












Interestingly, TAI-95 led to a time-dependent downregu-
lation of the mRNA expression of Pgp in HeLa cells (Fig.
5B). In MDA-MB-231, the expression level of Pgp was
significantly downregulated by TAI-95, whereas the
expression levels of MRP-1, MRP-2, and BCRP were
moderately affected (Fig. 6A). In addition, 3 other breast
cancer cell lines were screened and showed downregula-
tion of Pgp by TAI-95 (Fig. 6B). TAI-95 also inhibits Pgp
expressionmore than 70% inMES-SA/Dx-5 cells (Fig. 6B),
which express Pgp at levelsmore than 4 logs that ofMDA-
MB-231 cells (data not shown). To determine whether the
downregulation of Pgp byTAI-95 could affect the potency
of known Pgp substrates, well-known Pgp substrates
doxorubicin and topotecan (27) were used for testing.
Cellswere pretreated for 6 hourswith TAI-95 before being
treated with the indicated Pgp substrate. As TAI-95–
induced cell death peaked at 96 hours after treatment,
wedetected the cytotoxic effect of the addedPgp substrate

at an earlier time point, 48 hours. Results showed that
TAI-95 significantly increased the inhibitory effect of the
Pgp substrates doxorubicin and topotecan (Fig. 5C, left
and middle), with corresponding downregulation of
Pgp at 6 hours (Fig. 5C, right). These results suggest
that the synergistic effect of TAI-95 with doxorubicin
and topotecan could, at least in part, be due to the effect
of TAI-95 on Pgp expression.

Differential expression of HEC1/NDC80 and
associated genes among breast cancer subtypes

To evaluate the characteristics of breast cancer sub-
types relevant to Hec1 inhibitors, we used Western
blotting and publicly available database to analyze
HEC1 gene expression. Western blotting showed that
the cells less sensitive to Hec1 inhibition had lower Hec1

BT474 breast cancer model   

B

A

**

***

***T
u

m
o

r 
v
o

lu
m

e
 (

m
m

3
)

B
o

d
y

 w
e

ig
h

t 
(%

)

Day

Day

1,400

1,200

1,000

800

600

400

200

0

0           5          10        15         20         25         30

0            5          10         15          20         25         30

120

100

80

60

40

20

0

Vehicle control

TAI-95 10 mpk

TAI-95 25 mpk

TAI-95 50 mpk

Vehicle control

TAI-95 10 mpk

TAI-95 25 mpk

TAI-95 50 mpk

Figure 3. TAI-95 inhibits tumor growth in breast cancer xenograft mouse
models. BT474 breast cancer xenograftmodel in nudemicewere used to
test the in vivo efficacy of TAI-95. When tumor size reached 200 mm3, a
twice daily, 28-day oral dosing treatment of TAI-95 was initiated. Tumor
size (A) and body weights (B) were measured. ��, P < 0.01; ���, P < 0.001,
by 2-tailed t test.

T
u

m
o

r 
v
o

lu
m

e
 (

m
m

3
)

S
ta

rt
in

g
 t

u
m

o
r 

s
iz

e
 (

m
m

3
)

Treatment dose (mg/kg)

Day

6,000

5,000

4,000

3,000

2,000

1,000

0
40     45    50     55     60    65     70    75     80    85

−10               10                30                50               70

2,495.0

1,995.0

1,495.0

995.0

495.0

−5.0

First treatment

Second redosing treatment

Vehicle control

TAI-95 10 mpk

TAI-95 25 mpk

TAI-95 50 mpk

A

B

Figure 4. TAI-95 inhibits large tumor growth and does not lead to
resistance. BT474 (triple-positive) breast cancer xenograft model in
nude mice was used to test the in vivo re-dosing efficacy of TAI-95.
TAI-95 dosing was re-initiated after 2 weeks of non-dosing period and
restarted on day 42 lasting for another 28 days. Vehicle group mice
were sacrificed according to animal protocols and tumor volume
postulated with linear assumption. A, tumor volume plotted against
time. B, starting tumor size was plotted against treatment dose
with circles with size and numbers indicating growth rates obtained
at the end of the 28-day treatment period. ��, P < 0.01; ���, P < 0.001;
����, P < 0.0001, by 2-tailed t test.
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expression levels (Fig. 7A and B). The finding suggests
that breast cancerwith higher expression ofHec1 could be
more sensitive to Hec1 inhibitors. We therefore investi-
gatedHEC1 expression in differentmolecular subtypes of
breast cancer. As shown in Fig. 7C, HEC1 expression
varied significantly among breast cancer subtypes. Sub-
types I, II, and IV have a higher expression ofHEC1. These
3 subtypes are also known to have high expression of
genes for cell cycling/proliferation (8). These are types

known tohaveworse recurrence-free andoverall survival.
As reported previously (8), subtype I corresponds to
basal-like breast cancer, subtype II corresponds to
ERBB2/HER2 overexpression breast cancer, subtype III
has weak ESR (ER) expression and variable HER2 expres-
sion, subtype IV is a subset of luminal B breast cancer,
subtype V is a subset of luminal A breast cancer with low
risk of recurrence and excellent long-term survival, and
subtype VI is a subset of luminal A with higher risk of
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Figure 5. TAI-95 potency in
MDR lines. A, MDR cells treated
with TAI-95 for 96 hours and
quantitated with MTS assay to
generate GI50. MES-SA/Dx5
(uterine sarcoma), NCI/ADR-RES
(ovarian carcinoma), and K562R
(leukemia) were tested and 2
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period, collected, RNA extracted,
and analyzed with quantitative
PCR. Glyceraldehyde-3-
phosphate dehydrogenase
(GAPDH) was used as loading
control and mRNA expression is
presented as percentage of
DMSO (vehicle control). �,P < 0.05;
��, P < 0.01; ���, P < 0.001.
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recurrence than subtype V. Subtypes II and IV had worst
recurrence-free and overall survival. In addition, gene
cluster analysis using HEC1 and genes associated with
HEC1 (SPC24, SPC25,NUF2, and SMCproteins; refs. 9, 18)
revealed that the expression of these associated geneswas
proportional toHEC1 expression according to breast can-
cer molecular subtypes (Fig. 7D). This finding suggests
that high HEC1 gene expression is associated with high
expression of its associated genes but not with genes less
associatedwith the kinetochore, such asRB1. Subtype I, II,

and IV breast cancer therefore may be more sensitive and
responsive to treatment of Hec1 inhibitor. Breast cancer
subtypingmight serve as aneffectivepredictive and triage
tool to identifypatientswho are sensitive toHec1-targeted
therapy.

Discussion
This study demonstrates the potential utility of a novel

Hec1-targeted small-molecule, TAI-95, in the treatment of

Figure 6. TAI-95 downregulates
MDR expression. A and B, cells
were treated with 100 nmol/L TAI-
95 for the indicated time period,
collected, RNA extracted, and
analyzed with quantitative PCR.
Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was
used as loading control andmRNA
expression is presented as
percentage of DMSO (vehicle
control). C, cells were pretreated
with DMSO, 33 nmol/L (lo) or 166
nmol/L (hi) TAI-95 for 6 hours and
then treated with the indicated
cytotoxic agent for 72 hours and
quantitated with MTS assay.
Right, the RNA level of Pgp at 6
hours. �, P < 0.05; ��, P < 0.01;
���, P < 0.001, by 2-tailed t test.
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resistant breast cancers. TAI-95 is shown to be active on a
number of breast cancer cell lines, notably those that were
resistant to conventional cytotoxic agents. TAI-95 showed
excellent oral efficacy in an in vivo breast cancer model. In
addition to the activity in MDR cell lines, TAI-95 was
shown to downregulate Pgp expression.

Hec1 is an oncogene that was discovered through a
yeast two-hybrid screen to screen for the interacting
partner of RB. Soon after its discovery, the functional
aspects of the novel protein were established and were
found to be closely associated with cancer. Hec1 is a
member of the kinetochore that attaches the chromosomes
to the centromere through microtubules for proper align-

ment during mitosis. The protein was found to be highly
expressed in various cancers screened and little expressed
in slow dividing cells (9), which suggests that it is an
excellent candidate to target cancer. Further screening of a
library of 20,000 compounds revealed a small molecule
structure capable of the disruption of interaction between
Hec1 andNek2 and the inhibition of tumor growth in vivo
(intraperitoneal). We started out aiming to optimize the
drug attributes of theHec1-targeted small-molecule INH1
and to develop it into an orally efficacious anticancer
drug. To achieve the druggability of the targeted drug,
the potency must reach nanomolar levels, which we have
achieved (Supplementary Fig. S1). In addition, the

Figure 7. Clinical correlation of TAI-
95 target Hec1 in breast cancer.
A, representative blots of Hec1
protein expression in breast cancer
cell lines. B, average values of
quantitated Hec1 protein
expression. C, Hec1 gene
expression among different
molecular subtypes of breast
cancer based on GSE20685
dataset. D, one-way cluster
analysis of Hec1 (NDC80) and 8
other genes known to associate
with Hec1 was performed.
A heatmapwas drawnaccording to
breast cancer molecular subtypes.
Results show differential
expression ofHec1 and associated
genes among different molecular
subtypes of breast cancer.
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pharmacokinetic properties were optimized to promote
oral efficacy, which is demonstrated in this study in the in
vivomodel. These new druggable attributes of TAI-95 has
driven TAI-95 into preclinical drug development stage.
TAI-95 showed good activity against breast cancer cells

derived from various origins. The potency profile is
remarkable and demonstrates the potential utility of this
drug in unmet medical needs in breast cancer. Even
though the site of action is very closely associated with
microtubules, the potency profile shows that the mecha-
nism of action of TAI-95 has interesting features that may
give it an advantage over conventional cytotoxic drugs.
A study has showed that Hec1 overexpression was asso-
ciated with paclitaxel resistance and poor prognosis in
ovarian cancer (28), further highlighting the role of the
target, Hec1, in drug-resistant cancers. Even thoughmore
studies will be necessary to elucidate the underlying
mechanisms, the potential of this drug draws immense
interest and we hold great expectations on its impact on
the clinical treatment of drug-resistant breast cancers.
The in vivo xenograft studies showed that TAI-95 sig-

nificantly inhibited the growth of BT474 xenografts. In
addition to the triple-positivemodel (BT474),wehave also
performed xenograft studies on triple-negative (MDA-
MB-231) and caspase-deficient (MCF7) models. Prelim-
inarily, TAI-95 shows an inhibitory trend on the average
size of the xenograft; however, the data did not show
statistical significance within our standard observation
period of 28days (Supplementary Fig. S6).Webelieve that
the inhibitory trend will be maintained to demonstrate
statistical significance when the observation period of
these models were extended to more than 10 weeks or if
the models were optimized to allow for more stable
growth and smaller variation of the size of tumors.
The development of refractory disease in breast cancer

is frequently associated with the development of MDR.
Overexpression of the multidrug transporter Pgp and
MDR protein (MRP1) has been extensively studied for its
role in MDR (29). Pgp may be induced in cancer cells
through exposure to irradiation (30) or cytotoxic agents
such as paclitaxel, doxorubicin, or cisplatin (31). On aver-
age 40%and 50%of untreated breast cancers showexpres-
sion of Pgp and MRP-1, respectively, and exposure to
chemotherapy increases the expression of both proteins
(29). We show that TAI-95 downregulation of Pgp levels
increases the potency of known Pgp substrate drugs.
A possible regulatory mechanism is through the modu-
lation of the MSS1 unit of 26S proteasome by Hec1.
Previous study has shown that Hec1 inhibited the prote-
olysis of cyclin B in vitro (32). The lack of functional Hec1
may thenpromote thedegradation of cell-cycle regulatory

proteins. This is likely as we have observed the degrada-
tion of cyclinswithTAI-95 (data not shown).Although the
underlyingmechanismmediatingdownregulation of Pgp
by TAI-95 and the role of TAI-95 as a clinically effective
Pgp inhibitor remains to be evaluated, the current study
presents exciting rationale for the use of TAI-95 as part of
anticancer combination therapies.

In conclusion, TAI-95 is a promising small-molecule
oral anticancer agent. It has good activity in breast cancer
cells both in vitro and in vivo and is effective for largebreast
cancers in an animal model. Under orally efficacious dose
levels, TAI-95 does not lead to weight loss. TAI-95 down-
regulates anti-apoptotic proteins and Pgp and enhances
the effect of cytotoxic agents, demonstrating its potential
to be incorporated into combination treatments. The cur-
rent study shows that TAI-95 is a potent and safe anti-
cancer drug candidate with excellent therapeutic poten-
tial for difficult-to-treat breast cancers.
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