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that are intrinsically resistant to or have acquired resis-
tance to EGFR inhibitors may still be able to respond to
CUDC-101 treatment. Mechanistically, CUDC-101 treat-
ment decreased the level of ZEB1, a zinc-finger transcrip-
tional repressor of E-cadherin (48), resulting in the
subsequent increase of E-cadherin expression through
transcriptional regulation.

MET overexpression was not observed in the erlotinib-
TR HCC827 NSCLC cells generated in this study, likely
due to differences in methods of generating resistant
clones. To mimic clinical conditions, we chose to chron-
ically expose the cells to 1 mmol/L of inhibitors, instead of
gradually increasing the concentration over a longer
period of time as has been done previously (8). However,

Figure 5. CUDC-101 induces
changes in migration and invasion
markers. A, immunoblotting of
serum-starved MDA-MB-231 cells
treated with EGF or HGF and
CUDC-101 at the indicated
concentrations for 2 or 24 hours.
B, immunofluorescence staining of
E-cadherin (left) and vimentin (right)
in serum-starvedMDA-MB-231cells
treated with CUDC-101 at the
indicated concentrations in the
presence ofHGF. C, immunoblotting
of E-cadherin and vimentin in MDA-
MB-231 cells treated with CUDC-
101, erlotinib, lapatinib, vorinostat,
or the combination of lapatinib and
vorinostat (LþV) at the indicated
concentrations. D, gel
electrophoresis of traditional
RT-PCR for E-cadherin (E-cad; top)
and TaqMan RT-PCR analysis of
E-cadherin mRNA levels normalized
to GAPDH mRNA levels (bottom) in
MDA-MB-231 cells treated with
CUDC-101, erlotinib, or vorinostat
at the indicated concentrations.
Statistical significance was
determined by a standard t test
(���, P < 0.001).
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Figure 4. CUDC-101 reduces the migration and invasion of MDA-MB-231 and HT1080 cells. A, CUDC-101 reduces HGF- and EGF-induced MDA-MB-231
(MM-231) cell migration in an in vitro wound healing assay. CUDC-101, erlotinib (Erl), vorinostat (Vor), HGF, and EGF were added to the cells at the
indicated concentrations immediately after wounding. Live cells were visualized with Calcein AM at the indicated time points. B, quantification of
wound width. C, CUDC-101 reduces serum-induced migration and invasion of MDA-MB-231 and HT-1080 cells in the Boyden chamber migration assay
and Matrigel invasion assay. Live cells migrating or invading to the other side of the chamber were visualized with Calcein AM. D, quantification of
Calcein AM intensity in both the Boyden chamber migration assay and Matrigel invasion assay. Statistical significance was determined by a standard t test
(�, P < 0.05; ��, P < 0.01; ���, P < 0.001).
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we also showed that CUDC-101 could block proliferation
and MET signaling in MET-amplified NSCLC cells and
gastric cancer cells, indicating that CUDC-101 might also
be able to efficiently control EGFR inhibitor resistance
caused by MET amplification.

Initial intrinsic resistance or subsequent acquired resis-
tance to EGFR inhibitors suggests that targeting a single
node in a tumor signal transduction pathway may not
effectively control tumor growth. In this study, drug-
resistant cells arose from EGFR inhibitor-sensitive
HCC827 cells in response to prolonged exposure to sin-
gle-target EGFR inhibitors but not CUDC-101, showing
the potential advantages of simultaneously targetingmul-
tiple nodes of signal transduction in cancer therapy. In
addition, our findings indicate that erlotinib-TR HCC827
NSCLC cells remain sensitive to CUDC-101 treatment
despite activation of different resistance mechanisms,
showing the broad use of CUDC-101 in controlling
EGFR-resistant cancer cells.

In summary, we have shown that the multitarget
HDAC, EGFR, and HER2 inhibitor CUDC-101 could con-
trol the proliferation and migration of EGFR inhibitor-
resistant NSCLC cells, and reduce tumor cell migration
and invasion. Thus, as a multitarget single agent, CUDC-

101 has the potential to be able to overcome drug resis-
tance, which will be explored in future clinical studies.
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