study, WCEs were generated from DT40
chicken lymphoma cells because these cells have a short
doubling time and can be easily grown in large quantity in
suspension. They are frequently used to generate genetic
knockout cell lines (17, 23), andwe previously engineered
DT40 cells to express functional human TDP1 in a TDP1
knockout background (17). WCE from human cells can
also be used in place of the DT40WCE (46), which should
render the WCE assays applicable to other platforms and
reference cell lines.
The WCE gel-based assay is convenient for drug

screening because the TDP1 substrate is processed in
a single product (Figs. 2 and 4), allowing multiple
loading on a single gel (Fig. 2). The novel WCE assay
was run in a more physiologically relevant buffer than

the qHTS assay (31, 47, 48). When these two buffers
were tested side-by-side, a more efficient TDP1 catalytic
activity was observed in the WCE buffer than in the
qHTS buffer. We observed a large difference in the KM

of TDP1 and only a slight change (within experimental
error) in its kcat values. This likely reflects the presence
of phosphate salts in the HTS buffer acting as an inhib-
itor for TDP1. Indeed, we have observed that phosphate
likely inhibits TDP1 by competing with its tyrosine-
phosphodiester-DNA substrate (10). The other key dif-
ference between the two buffer systems is the presence
of BSA. After investigating the impact of BSA on the
kinetics of TDP1, we found that the removal of BSA
from the WCE buffer resulted in a lower kcat but with
little impact on the KM value, which may be the result of
higher protein adhesion to the tube walls (data not
shown). The specific example of TDP1 sheds light on
the general importance of reaction buffers when devel-
oping screening assays, especially when robotic plat-
forms require specific screening conditions.

Figure 4. TDP2 counter-screening
assay. A, schematic representation
of the catalytic reaction carried out
by recombinant (REC) TDP1 and
TDP2. Both enzymes excise a
terminal tyrosine residue from
single-stranded oligonucleotides
but with an opposite polarity: 30-
tyrosine for TDP1 and 50-tyrosine
for TDP2. B, representative gel
showing enzyme concentration-
dependent cleavage reactions for
TDP1 and TDP2. REC TDP1 and
REC TDP2 concentrations are
from 160 pmol/L and 1,600 pmol/L
in 2-fold decrements, respectively.
C, representative gels showing
concentration-dependent
inhibition of recombinant TDP1
(upper gels) and TDP2 (lower gels)
by JLT048 and NCGC00183674.
D, concentration–response
curves for JLT048 (left) and
NCGC00183674 (right) with REC
TDP1 (solid circles) or REC TDP2
(open circles).
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TDP2 is TDP10s counterpart for the repair of Top2-
mediated DNA lesions with the cleavage of a 50-phos-
pho-tyrosine bond. Although both enzymes process
single-stranded substrates, they are structurally unre-
lated and differ in their biochemical mechanisms. TDP1
belongs to the phospholipase D family and its catalytic
mechanism involves two histidine-lysine-asparagine
(HKN) motifs and a covalent intermediate (9, 10). On
the other hand, TDP2 is a magnesium-dependent phos-
phodiesterase that hydrolyzes the 50-phosphotyrosyl
bonds without covalent intermediate (33, 40, 41). Dual
TDP1–TDP2 inhibitors are therefore likely to be pro-
miscuous (49).

From the 10 TDP1 hits identified by qHTS and con-
firmed in the WCE assay, two analogs showed selectivity
for TDP1versusTDP2. Surfaceplasmon resonance experi-
ments showed that the two compounds interacted with
TDP1directlywithout interactingwith theDNAsubstrate

(Supplementary Fig. S2). Yet, these inhibitors have some
potential liabilities. JLT048 incorporates a methyleneimi-
dazolinedione substructure that gives concerns for poten-
tial reactivity as a Michael acceptor (49). NCGC00183974
exhibits a higher selectivity for TDP1, but also inhibit
other DNA-processing enzymes including DNA poly-
merase k (http://pubchem.ncbi.nlm.nih.gov/summary/
summary.cgi?cid=49852749). Also, cellular cytotoxicity
assays indicate that further studies are warranted to
optimize the cellular activity of these series.

In summary, our WCE-based screening approach
allowed stringent hit confirmation from qHTS, reducing
the number of original hits and markedly enhancing the
prospect of discovering selective and relevant inhibitors
of TDP1. These results suggest the value of usingWCE for
the screening of TDP1 inhibitors, and the value of recom-
binant TDP1 and TDP2 for second-line screening assays
and mechanism of action studies.

Figure 5. Cellular survival curves in the presence of CPT and various concentrations of JLT048 (A), NCGC00183674 (B), and veliparib (C) in hTDP1 cells.

Table 2. IC50 values

IC50 (mmol/L)

TDP1 TDP2

Compound Structure Recombinant WCE Recombinant

NCGC00183674
12.1 � 1.7
(n ¼ 4)

51, 59
(n ¼ 2)

>111

JLT048
7.7 � 1.8
(n ¼ 5)

115, 148
(n ¼ 2)

32 � 10
(n ¼ 3)
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