








shSIRT1_1958 for up to 30 days (Fig. 3B). In HepG2_luc
þshSIRT1 cells, we observed either a complete lack of
tumor formation or tumor growth was delayed, as they
never reached an exponential growth phase compared
with the shScr control group (Fig. 3C). Histologic analysis

of tumors with SIRT1 knockdown revealed a reduced
number of intratumoral blood vessels (Fig. 3D). This
impairment of tumor angiogenesis is supported by our
observation that hypoxia-induced VEGF expression is
inhibited in SIRT1 knockdown cells (Fig. 3E).

Figure 2. Effect of SIRT1
knockdown in HepG2 cells, in vitro.
A, RT-qPCR of SIRT1 mRNA. B,
Western blot analysis for SIRT1 and
SIRT2. b-Actin was used as a loading
control. C, effect on cellular
morphology was detected by
microscopy, �200. D, colony
formation assay, stained with crystal
violet. Proliferation wasmeasured by
conducting alamarBlue assay,
detected as relative light units
(RLU; E) and a mitotic index
assay, expressed as relative
phosphorylated H3 levels (F). G,
cell-cycle analysiswasconductedby
FACS and expressed as% Watson
pragmatic. H, RT-qPCR for AFP,
GPC3, and CDH1 expression.
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SIRT1 is a potential drug target
We next questioned whether SIRT1 could be a target

for pharmacologic intervention. SIRT1 was inhibited
with cambinol, a cell permeable b-naphthol pharmaco-
phore that blocks its NADþ-dependent deacetylase
activity (Fig. 4). Cambinol altered the morphology of

2 HCC cell lines, with a more striking change observed
in HepG2 cells (Fig. 5A) than in Hep3B cells (Supple-
mentary Fig. S3A). The morphologic changes were
not associated with visible signs of cell death or with
activity of the apoptotic protein caspase-3 (Fig. 5B).
Inhibition of SIRT1 reduced colony formation in a

Figure 3. Influence of SIRT1 knockdown in HepG2 cells, in vivo using an intrahepatic xenograft mouse model in Rag2�/�gc�/� mice. A, intrahepatic tumors were
detected by bioluminescent imaging. B, tumor formation expressed as tumor-free animals over time. C, tumor growth over time was measured as relative light
units (RLU). D, hematoxylin and eosin staining of xenograft, �100 magnification. E, RT-qPCR of VEGF mRNA of HepG2 cells cultured under hypoxic conditions.
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dose-dependent manner (Fig. 5C and Supplementary
Fig. S3B) and fewer colonies were reflected by a signif-
icant decrease in the percentage of proliferating, EdU
positive cells (Fig. 5D). Interestingly, cambinol lead to a
G1 arrest only in p53wt-HepG2 cells, not p53del-Hep3B
(Fig. 5E and Supplementary Fig. S3C). As we observed
in SIRT1 knockdown cells, cambinol reduced the ex-
pression of poorly differentiatiated markers AFP and
GPC3 (Fig. 5F and Supplementary Fig. S3D). And final-
ly, cambinol impaired cell migration in a dose-depen-
dent manner (Supplementary Fig. S3E).
Using an orthotopic xenograft model, we next tested if

cambinol could impair HCC growth in vivo. First, to
determine if cambinol had a hepatotoxic effect itself,
mice were treated daily with 50 and 100 mg/kg cambinol
for 2 weeks. At the end of treatment, we conducted a
70% partial hepatectomy to assess liver damage as an
impairment of regeneration. Serum alanine aminotrans-
ferase levels were not increased in cambinol-treated ani-
mals (Supplementary Fig. S3F). Moreover, cambinol did
not impair the regenerative capacity of normal liver
compared with vehicle only controls (Supplementary
Fig. S3G). Nonetheless, in animals harboring HCC xeno-
grafts, tumor growth was impaired in animals treated
with cambinol starting on day 8 posttumor cell injection
(Fig 5G). Tumors in vehicle-treated animals reached an
exponential growth rate starting on day 16, whereas
cambinol suppressed tumor growth in 3 animals and
reverted tumor growth in 1 animal after day 23. Taken
together, our data show that inhibiting SIRT1 activity in
HCC tumor cells leads to a decrease in cell proliferation,
an increase of differentiation, and impaired tumor
growth in vivo, whereas, it does not impair the prolifer-
ative potential of normal liver parenchyma.

Discussion
Current literature describes how activation of SIRT1

is able to prevent the development of age or carcinogen-
induced cancers. For example, Herranz and colleagues
showed that transgenic animals overexpressing SIRT1
are protected against diethylnitrosamine/high fat diet-
induced liver carcinogenesis compared with nontrans-
genic controls (27). The protective effect was explained,

in part, by SIRT1-mediated regulation of NF-kB activity;
SIRT1 overexpression reduced NF-kB-mediated inflam-
mation and hepatic cell malignant transformation.
Although SIRT1 expression is purposed to prevent HCC
in this model, we observed a strong overexpression of
SIRT1 in human HCC tumors and HCC cell lines. This
observation confirms other studies that have documen-
ted SIRT1 overexpression in panels of human HCC
samples (28–30). In cancer research, there are more
examples emerging of how malignant cells have the
ability to hijack survival mechanisms used by nonma-
lignant cells for their own endurance (31, 32). These
observations prompted our laboratory to hypothesize
that SIRT1 activity in healthy liver tissue may provide
protection against malignancy, however after transfor-
mation, SIRT1 expression or its overexpression may be
providing a protective or survival advantage for the
tumor cells. Our data supports this by demonstrating
that inhibition of SIRT1 in HCC cells by knockdown
with shRNA or with the inhibitor cambinol can impair
tumor cell growth in vitro and in vivo. This is the first
preclinical study in HCC to show that inhibition of
SIRT1 impairs tumor cell growth in animal models and
that it is possible to use small molecule inhibitors to
achieve an antitumor effect in vitro and in vivo and
collectively suggest that SIRT1 may be a novel target
for cancer therapy.

In our study, we inhibited SIRT1 with the small mol-
ecule inhibitor cambinol that previously was shown to
impair the growth of Burkitt lymphoma xenografts (33).
Interestingly, cambinol did not impair a normal physio-
logic growth response in nonmalignant liver cells, asmice
treated with cambinol displayed no signs of hepatic dam-
age or impairment of liver cell proliferation in response to
partial hepatectomy. In agreement, it was previously
shown that knockdown of SIRT1 with siRNA led to
growth arrest in human epithelial cancer cell lines but
not primary epithelial cells (34) and that cambinol is well
tolerated by mice in the absence of other noxious stimuli
(33). SIRT1 is not a specific target of cambinol, it also
inhibits SIRT2 NAD-dependent deacetylase activity
in vitrowith IC50 values of 56 and 59 mmol/L, respectively
(33). Although it has been previously shown that com-
bined SIRT1 and SIRT2 inhibition induces cell death,
we observed a cytostatic as opposed to a cytotoxic effect
in cells treated with cambinol (35).

SIRT1 has a direct effect on cell survival and prolif-
eration by targeting key transcription factors such as
FOXO, E2F1, and p53 (referenced in Introduction) and
can promote cancer cell growth by blocking cellular
senescence and differentiation (36). Therefore, and as
shown here, inhibition of SIRT1 removes this growth-
promoting signal and forces cells in a nonproliferating,
senescent, or more differentiated phenotype. Regard-
less of their p53 status, wild-type (HepG2), null
(Hep3B), or mutated (HuH7), all lines overexpressed
SIRT1 and all responded to SIRT1 inhibition with an
inhibition of cell proliferation. Therefore, the cytostatic

Figure 4. Structure of cambinol (33).
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effect achieved was not dependent on functioning p53.
As p53 activity is impaired by SIRT1 we expected a
stronger effect with SIRT1 inhibition in p53wt cells.
However, in the absence of other stresses or DNA-
damaging agents, it was the p53-mutated and null cells
that showed a profound inhibition of cell proliferation
and induction of cellular senescence by SIRT1 inhibi-
tion. As we observed cellular senescence by SIRT1
inhibition this further supports a cytostatic effect, as
senescence is an arrested state in which cells still remain

viable. When examining the differentiation state of cells
with altered SIRT1 expression or activity, we observed a
loss of expression of the malignancy markers AFP and
GPC3. GPC3 promotes growth of HCC cells through
stimulation of the canonical Wnt signaling pathway that
regulates the expression of many downstream oncogen-
ic proteins. A recent study has shown that molecular
targeting of GPC3 enhanced TGF-b2 expression and
signaling, which in turn inhibited HCC cell prolifera-
tion and cell-cycle progression, and induced replicative

Figure 5. Inhibition of SIRT1
activity in HepG2 cells using
cambinol in vitro and in vivo.
A, cell morphology of DMSO
(control) or cambinol-treated
cells observed by microscopy,
�200. B, capsase-3, amarker for
apoptosis, expressed as
pMol/min/mg protein in
cambinol- or staurosporin
(positive control)-treated cells.
Cell proliferation was measured
by colony formation assay (C)
and FACS analysis of EdU
incorporation (D). E, cell cycle
was determined by FACS
analysis after cambinol
treatment. F, AFP and GPC3
mRNA measured by RT-qPCR.
G, tumor growth curve over
time measured as relative light
units (RLU).
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senescence (37). Loss of expression of AFP and GPC3
together with an increase of CDH1 suggests that cells
are gaining a more differentiated phenotype. This
observation might be beneficial as poorly differentiated
cancer cells are more resistant to conventional che-
motherapies (38). Further studies will determine wheth-
er SIRT1 has a direct effect on AFP and GPC3 gene
expression, as it has since been shown that SIRT1 loca-
lizes to the promoter element of E-cadherin to repress its
expression directly (39).
SIRT1 was strongly expressed in human samples of

HCC and it appears that its overexpression is unique as
the other family members displayed equal or lower pro-
tein levels. mRNA analysis of HCC cell lines suggested
that SIRT1 was transcriptionally increased in liver cancer
cell liens. The transcription of SIRT1 is negatively regu-
lated by the tumor suppressor proteins p53 and HIC1,
both of which are frequently mutated in cancers. None-
theless, this observation did not correspond with our
patient samples; an increase of SIRT1 protein was not
associated with an increase of its mRNA, suggesting a
posttranslational stabilization of its protein. It is still
unclear at which point and by which mechanism HCC
cells gain and become reliant on SIRT1 expression. It has
been suggested that SIRT1 is critical in all stages of tumor
formation (reviewed in ref. 40). However, it still needs to
be determined if SIRT1 overexpression is indeed an ini-
tiating event, as no tumors were reported to be induced in
SIRT1 overexpressing transgenic mice, in fact, these mice
had fewer spontaneous carcinomas and sarcomas (27, 41).
Further investigations may reveal that as important as
SIRT1overexpression is, perhaps equally important is loss
of expression of other familymembers, for example SIRT3
and SIRT6 in promoting tumor growth in HCC.
Our study supports SIRT1 as a novel therapeutic target

for the treatment of HCC. Although our results suggest
that targeting SIRT1 may be effective as a single moda-

lity, the cytostatic rather than cytotoxic effect of SIRT1
inhibition suggests that targeting SIRT1 in combination
with other cancer therapies to enhance sensitivity and to
impair tumor cell escape mechanisms may be a future
approach.
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