Cancer Therapeutics Insights

EGFR Inhibition Promotes an Aggressive Invasion Pattern Mediated by Mesenchymal-like Tumor Cells within Squamous Cell Carcinomas

Devraj Basu1,6,7, Arnaud F. Bewley1, Steven M. Sperry1, Kathleen T. Montone2, Phyllis A. Gimotty3, Kati Rasanen6, Nicole D. Facompre1,6, Gregory S. Weinstein1, Hiroshi Nakagawa4, J. Alan Diehl5, Anil K. Rustgi4, and Meenhard Herlyn6

Abstract

Squamous cell carcinomas (SCC) with an infiltrative invasion pattern carry a higher risk of treatment failure. Such infiltrative invasion may be mediated by a mesenchymal-like subpopulation of malignant cells that we have previously shown to arise from epithelial-mesenchymal transition (EMT) and resist epidermal growth factor receptor (EGFR) targeting. Here, we show that SCCs with infiltrative, high-risk invasion patterns contain abundant mesenchymal-like cells, which are rare in tumors with low-risk patterns. This cellular heterogeneity was modeled accurately in three-dimensional culture using collagen-embedded SCC spheroids, which revealed distinct invasive fronts created by collective migration of E-cadherin–positive cells versus infiltrative migration of individual mesenchymal-like cells. Because EGFR expression by mesenchymal-like cells was diminished in the spheroid model and in human SCCs, we hypothesized that SCCs shift toward infiltrative invasion mediated by this subpopulation during anti-EGFR therapy. Anti-EGFR treatment of spheroids using erlotinib or cetuximab enhanced infiltrative invasion by targeting collective migration by E-cadherin–positive cells while sparing mesenchymal-like cells; by contrast, spheroid invasion in absence of mesenchymal-like cells was abrogated by erlotinib. Similarly, cetuximab treatment of xenografts containing mesenchymal-like cells created an infiltrative invasive front composed of this subpopulation, whereas no such shift was observed upon treating xenografts lacking these cells. These results implicate mesenchymal-like SCC cells as key mediators of the infiltrative invasion seen in tumors with locally aggressive behavior. They further show that EGFR inhibition can promote an infiltrative invasion front composed of mesenchymal-like cells preferentially in tumors where they are abundant before therapy. Mol Cancer Ther; 12(10); 2176–86. ©2013 AACR.

Introduction

Squamous cell carcinomas (SCC) of the head and neck (1–4), esophagus (5, 6), and other sites (7, 8) exhibit variable histologic patterns of invasion that are associated with distinct clinical behaviors. These patterns comprise a spectrum ranging from well-demarcated invasive fronts amenable to close margin excision to stromal interfaces deeply infiltrated by individual malignant cells and thus requiring wide surgical margins for clearance. Although conventional histologic grading of SCCs offers limited prognostic information (9, 10), an infiltrative pattern of invasion independently predicts a higher risk of local recurrence after surgical excision (1, 4, 7) and diminished overall survival (2, 4–6). A scoring system stratifying local recurrence risk for head and neck SCCs has been validated by Brandwein-Gensler and colleagues and is based on 2 infiltrative, high-risk invasive patterns and 3 noninfiltrative, low-risk patterns (1). However, the cellular differentiation events that underlie formation of high-risk invasion versus low-risk invasion patterns are poorly defined. Molecular understanding of the differentiation states that determine invasion pattern may guide both surgical margin management and selection of targeted therapies against SCCs of distinct invasive subtypes.

The variable degrees of squamous differentiation observed among SCCs are also often evident within individual tumors. Such heterogeneity within a tumor predicts that the relative representation of tumor cell subpopulations with differing migratory behaviors will impact upon the structure of the invasive front. To dissect a key component of this heterogeneity, our prior studies...
focused on a subpopulation of cells within SCCs arising from partial epithelial-mesenchymal transition (EMT; refs. 11, 12). These studies have shown that EMT creates cellular heterogeneity within SCCs by producing a subset of carcinoma cells with a broadly mesenchymal-like gene expression profile. These mesenchymal-like cells are represented within certain SCC cell lines, where they arise from E-cadherin–positive tumor cells undergoing EMT, acquire multiple mesenchymal markers including vimentin, downregulate epidermal growth factor receptor (EGFR), and show resistance to cytotoxic and EGFR-targeted drugs (11, 12). A central role for these cells in SCC progression is supported by association of EMT with multiple aggressive carcinoma traits, including infiltrative invasion (13, 14), a reactive stroma (15), metastasis (16), and a stem cell-like phenotype (17). However, our inability to detect mesenchymal-like cells in some SCC cell lines and human tumors supports that carcinoma invasion can be driven by other cell phenotypes and does not strictly require their presence.

The mechanisms that regulate formation of high-risk invasion versus low-risk invasion patterns likely are closely linked to the diverse migratory behaviors exhibited by SCC cells. Specifically, carcinoma cells can invade in an EMT-independent mode by collective migration, which maintains cell surface E-cadherin expression within adherens junction-mediated contacts to create large clusters of cells invading as a pushing front (18). Alternatively, cell surface E-cadherin loss, a pivotal event in the EMT program, permits isolated cells lacking adherens junctions to invade using either amoeboid or mesenchymal migratory modes (19). In head and neck SCCs, EMT predominantly facilitates the mesenchymal mode (20), an Rac GTPase-dependent process distinguished from amoeboid movement by elongated fusiform cell morphology, lack of actomyosin contractility, and remodeling of the extracellular matrix (19–21).

Targeting growth factor signaling has the potential to limit tumor growth while simultaneously promoting invasion and metastasis, with a notable example being anti-VEGF therapy, which increases invasion of multiple cancer types in preclinical models (22). For SCCs, a molecular understanding of EGFR dependence has led to application of targeted anti-EGFR therapeutics, which show clinical efficacy that is significant albeit generally modest (23). Among the diverse mechanisms of resistance to EGFR inhibitors, EMT has been commonly implicated in clinical efficacy that is significant albeit generally modest (23). Among the diverse mechanisms of resistance to EGFR inhibitors, EMT has been commonly implicated in clinical efficacy that is significant albeit generally modest (23).

Here we provide evidence of widely disparate content of mesenchymal-like tumor cells in human SCCs with high-risk invasion versus low-risk invasion patterns. Using collagen-embedded spheroids to model the distinct invasive fronts produced by E-cadherin–positive versus mesenchymal-like cells, we demonstrate how anti-EGFR therapy alters invasion pattern by selecting for cells with a distinct migratory behavior.

Materials and Methods

Cell lines and clinical specimens

Cell lines were maintained in 1:1 Dulbecco’s Modified Eagle and Ham’s F12 media, with 400 ng/mL hydrocortisone, 10% fetal calf serum, and 50 μg/mL gentamycin. OCTT2 and LNT14 cell lines were generated from patient-derived xenografts (PDX), as described previously (11). SCC13 cells were obtained from the American Type Culture Collection. Cell lines were authenticated with an Identify Mapping Kit (Coriell Institute, Camden, NJ). Clinical specimens and data were obtained with informed consent, in compliance with University of Pennsylvania IRB protocol #417200 or Philadelphia VA Medical Center IRB protocol #010190.

Proliferation assay

MTS assays were conducted using an aqueous cell proliferation assay kit per manufacturer instructions (Promega). A total of 2,500 cells per well (OCTT2, LNT14) or 5,000 cells per well (SCC13) were seeded in 96-well plates 24 hours before addition of drug, and growth was quantified after 72 hours of erlotinib exposure. Optical density was measured at 590 nm (OD-590 nm) and normalized relative to OD-590 nm for dimethyl sulfoxide controls.

Spheroid assays

Collagen-embedded spheroids were formed and treated by the liquid overlay method, as described previously (30). Briefly, 2,500 cells/well were seeded in 1.5% agar-coated U-bottom 96-well plates and incubated for 72 hours to allow aggregation into individual spheroids. Spheroids were then harvested, seeded to 24-well plates as a suspension of 16 spheroids/well in bovine collagen I matrix, and overlaid with medium containing drug for 72 hours. For live–dead assays, treated spheroid cultures were incubated with calcein-AM and ethidium homodimer-1 for 1 hour at 37°C, using a LIVE/DEAD Viability/Cytotoxicity Kit (Invitrogen). Collagen matrixes were inverted onto glass slides for confocal imaging.

Immunohistochemistry

Immunohistochemistry (IHC) was conducted on 5 μm paraffin sections by described methods (31). Antigens were retrieved by microwaving at pH 6.0 in 10 mmol/L citric acid. Mouse antihuman vimentin (1:500; Dako) and rat anti-E-cadherin (1:250; Invitrogen) primary antibodies were applied simultaneously. E-cadherin staining was detected using biotinylated anti-mouse immunoglobulin G (IgG; 1:250), Vectastain Elite ABC Reagent, and DAB Substrate kit. Subsequently, vimentin staining was detected using biotinylated anti-rat IgG (1:500; Vectastain...
ABC-AP Reagent, and Vector Red Substrate kit (Vector). Slides were counterstained with hematoxylin.

Immunofluorescence and flow cytometry
Antigen retrieval and primary antibody application for immunofluorescence (IF) staining of PDX sections was conducted as for IHC, using mouse antihuman vimentin (1:500; Dako), rabbit anti-Zeb1 rabbit antiserum (1:1000; ref. 32), and/or rabbit anti-EGFR (1:100; Santa Cruz Biotech). Primary antibodies were detected using Cy5 donkey anti-mouse IgG and Cy2 donkey anti-rabbit IgG (1:600; Jackson). Conventional and spheroid cultures were stained as described previously (11) using rabbit anti-vimentin (1:100; Anaspec) as well as directly conjugated Alexafluor 488 mouse anti-E-cadherin or mouse anti-EGFR (1:100; Becton Dickinson). Vimentin staining was detected with secondary alexafluor 568 anti-rabbit IgG (1:500; Invitrogen). Nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI) throughout. Fluorescence-activated cell sorting (FACS) for detection or purification of E-cadherin–positive (DAPI) cells was conducted as described previously (11) using rabbit anti-vimentin (1:100; Anaspec) as well as directly conjugated Alexafluor 488 mouse anti-E-cadherin or mouse anti-EGFR (1:100; Becton Dickinson). Vimentin staining was detected with secondary alexafluor 568 anti-rabbit IgG (1:500; Invitrogen). Nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI) throughout. Fluorescence-activated cell sorting (FACS) for detection or purification of E-cadherin–positive cells was conducted as described previously (11).

In vivo experiments
Nonobese diabetic/severe combined immunodeficient/interleukin-2 receptor γ-chain-deficient (NSG) mice were bred and used at the Wistar Institute animal facility under protocols approved by the Institutional Animal Care and Use Committee. PDXs were generated from human SCC specimens as described previously (11) and analyzed histologically after 2 to 4 passages. Xenografts of OCTT2 and SCC13 cell lines were generated by subcutaneous injection of 1 × 10^6 cells in 100 μL Matrigel (Becton Dickinson). Tumor volumes were measured as (length × width^2)/2. For drug treatment, 1 mg cetuximab (Imclone) or equivalent volume saline control was injected intraperitoneally every 3 days.

Microscopy and image analysis
Fluorescent imaging of spheroids was conducted using either a spinning disk confocal Nikon Eclipse Ti-U microscope and iVision software or a Leica TCS SP5 II laser scanning confocal microscope and Leica LAS software. Other light and IF images were obtained using Nikon TE2000 inverted or E600 upright microscopes and processed with ImagePro-Plusv6.2 or ACT-1 software. Pseudocoloring of IHC and IF micrographs and subsequent image-based quantitative analysis of E-cadherin versus vimentin staining areas in these images was conducted using ImagePro-Plus as detailed previously (11). The percentage of Zeb1-positive nuclei with vimentin-positive cytoplasm was defined in three 40 × fields containing vimentin-positive areas and expressed as means with standard deviation. Within each experiment, uniform image acquisition settings were used, and images were batch processed to ensure unbiased comparison among samples. Pattern of invasion assessment using the Brandwein-Gensler system (1) was reviewed by a head and neck pathologist (K.T. Montone).

Statistical analysis
Groups were compared in Figs. 1B and 4C using a one-way ANOVA. In Fig. 1B, the natural logarithm of area was used to make variances between groups more similar. In Fig. 5A, tumor volumes over time were compared using a two-way mixed ANOVA. In these analyses involving multiple comparisons, adjusted P values were computed using Tukey’s procedure. In Fig. 5C, differences in % staining area between groups were evaluated with a t test using Satterthwaite’s method to adjust for unequal variances. Data with error bars represent mean ± SEM.

Results

PDXs of human SCCs with infiltrative invasion contain abundant mesenchymal-like cells
Using the Brandwein-Gensler risk stratification system for SCC pattern of invasion (1, 3, 4), 4 infiltrative, high-risk tumors and 6 low-risk tumors were identified in a panel of 10 resected, advanced stage head and neck SCCs with diverse clinical and pathologic traits (Supplementary Table S1). To facilitate detection of mesenchymal-like tumor cells and comparison of their frequency between high- and low-risk groups, primary human tumors were directly passaged as PDXs in NSG mice. By replacing the human stromal component with mouse-derived stroma, direct in vivo passage allowed distinction of carcinoma cells having undergone EMT from stromal cells using a human-specific anti-vimentin antibody. Although high-risk tumors manifested less infiltrative invasion in PDX form relative to the clinical specimen, dual-label IHC showed their high content of vimentin-positive cells, which were rare or absent in low-risk tumors (Fig. 1A and Supplementary Fig. S1). Digital image analysis confirmed a wide, consistent disparity in vimentin staining between low- and high-risk groups (Fig. 1B). Localization of the EMT transcription factor Zeb1 (33) to vimentin-positive tumor regions was observed in high-risk PDXs (Fig. 1C), where 72 ± 7% and 55 ± 5% of Zeb1-positive nuclei in respective OCTT2 and LNT14 PDXs contained vimentin-positive cytoplasm. This result supports a role for ongoing EMT in generating the vimentin-positive tumor cells within PDXs and is consistent with the mesenchymal-like gene expression profile shown previously for vimentin-positive subpopulations within cell lines (11). Overall, our findings provide evidence in human SCCs for an association between the abundance of mesenchymal-like cells and an infiltrative invasion pattern that might predispose to treatment failure.

Migration of mesenchymal-like cells in collagen-embedded spheroids generates infiltrative invasion
Cell lines OCTT2 and LNT14 were established successfully from the 2 SCCs with infiltrative invasion shown in Fig. 1. To ensure clonal origin of heterogeneity arising from EMT within both lines, they were regrown from single colonies of FACS-purified E-cadherin–positive cells plated at clonal dilution. As showed previously, E-cadherin–positive OCTT2 cells undergo EMT...
to produce a mesenchymal-like subset that allows this cell line to mimic the heterogeneity of its tumor of origin (11). Similar heterogeneity was noted in LNT14 cells (Fig. 2A); yet E-cadherin–positive LNT14 cells in culture underwent more rapid EMT, resulting in their dilution to 1% to 5% of cells in initial passages (data not shown). To maintain a smaller proportion of mesenchymal-like cells resembling that in the tumor of origin, LNT14 cells were FACS purified for surface E-cadherin expression before use in subsequent in vitro studies.

Both cell lines formed spheroids that were invasive upon embedding in collagen matrix. In this system, OCTT2 cells produced 2 distinct invasion patterns: pushing fronts containing collectively migratory cells of epithelial morphology and infiltrative fronts arising from mesenchymal migration of spindle-shaped cells (Fig. 2B, top). DIC microscopy did not clearly distinguish 2 distinct invasive fronts in LNT14 spheroids (Fig. 2B, bottom). However, confocal IF subsequently identified E-cadherin–positive cells collectively migrating as projections that maintain cell–cell contacts in both cell lines; this morphology contrasted with the appearance of the fusiform, vimentin-positive population entering the collagen as single cells (Fig. 2C). These results showed that disparate invasion patterns are mediated in the spheroid model by epithelial and mesenchymal-like cellular components using distinct modes of migration.

EGFR expression is decreased in the mesenchymal-like component of spheroids and PDXs

Prior results in conventional cell culture have shown decreased EGFR expression in the mesenchymal-like subpopulation by flow cytometry and Western blot, which corresponds to diminished sensitivity to cetuximab (11).
To assess EGFR expression by mesenchymal-like tumor cells in a more physiologic context, dual IF staining with vimentin was conducted in OCTT2 and LNT14 cells grown as spheroids, as well as their PDXs of origin (Fig. 3). In OCTT2 spheroids and PDXs, EGFR staining and vimentin staining were almost fully segregated from each other into distinct tumor cell subsets. LNT14 spheroids and PDXs also exhibited prominent EGFR downregulation by such cells at the invasive periphery, while retaining EGFR expression in some vimentin-positive cells. Together, these results suggest that decreased EGFR expression in mesenchymal-like compartment may limit the efficacy of anti-EGFR drugs at the invasive front and thus mediate a shift in pattern of invasion upon treatment.

Targeting EGFR promotes an infiltrative stromal interface in spheroids containing mesenchymal-like cells

As shown previously for cetuximab (11), purified mesenchymal-like OCTT2 cells were resistant to erlotinib-induced growth inhibition relative to the E-cadherin-positive subset (Supplementary Fig. S2A). This resistance was consistent with their enrichment upon erlotinib treatment of unfractionated OCTT2 cells (Supplementary Fig. S2B). Based on these findings, the spheroid model was used to test whether currently used anti-EGFR drugs can alter SCC invasion pattern by creating a predominance of mesenchymal-like cells at the stromal interface. For this purpose, spheroids were treated with erlotinib, an EGFR-selective small molecule tyrosine kinase inhibitor, or cetuximab, a humanized anti-EGFR monoclonal antibody. Erlotinib produced growth inhibitory responses at an IC$_{50}$ near 1 μmol/L in LNT14 and OCTT2 cells, as well as in SCC13 cells (Fig. 4A), a cell line previously shown to lack detectable mesenchymal-like cells (11). Live–dead analysis of OCTT2 spheroids treated at this dose revealed individual fusiform cells infiltrating the stroma at the periphery despite central cell death (Fig. 4B), a finding suggesting a link between aggressive SCC invasion and resistance of mesenchymal-like cells to erlotinib. To validate this association, changes in distribution of E-cadherin–positive versus mesenchymal-like cells were determined during spheroid invasion upon anti-EGFR therapy. Preexisting subpopulations of E-cadherin and vimentin-positive cells were detectable in OCTT2 spheroids on day 0 after embedding, before invasion (Fig. 4C, top left). Over 3 days, untreated OCTT2 spheroids developed mixed invasive patterns composed of pushing fronts mediated by the E-cadherin–positive component, coexistent with infiltrative areas containing mesenchymal-like cells. Treatment of OCTT2 spheroids with erlotinib or cetuximab selectively diminished invasion of the...
E-cadherin positive cells, creating a stromal interface purely composed of individual infiltrating mesenchymal-like cells, whose migration continued in presence of drug (Fig. 4C, right). Quantitative analysis of OCTT2 spheroid images confirmed a loss of E-cadherin staining area upon erlotinib or cetuximab-treatment, resulting in a proportional increase in representation of mesenchymal-like cells (Fig. 4C, bottom left). Erlotinib had similar effects in LNT14 spheroids, blocking migration by the E-cadherin-positive component to produce an invasive front composed solely of mesenchymal-like cells (Fig. 4D). In contrast, erlotinib treatment of SCC13 spheroids, which lack a mesenchymal-like subpopulation and invade in an exclusively pushing pattern, produced a dose-dependent inhibition of invasion, which was fully abrogated at 1 μmol/L (Fig. 4E). These findings further implicate mesenchymal-like cells as key mediators of infiltrative SCC invasion and indicate that their resistance to anti-EGFR drugs can promote formation of a high-risk pattern of invasion in tumors where they preexist therapy.

In vivo cetuximab therapy in presence of mesenchymal-like cells potentiates their infiltrative invasion

Based upon these findings in spheroids, the effects of EGFR targeting upon invasion was evaluated further in vivo in presence or absence of a mesenchymal-like subpopulation, using xenografts of OCTT2 or SCC13 cells, respectively. Cetuximab treatment of established xenografts in NSG mice produced significant growth inhibition in both OCTT2 and SCC13 tumors (Fig. 5A). Although untreated OCTT2 xenografts maintained well-demarcated, pushing margins during growth, cetuximab therapy produced areas of invasion composed of infiltration by narrow strands and small islands of tumor cells extending beyond the grossly visible tumor mass. Dual-label IHC using human-specific anti-vimentin antibody showed vimentin expression in the isolated cells and small clusters predominating in these infiltrative regions of the invasive front (Fig. 5B). Quantitative image analysis of OCTT2 xenografts confirmed an increase in vimentin staining upon cetuximab therapy that was significant at the invasive front but not in central areas of tumor (Fig. 5C). By contrast, SCC13 xenografts showed growth inhibition in response to cetuximab without a shift in invasion pattern or emergence of a vimentin positive subpopulation (Fig. 5D). Together, these results offer in vivo evidence of EGFR inhibition producing more aggressive SCC invasion when mesenchymal-like tumor cells are present. They further support the fidelity of collagen-embedded spheroids for modeling the changes in tumor cell subpopulation dynamics that impact invasion during targeted therapy.

Discussion

SCCs have diverse biologic traits, ranging from welldemarcated lesions curable by excision alone to aggressive tumors showing infiltrative invasion, prominent stromal reactions, and early metastasis. Whether EMT drives aggressive carcinoma behavior remains an area of controversy (34), in part because discrimination of tumor cells undergoing EMT in tissues is impaired by their markers being shared by human stromal cells. To address this limitation here, human stromal elements in primary head and neck SCCs were replaced with mouse-derived components by in vivo passage as PDXs. Although the mouse stromal environment allowed less SCC infiltration, these PDXs provided new evidence that tumor cells having undergone EMT are highly represented within the infiltrative subset of tumors. We showed that relative resistance of these mesenchymal-like cells to EGFR inhibition can lead to current EGFR-targeted drugs simultaneously causing partial tumor regression and promoting infiltrative histology. These results provide a novel link between therapeutic EGFR inhibition and promotion of a histology at the SCC invasive front that, in untreated SCCs, has been associated with aggressive clinical behavior. Importantly, enhanced tumor progression and poorer clinical outcomes in patients treated with EGFR inhibitors have not been shown and cannot be concluded here.

Our results support a model in which a large preexisting subpopulation of mesenchymal-like tumor cells is necessary for cetuximab or erlotinib to produce more infiltrative invasion during tumor regression (Fig. 6). In cell lines containing large mesenchymal-like subsets, the effect seems mediated primarily by sensitivity of the epithelial subpopulation to growth inhibition during EGFR targeting. A paucity of erlotinib-induced apoptosis
in conventional culture (data not shown) was contrary to the cell death observed in the spheroid format, which commonly alters drug responses and may more closely model in vivo biology (35, 36). An alternate possibility is that EGFR inhibition does not merely enrich resistant mesenchymal-like cells but also promotes expansion of this cell pool by driving ongoing EMT, thus allowing further escape from EGFR dependence. Studies indicating a requirement for ongoing growth factor signaling for EMT (37–39) however predict that EGFR targeting would instead block further EMT-mediated expansion of the mesenchymal-like subset, as illustrated in our working model. Attempts to test this hypothesis directly by generating spheroids from purified E-cadherin–positive OCTT2 cells were inconclusive, as these purified cells rapidly repopulated the mesenchymal-like compartment even in the presence of erlotinib (data not shown). This outcome may reflect a subset of E-cadherin–positive cells already being committed to EMT at the time of FACS purification.

Our results lead to speculation that anti-EGFR therapy disparately impacts local progression of 2 distinct SCC
subtypes defined by the presence or absence of mesenchymal-like tumor cells. However, their relevance to the ongoing discussion regarding the role of EMT in metastatic progression is unclear (34). Notably, the patients of origin for 5 of the 6 PDXs in which mesenchymal-like cells were rare or absent still had nodal metastases at diagnosis (Table S1). These findings may indicate that the key components of the EMT program required for metastatic dissemination are not discretely encompassed by the subpopulation phenotype as defined here. Indeed, no single marker is likely to fully capture a range of phenotypes generated by the EMT program, as evidenced here by incomplete overlap between vimentin and Zeb-1 markers.

Detecting mesenchymal-like differentiation may ultimately prove valuable in rational drug selection for a malignancy presently lacking in biomarkers to guide use of anti-EGFR therapy. Despite ample evidence associating EGFR gene amplification and/or overexpression with poor prognosis in head and neck SCCs (40, 41), gene copy number and IHC detection have failed to predict the response to EGFR inhibition for individual patients (42, 43). A few genetic alterations are proven to predict sensitivity or resistance to anti-EGFR therapy, specifically EGFR or K-Ras-activating mutations in lung or colon carcinomas, respectively (44–46); however, these mutations are seldom found in SCCs, with exception of the squamous subgroup of non–small cell lung cancers. The paradigm of directing SCC therapy at overall tumor cell phenotypes rather than individual driving oncogenes is advanced by the recently published cancer genome for head and neck SCC, which largely fails to identify new, readily targetable molecules among common mutations (47). Based on the dependence of EMT on MAP kinase pathway activation (48), specific inhibitors of MAP kinase (49) may hold promise in this context.
signals (38, 39), we speculate that mesenchymal-like cells are more likely to arise within poorer prognosis tumors with highly activated EGFR signaling. Therefore, development of mesenchymal-like cells with aggressive, drug-resistant features indeed may directly contribute to poorer prognosis in tumors expressing high overall EGFR levels, despite EGFR downregulation by the mesenchymal-like subset itself.

The finding of infiltrative invasion in association with abundant mesenchymal-like cells may have additional implications for surgical therapy. Highly infiltrative tumors with poorly defined boundaries may recur even after wide margin resections, whereas close margins can achieve tumor control even for certain locally advanced head and neck SCCs (48). Although avoiding the morbidity of a wide resection would be desirable for the less infiltrative tumors, the inability of diagnostic biopsy specimens to represent the invasive front adequately prevents use of this feature in clinical decision making. Figure 1 and Supplementary Fig. S1 suggest that mesenchymal-like differentiation within SCCs manifests as infiltrative behavior at the invasive front but is not limited to the tumor–stromal interface. The potential for detection of mesenchymal-like differentiation within biopsies to serve as a reliable indicator of infiltrative histology therefore warrants further assessment of our findings here in larger patient populations. Finally, the increased infiltration by mesenchymal-like cells detected here in an SCC treated with cetuximab has bearing on the longstanding question of how neoadjuvant chemotherapy alters subsequent surgical resection margins. This issue is particularly pertinent to therapy of early-stage esophageal SCC, where induction chemo-

therapy before esophagectomy improves survival (49) and has become widely practiced. Testing the hypothesis that surgical margins for tumors containing abundant mesenchymal-like cells are not improved by neoadjuvant use of EGFR inhibitors or other drugs could ultimately spare induction chemotherapy for certain patient subgroups.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: D. Basu, A.F. Bewley, K. Rasanen, N.D. Facompre, A.K. Rustgi
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): D. Basu, S.M. Sperry, G.S. Weinstein
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): D. Basu, A.F. Bewley, S.M. Sperry, P.A. Gimotty, J. Alan Diehl
Writing, review, and/or revision of the manuscript: D. Basu, A.F. Bewley, S.M. Sperry, K.T. Montone, P.A. Gimotty, K. Rasanen, N.D. Facompre, G.S. Weinstein, H. Nakagawa, A.K. Rustgi
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): D. Basu, A.F. Bewley, K.T. Montone
Study supervision: D. Basu, N.D. Facompre, M. Herlyn

Grant Support
This work is supported by NIH grants K08 DE022842 (D. Basu), P01 CA098101 (P. Gimotty, A.K. Rustgi, J. Alan Diehl, H. Nakagawa, M. Herlyn), and F30 DK053036, as well as AAO-HNS Resident Research Awards (A. Bewley, S. Sperry). D. Basu is also partly supported through facilities and resources of the Philadelphia VA Medical Center.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received December 14, 2012; revised July 8, 2013; accepted July 30, 2013; published OnlineFirst August 12, 2013.
References

41. Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E. ROCK- and myosin-dependent matrix deformation enables pro-

Molecular Cancer Therapeutics

EGFR Inhibition Promotes an Aggressive Invasion Pattern Mediated by Mesenchymal-like Tumor Cells within Squamous Cell Carcinomas

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-12-1210

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2013/08/13/1535-7163.MCT-12-1210.DC1

Cited articles
This article cites 47 articles, 12 of which you can access for free at:
http://mct.aacrjournals.org/content/12/10/2176.full#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/12/10/2176.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://mct.aacrjournals.org/content/12/10/2176.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.