












Addition of a PI3 kinase inhibitor enhances the
activity of the navitoclax/MEK inhibitor combination
Because the combination of navitoclax and a MEK

inhibitor did not cause complete cell death (Fig. 2D), we
evaluated combined inhibition of PI3K, Bcl-2/Bcl-xL, and
MEK. Activation of the PI3K pathway reduces proapop-
totic signaling by promoting an inhibitory phosphoryla-
tion of BAD on Ser136 (5) and repressing FOXO3-driven
transcription of BIM (37). Thus, inhibition of this pathway
is expected to promote proapoptotic signaling by increas-
ing the activity of BAD and the level of BIM. We selected

an effective, clinically relevant dose of the PI3K inhibitor
GDC-0941 (Fig. 1B; refs. 38–40) and added it to all wells of
the navitoclax/G-963 combination matrix on 3 cell lines.
In all lines, the overall growth inhibition is enhancedwith
the addition of GDC-0941, but the patterns of response
vary. In theA427 cell line, there is significant enhancement
of activity at the higher doses of G-963. This seems to be
largely driven by the synergy between of G-963 with the
addition of the PI3K, as seen in the G-963/GDC-0941
combination curve on the far right panel of Fig. 4A. In
H2122 cells, there is an increase in activity with the

Figure 2. Cellular response to
G-963 and the G-963/navitoclax
combination. A, Western blots of
whole cell lysates from cells treated
with 2 mmol/L G-963. B, Western
blots of lysates from cells treated
with navitoclax (1 mmol/L), G-963
(2 mmol/L), or the combination. C,
DNA content assessed by flow
cytometry for A427 cells treated with
navitoclax (1 mmol/L), G-963
(2mmol/L), or thecombinationplusor
minus Z-VAD-FMK (20 mmol/L) or
necrostatin-1 (10 mmol/L) for 24
hours; D, DNA content assessed by
flow cytometry for A427 cells treated
with navitoclax (1 mmol/L), G-963
(2mmol/L), or thecombinationplusor
minus Z-VAD-FMK (20 mmol/L) or
necrostatin-1 (10 mmol/L) for 48
hours.
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addition of GDC-0941 across the entire dose matrix (Fig.
4B), and the effects of G-963 andGDC-0941 seemadditive,
as seen with the shift of the G-963 dose response with the
addition of GDC-941 (Fig. 4B, right). Finally, in the A549
cell line, the enhancement of activity is more pronounced
at the lower doses of G-963 (Fig. 4C). These observations
highlight the importance of measuring effects across a
range of concentrations and ratios to capture the range of
response.

Addition of a PI3 kinase inhibitor to the navitoclax/
MEK inhibitor combination increases apoptosis

To explore the mechanism of navitoclax/G-963/GDC-
0941 triple combination-induced cell death, wemeasured
intrinsic apoptosis by caspase activation and effects on
signaling pathway components by Western blotting. The
triple combination causes strong activation of caspases 3
and/or 7 as early as 8 hours posttreatment in A427 and
H2122 cells (purple bars in Fig. 5A and B), comparedwith
the single- or double-agent treatments in which high
levels of caspase activation are not observed until 24 or
48 hours posttreatment. The rapid kinetics of the triple
combination might provide an advantage in vivo if expo-
sure is limited by the pharmacokinetic properties of the
compounds.

Because the differences in response to single-, double-,
and triple-agent combinations were most pronounced at
8 hours, we conducted Western blotting of pathway pro-
teins at 2, 8, and 24 hours posttreatment to the capture the
relevant time points. MEK inhibition with G-963 alone
and in all tested combinations promotes loss of ERK1/2
phosphorylation and decreased p90RSKphosphorylation

on S380. There is also an increase in BIM gel mobility,
indicative of loss of phosphorylation in all G-963–treated
samples; the loss of BIM phosphorylation was confirmed
with a phospho-S69–specific antibody. Moreover, induc-
tion of p21 (CDKN1A) and p27 (CDKN1B) are observed
after 24hours in allG-963–treated cells, consistentwith the
observed G1 arrest (Fig. 5C and D). The activity of GDC-
0941 onPI3Kwas showedby adecrease in phospho-AKT1
(S473) in all treated cells. The addition of navitoclax did
not alter the proximal downstream effectors of MEK and
PI3K signaling. We next examined BAD phosphorylation
following treatment. Surprisingly, navitoclax causes an
increase of phosphorylation on BAD at S112 and S136.
This may reflect negative feedback loop exerting inhibi-
tion on BAD that results from the addition of the "BAD
mimetic." However, we do not have a mechanism to
account for this observation. Addition of GDC-0941 to
navitoclax/G-963 combination reduces phosphorylation
of BAD. Consistent with the observations that cells are
under stress and undergoing apoptosis following drug
treatments, we detect increased g-H2AX levels and PARP
cleavage (Fig. 5C and D).

Weevaluated the effect of the triple combinationon cell-
cycle state and cell death by flow cytometry. There were
no significant changes in cell-cycle state or sub-2N content
at 8 hours. By 24 hours there was an increase in cells with
2N DNA content (G1) in G-963 treated cells alone or in
combinations, and a small increase in cells with sub-2N
contentwas evident in the navitoclax/G-963 and the triple
combination treated cells. By 48 hours there was an
increase in cells with sub-2N content in the G-963/navi-
toclax and G-963/GDC-0941 combinations, 25% in each
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Figure 3. H2122 xenografts exhibit
tumor stasis upon treatment with
the combination of G-963 and
navitoclax. Tumor-bearing mice
weredosedorally anddaily (QD) for
28 days with 100 mg/kg of
navitoclax, 25 mg/kg of G-963 or
the combination. A, mean tumor
volume from mice treated with
vehicle (blue), G-963 (red),
navitoclax (yellow), or the
combination (green). B, tumor
volumes of individual mice with
mean tumor volume for the vehicle
control group (blue) or each drug-
treated group (solid black); dotted
blue lines represent the mean
tumor volume for the vehicle
control for comparison.C,Western
blots of H2122 tumor xenografts
after a single dose of navitoclax
(navi), G-963, or the combination
(combo) of both drugs at the
indicated times.
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double combination, compared with untreated and sin-
gle-agent treatment samples which all had less than 5%
sub-2N. The percentage of cells with sub-2N content
was highest in the triple combination with 41% sub-2N
(Fig. 5E).

Discussion
Inhibitors of MEK and PI3K are being tested as single

agents and in combination in the clinic. Because efficacy of
targeted agents is often limited, we wanted to identify
combinations that improve efficacy.MEK inhibitor–medi-
ated cytotoxicity is enhanced by Bcl-2/Bcl-xL inhibition
across a large panel of NSCLC and pancreatic cell lines.
MEK inhibition is reported to increase cell death by
increasing BIM protein and suppressing inhibitory phos-
phorylation of BAD. Increased BIM was observed in all

cell lines tested, whereas loss of BAD phosphorylation
varied, and thus could represent vulnerability in MEK
inhibitor–dependent induction of apoptosis. BAD can
also be inhibited via activation of the PI3K pathway,
making it susceptible to "rewiring" of upstream signaling.
Navitoclax can circumvent resistance via rephosphoryla-
tion of BAD because it acts a BAD mimetic that is not
subject to inhibitoryphosphorylation. StabilizationofBIM
is likely critical to the mechanism of the combination
because it binds to and inhibits the antiapoptotic activity
of MCL1, which navitoclax cannot do. Overall, our data
are consistent with a model in which the stabilization of
BIM observed after MEK inhibition is necessary for inhi-
bition of MCL1, but not sufficient to neutralize all of the
antiapoptotic activity of Bcl-2, Bcl-xL. Navitoclax alone
does not induce apoptosis because it can only neutralize
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Figure 4. Triple combinations of MEK, PI3 kinase, and Bcl-2/Bcl-xL inhibitors. Cells were treated in a G-963/navitoclax dose matrix as described and then
overlaid with media containing DMSO or 1 mmol/L GDC-0941 as indicated. Growth inhibition across all combinations is represented as a heat map of
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Bcl-2 and Bcl-xL, leaving MCL1 to protect the cell. How-
ever, in the combination navitoclax neutralizes Bcl-2 and
Bcl-xL, allowing the excess pools of BIM that result from
MEK inhibition to neutralize MCL1.

Of the proteins investigated for correlative biomarker
studies, only the baseline level of pS112 BAD revealed
significant correlation with synergy scores observed for
the navitoclax/G-963 combination treatment. These find-

ings suggest that cells with higher levels of phospho-BAD
are less likely to benefit from the addition of navitoclax
because there is a sufficiently large pool of phosphory-
lated (inactive) BAD that can be activated upon MEK
inhibition to saturate the binding sites on Bcl-xL and
Bcl-2. Although there is preclinical evidence and mecha-
nistic rationale for larger pools of S112 phospho-BAD
acting as a negative predictor for synergy, the dynamic
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range of baseline phospho-BAD is small and quantitative
evaluation of phosphorylated epitope in clinical samples
is likely to be challenging. The best correlation of navito-
clax/MEK inhibitor synergy was single-agent sensitivity
to MEK inhibition. Thus, the same predictive biomarkers
relevant forMEK inhibitors, that is activation of the RAS/
RAF/MEK pathway, could potentially be used to enrich
for response to the combinationwith navitoclax.AnMEK-
dependent transcriptional profile could provide the most
accurate predictor of pathway activation (41). However,
this is challenging to implement as a companion diagnos-
tic. We observed enrichment in activating KRAS muta-
tions the high synergy cell lines and propose that KRAS
mutant cancers represent a molecularly defined subset
of cancers that may be more likely to respond to a MEK
inhibitor navitoclax combination.
The RAS/RAF/MEK/ERK signaling cascade plays an

important role in controlling cell proliferation and regu-
lating the cell cycle. ERK activation throughout G1 and
ERK translocation to the nucleus are required for entry to
S phase (42–44). Navitoclax does not alter MEK inhibitor-
induced G1 arrest observed at 24 hours, but strongly
increases cell death at 48 hours, suggesting that the cells
die after enteringG1. The observed cell death is dependent
upon caspase activity, but not the extrinsic apoptosis and
necrosis kinase, RIP1, consistent with our observation of
caspase 3/7 activation and PARP cleavage.
The navitoclax/MEK inhibitor combination effect

observed in vitro was validated in vivo using a human
NSCLCH2122 xenograft model. In contrast to each single
agent, we observed a combination treatment effect char-
acterized by tumor stasis when navitoclax was coadmi-
nistered with G-963. We propose that the combination of
both agents increased apoptosis in the H2122 NSCLC
xenograft model because of antagonism of Bcl-xL by
navitoclax andG-963–induced stabilization of BIM result-
ing in neutralization of MCL1.
Finally, we show that the triple combination of G-963/

GDC-0941/navitoclax has increased activity compared
with the double combinations. There is tremendous in-
terest in combining MEK inhibitors with PI3K inhibitors
to combat resistance via alternate signaling that sup-
presses apoptosis. However, the activation of apoptosis
can be incomplete even with the combination of these
kinase inhibitors. Although studies suggest that Bcl-2/

Bcl-xL inhibitors can enhance efficacy of GDC-0941 in
breast cancer models (13, 14), this is the first study to
explore the triple combination of navitoclax with both a
PI3K and an MEK inhibitor. The addition of the PI3K
inhibitor, GDC-0941, to the combination suppresses AKT
activation, resulting in increased cytotoxicity asmeasured
by decreased ATP caspase3/7 activation, g-H2AX induc-
tion, increased sub-2NDNA content, and PARP cleavage.

In conclusion, we show the potential benefit of codos-
ing with navitoclax to enhance the activity of a MEK
inhibitor, especially in cancers with KRAS mutations.
This benefit could be further improved with the addi-
tion of a PI3K inhibitor. Although this work was under
review, 2 studies independently confirmed the value of
combining a MEK inhibitor with navitoclax (45, 46). In
light of the broad scope of current clinical evaluation
underway with agents targeting the MEK, PI3K and
Bcl-2/Bcl-xL pathways, these findings provide a ratio-
nale for clinical testing of previously unrecognized
therapeutic combinations.
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