








nucleotides (GT) that define the conserved splice acceptor
site (Supplementary Fig. S1). PCR and Sanger sequencing
were conducted to validate the somatic DNA mutation
and the resulting mutated cDNA confirming an in-frame
splicing event of RB1 exon 11 to 13 (Supplementary Fig.
S1). Importantly, this exon skipping results in an in-frame
RB1 transcript but with 44 amino acids deleted within
the conserved RB domain. However, this deleted RB1
transcript is expressed at normal levels by differential
expression analysis of RNA-seq data.

Large structural changes across the genomesofmTNBC
tumors were also assessed using genome-sequencing
data (shown schematically in Fig. 2). Among the focal
(15Mb) homozygous deletions that occurred inmore than
1 tumor were unique homozygous deletions in 2 tumors
(mTNBC1,mTNBC6) that involved the adjacentCTNNA1
and SIL1 loci at 5q31.2 (Fig. 3). Integration of RNA-seq
differential expression analyses using both comparison
against nonmalignant samples and using our outlier anal-
ysis showed significant downregulation of CTNNA1 but
not SIL1 in both tumors (Fig. 3). Interestingly, these dele-
tions occurred in 2 of 6 tumors among African American
patients.

Focal amplifications were also detected that encompass
important oncogenes including WT1/WIT1, IRS2, MYC,
WHSC1L1/FGFR1, MYB, PIK3CA, IQGAP3, KRAS, HRAS,

and ARAF (Supplementary Table S8). Of particular interest
was a 1.5 Mb region detected as a copy number ampli-
fication (log2FC ¼ 2.2) at 7q34 in the tumor from mTNBC2
that encompassed only 4 genes, including the BRAF locus.
RNA-seq data showed increased BRAF expression when
comparing against nonmalignant controls (log2FC ¼ 1.7)
and when comparing across tumors using the outlier ana-
lysis (log2FC¼ 2.2) in which this was the only tumor show-
ing overexpression of BRAF. Deconvolution of mate-pair
data revealed that this ampliconwaspart of amore complex
rearrangement, likely a circular extrachromosomal double
minute that includes chromosome 7 regions encompas-
sing the BRAF oncogene along with genomic material from
chromosomes 1 and 12 (Fig. 4). We conducted interphase
FISH on paraffin sections from this and other tumors using
a bacterial artificial chromosome (BAC) clone containing
the BRAF locus and were able to validate the presence of
amplified double minutes containing BRAF (Fig. 4). To our
knowledge, this is the first report of BRAF amplification
and double minutes in a TNBC tumor, the findings of
which, may have therapeutic implications.

In addition, we detected distinct somatic alterations at
the ERBB4 locus in 3 of 14 mTNBC. These include a 4 kb
intronic homozygousdeletion (mTNBC1), a somatic point
mutation (mTNBC2), and a breakpoint defining a larger
21 Mb rearrangement at 2q34-q37.1 (mTNBC6). We also
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observed significant downregulation of ERBB4 in all
mTNBC in our study, when comparing mTNBC tumors
against nonmalignant controls. These data support fre-
quent ERBB4 deregulation in mTNBC both at the DNA
and RNA levels. Furthermore, the PGCP genewas altered
bymultiplemechanisms in 3 different tumors, including 2
independent translocations, and represents the only gene
involved in somatic translocation events in more than 1
tumor (Supplementary Table S9).

Potential therapeutic targets in mTNBC
To facilitate genomic interpretation to uncover poten-

tial therapeutically relevant events, we developed and
used a semiautomated knowledge mining workflow.
For this study, the system was based on online com-
mercial databases and pathway tools including
NextBio, Ingenuity IPA (Ingenuity Systems), and Meta-
core, leveraging prior knowledge curated from the
literature. Table 2 provides information on potentially
informative genomic alterations within our cohort of
patients. Clinical treatment histories are provided for
each patient in Table 3. Of particular interest were
alterations that converged on the RAS/RAF/MEK/ERK
and PI3K/AKT/mTOR pathways in upward of 9 of 14
patients (Fig. 5).
Among the events detected in mTNBC1 were a single

exon frameshift deletion within PTEN, and a region of
focal copy number gain (log2FC ¼ 1.4) encompassing
PIK3CA. After CLIA validation of PTEN protein loss in
this tumor, the patient received thedual phosphoinositide
3-kinase (PI3K) and mTOR inhibitor BEZ235 on a phase I
study. Interestingly, this patient’s cancer also harbored a
homozygous frameshift mutation in NF1, an inhibitor of
RAS and mTOR (30, 31).

Sequence analysis of mTNBC2 revealed a high-level
BRAF amplification, which was validated as being part of
complex extrachromosomal double minute by FISH (Fig.
4). This patient’s cancer also showed broad amplification
and overexpression of HRAS and underexpression of
INPP4B, when comparedwith nonmalignant breast tissue
control samples (Table 2). These findings suggested acti-
vation of both the RAS/RAF/MEK/ERK and PI3K/
AKT/mTOR pathways in this cancer (Fig. 5). CLIA val-
idation of BRAF overexpression and INPP4B underex-
pression by microarray was completed, and the patient
was then treated on a phase I studywith the oralmitogen-
activated protein/extracellular signal–regulated kinase
(MEK) inhibitor, trametinib (GSK1120212), in combina-
tionwith the oral AKT inhibitor, GSK 2141795 (32).With 2
months of treatment, her breast mass nearly completely
regressed. She developed toxicities including skin ulcer-
ation, diarrhea, anorexia, and significant fatigue. Shortly
thereafter, thepatient had a seizure andwas found tohave
a hemorrhagic brain metastasis and she discontinued the
investigational therapies.

Finally, in addition to cancers with alterations in the
RAS/RAF/MEK/ERK and PI3K/AKT/mTOR path-
ways, NGS also identified mTNBC with homologous
recombination defects. Patient mTNBC9 had a complete
response with preoperative chemotherapy (doxorubicin,
cyclophosphamide then paclitaxel), and at bilateral mas-
tectomy. Approximately 2.5 years later, she developed
metastatic disease and had a complete response docu-
mented on positron emission tomography computed
tomography scan with 4 months of treatment with che-
motherapy (gemcitabine, carboplatin, and iniparib)
on an expanded access protocol. Of interest, sequencing
analysis of patient mTNBC9 revealed somatic events in
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multiple genes encoding proteins involved in DNA
repair, double-strand break repair, and homologous
recombination repair (Fig. 6). This included homozygous
deletion and underexpression of BRCA2, significant
underexpression of BRCA1 by outlier analysis, an SNV
in DCLRE1C (Artemis), and a structural event encom-
passing BRIP1 (Table 2; Fig. 6).

Discussion
This study represents a comprehensive sequence-based

genomic survey of somatic events occurring in an ethni-
cally diverse cohort of 14mTNBC, and describes potential
genotype–phenotype correlations through the identifica-
tion of targetable mutations and clinical outcomes.
Recently, Shah and colleagues provided insights into the
genomic makeup of primary TNBC through genome,
exome, and transcriptome sequencing of a cohort of
approximately 100 tumors (20). Other recent studies have
also appliedwhole genome and or exome sequencing to a
large series of primary breast cancers, including TNBCs
(21, 33, 34). These studies have provided an understand-
ing of tumor cell clonality and heterogeneity and have
suggested new biologic subsets of TNBC.

Transcriptome sequencing and differential expression
analysis against nonmalignant hyperplastic breast tissues
revealed significant ontologic profiles associated with G2

–M checkpoint and proliferation indicative of basal-like
breast cancers. The FOXM1 gene was overexpressed in 12
of 14 tumors. FOXM1 is a transcriptional activator
involved in proliferation, cell-cycle control, and mitosis,
through the regulation of many genes involved in G2–M
and mitotic checkpoint, such as AURKA, AURKB, PLK1,
andCENPF among others (35). The FOXM1 genewas also
recently highlighted as significantly deregulated in serous
ovarian tumors and breast cancer (36–38).

The present study integrated comprehensive DNA and
RNA sequencing data in mTNBCs and confirmed the
presence of frequent known mutations including TP53
mutation (21). This study also revealed allele-specific
expression of TP53mutations. This observation is consis-
tent with the absence of expression of wild-type TP53
within neighboring normal cells adjacent to TP53-mutat-
ed cancer cells as has been previously reported, for which
the actual mechanism remains unknown (39). Recent
studies of malignant brain tumors suggest that similar
monoallelic expression of TP53 due to LOH have prog-
nostic value toward outcome (40). Integrated analysis of
DNA and RNA data also helped to reconcile transcrip-
tional consequences of mutations encompassing consen-
sus splice sites. This was evidenced by a 39 bp deletion in
RB1 encompassing the consensus splice acceptor site that
results in exon skipping and an in-frame, but likely non-
functional form of RB1 that was expressed at normal
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levels. In this case, the use of a 30 probe microarray would
shownormalRB1 expression, however, this formofRB1 is
likely nonfunctional due to loss of a large number of
amino acids within a highly conserved domain.
This study also highlights additional genes that may

play a role in mTNBC pathogenesis including CDH5,
HERC1, LRP1B, and TOP2A. CDH5 is a member of the
cadherin family of cell adhesion molecules, and has been

previously identified as a strong candidate tumor sup-
pressor gene (41). HERC1 is an E3 ubiquitin ligase, and is
known to interact with and destabilize the tumor sup-
pressor TSC2, a negative regulator of mTOR (42). We also
detected mutations in multiple tumors within the LRP1B
gene, which is frequently mutated in non–small cell lung
carcinoma and recently associated with acquired chemo-
therapeutic resistance in ovarian cancer (43, 44). TOP2A

Table 2. Highlighted cancer gene alterations in mTNBC

Patient Ampa Delb Mutated
Structural
variant Overexpressed genes

Underexpressed
genes

mTNBC1 LRP6 CTNNA1 NF1 ERBB4 EGF, HSP90AA1, RASGRF1,
TFDP1, MDM4, CCNE2, AR

CTNNA1, NF1
PIK3CA PTEN RB1
PTGS2 GSK3B

mTNBC2 BRAF TP53 BRAF, NRG3, NFKB2, PARP1,
NFKBIA, HRASMYC ERBB4

NOTCH2
TERT

mTNBC3 SMAD3 PDGFRB, VEGFC, PDGFRA,
GLI2, VEGFASMAD6

mTNBC4 WT1 KLF8 TP53 WT1, PAK7 ZBTB16/PLZF
mTNBC5 IQGAP3 ERCC2 LRP1B IL2, ALK, AKT2, CBLC, CCNE1,

MYCN
SFN[14-3-3 sigma]

mTNBC6 WHSC1L1 FBXW7 TOP2A ERBB4 ID2, RPRM, EREG FBXW7, CTNNA1,
DKK1FGFR1 CTNNA1 FGFR2

mTNBC7 NOTCH2 TP53 NOTCH2, KIT, GHR, TGFB2,
MMP9

CDKN2A, SFN[14-3-3
sigma]DNER

mTNBC8 ATG5 TP53 CAMK2D, ATG5, PTGS2, MET,
TGFB2, AR, PDGFRAMDM2

TOP2A
BRD4
CDH5

mTNBC9 BRCA2 TP53 RB1 ERCC4, CCNE2, CDK1, MET,
SMC1B, ALK, MYC

BRCA1, BRCA2
DCLRE1C PTEN
DDB1 BRIP1
RIF1
MEI1

mTNBC10 KRAS TP53 KRAS, DNTT ID4, SFRP1
CDH5

mTNBC11 SMAD3 PTEN BRCA1c RB1 NOTCH3, TERT, CCNE2,
NFKB1, MET, RET

NFATC2, TRAF3,
SFRP1, DTX1, PTEN,
PIK3CG

PTCH2 RHEB

mTNBC12 MYB ARAF TP53 ELK1, ARAF, HMGA2, FGFR2,
GLI1, SHH, TGFB2, PDGFRB,
PDGFRA

CDKN2A
CDH5

mTNBC13 CADM2, TNNI2 TP53 DLL1, CCNB3, FGFR2, SMAD6 SFRP2, PTCH2
ERCC2 STAM2

HMMR
mTNBC14 FOXM1 PTPRM TP53 IGFBP3, PRKCG, NRG4, NRG1 CDKN2A

RUNX1 STAT1

aFocal amplification from outlier analysis with log fold-change � or � 2.0 and P value P � 0.05.
bFocal homozygous deletion from outlier analysis with log fold-change � or � 2.0 and P value P � 0.05.
cGermline mutation detected from outlier analysis with log fold-change � or � 2.0 and P value P � 0.05.
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controls the topologic states of DNA (45), and alterations
in TOP2A have been associated with drug resistance in
breast cancer (46).

Copy number analysis using whole-genome sequenc-
ing data suggest that homozygous deletion of CTNNA1
may be enriched among women of recent West-African
descent, who typically have more aggressive and treat-
ment-resistant disease. CTNNA1 encodes catenin (cad-
herin-associated protein), a-1, a protein that forms a

complex to anchor E-cadherin to the cell membrane to
maintain normal cell adhesion properties (47). It is well
known that aberrations deregulating this complex result
in dissociation of cancer cells from tumor foci and repre-
sent a key primer for invasion and metastasis (48). Fur-
thermore, a neuronal knockout model of a-catenin
showed abnormal CNS cell growth with spreading of
ventricular zone cells throughout the brain,which formed
invasive tumor-likemasses similar to those seen in human

Table 3. Clinical history and treatment outcome of mTNBC

Participant Treatment while on sequencing study
Best-response
disease site Additional history and best response

mTNBC1 BEZ235 (PI3K/mTOR inhibitor) SD pCR: preoperative AC/T;
Chest wall PR: iniparib/gemcitibine/carboplatin;

PD: bortezomib/cyclophosphamide/
peg-ylated liposomal doxorubicin

mTNBC2 Trametinib (MEK inhibitor) þ
GSK2141795 (AKT inhibitor)

PR PR: gemcitabine/carboplatin; docetaxel/
cyclophosphamide; paclitaxel/
bevacizumab

Breast PD: doxorubicin/cyclophosphamide
mTNBC3 BEZ235 (PI3K/mTOR inhibitor) PD SD: iniparib/gemcitabine/carboplatin

Lung
mTNBC4 Eribulin SD PR: ixabepilone/capecitabine;

Lung/nodes PD: iniparib/gemcitabine/carboplatin;
PD: bortezomib/cyclophosphamide/
pegylated liposomal doxorubicin

mTNBC5 EZN 2208 (TOPO1 inhibitor) PR PR: preoperative AC/T;
Nodes PD: iniparib/gemcitabine/carboplatin

mTNBC6 Paclitaxel þ bevacizumab þ everolimus
(mTOR inhibitor)

CR No response to preoperative AC/T
Chest wall

mTNBC7 Trametinib (MEK inhibitor) þ
GSK2141795 (AKT inhibitor)

PD
Chest wall

Primary refractory to all cytotoxic
agents

CR: nab-paclitaxel/bevacizumab/
radiation

mTNBC8 Iniparib þ gemcitabine þ carboplatin Response Bone-only metastatic disease at
presentationBone

mTNBC9 Iniparib þ gemcitabine þ carboplatin CR PR: preoperative AC/T;
Nodes PD: iniparib/gemcitabine/carboplatin

mTNBC10 EZN 2208 (TOPO1 inhibitor) PR PR: preoperative AC/T;
Chest wall PD: iniparib/gemcitabine/carboplatin

mTNBC11 Iniparib þ gemcitabine þ carboplatin PD Primary refractory to preoperative AC/T;
Marrow/CNS PD: iniparib/gemcitabine/carboplatin

Rapid deathmarrow and brainmetastasis
mTNBC12 Nab paclitaxel þ capecitabine PR Bone and diffuse adenopathy at

presentationNodes
mTNBC13 Iniparib þ gemcitabine þ carboplatin PR

Liver
BRCA2 mutation; ovarian cancer
(paclitaxel/carboplatin) and bilateral
breast cancer;

PD: ixabepilone/capecitabine
mTNBC14 BEZ235 (PI3K/mTOR inhibitor) SD Regional lymphadenopathy primary

refractory to all cytotoxic agents/
radiation

21% Reduction
in nodes

Abbreviations: AC/T, doxorubicin, cyclophosphamide, paclitaxel; CR, complete response; pCR, pathologic complete response; PD,
progressive disease; PR, partial response; SD, stable disease.
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CNS tumors, such as medulloblastoma, neuroblastoma,
and retinoblastoma (49). Interestingly, the 2 tumors in this
study that exhibit CTNNA1 loss were both from African
Americanpatients. In aprevious studydescribing somatic
alterations by whole-genome sequencing of both a pri-
mary and metastatic lesion from a single 44-year-old
African American patient with mTNBC, a homozygous
deletionwas alsodetectedat theCTNNA1/SIL1 locus (19).
Therefore, taken together, thesedata suggest an important
role for loss of CTNNA1 in providing some TNBC tumors
with invasive metastatic potential, and suggest enrich-
ment of this aberration in African American TNBC.
Furthermore,weuncovered anumber of somatic events

involving the ERBB4 locus. The role of ERBB4 in mam-
mary physiology, including maturation of mammary
glands during pregnancy and lactation through Stat5
activation iswell known (50).ERBB4mutations have been
reported in multiple tumor types including lung carcino-
ma and melanoma, in which mutations are believed to be
oncogenic (43, 51). However, ERBB4 has also been impli-
cated as a tumor suppressor with growth inhibitory func-
tions, and reactivation of epigenetically silenced ERBB4
using 5-aza-20-deoxycytidine resulted in increased apo-
ptosis in BT20 breast cancer cells (52). These are among the
first data supporting somatic events occurring at the
ERBB4 locus in TNBC.
These analyses have further revealed genomic contexts

that may have significant downstream therapeutic impli-
cations including dual activation of the RAS/RAF/MEK/

ERK and PI3K/AKT/mTOR signaling pathways in
mTNBC. Up to 9 of 14 patients with mTNBC in this study
showed potentially biologically significant somatic altera-
tions in genes involved in PI3K/AKT/mTOR and/or
RAS/RAF/MEK/ERK signaling pathways (Fig. 5). Three
cancers contained single events including focal KRAS
amplification, focalARAF amplification, and focal FBXW7
homozygous deletion. However, 2 cancers (mTNBC1 and
mTNBC2) harbored multiple events supporting concom-
itant activation of both signaling pathways. Observations
supporting activation of the RAS/RAF/MEK/ERK and
PI3K/AKT/mTOR pathways in TNBC have been previ-
ously suggested both in vitro and in vivo (53). A study
based on a systems approach observed that basal breast
cancer cell lineswere susceptible toMEK inhibitors in vitro
(54). Interestingly, both tumors showing dual PI3K/
AKT/mTOR and RAS/RAF/MEK/ERK pathway altera-
tions in our study have gene expression ontologies indic-
ative of basal tumorswith enrichment of genes involved in
cell-cycle control, G2–M checkpoint regulation, and mito-
sis (Supplementary Table S4; refs. 9–12). Furthermore,
MEK inhibition was shown to illicit a feedback loop
through the PI3K/AKT pathway, leading to limited anti-
tumor efficacy with MEK inhibition alone; however, syn-
ergistic antitumor effects occurred with dual MEK and
PI3K inhibition (54). This hypothesis was further sup-
ported using an independent set of MEK and PI3K inhi-
bitors both in vitro and in vivo (55). Itwas shown that PTEN
loss reduces the effectiveness of single agent MEK inhi-
bition, and that combined inhibitionofMEKandPI3Kwas
required to effectively reduce cell-cycle progression and
basal breast cancer cell growth (55).

This study also highlights the potential of using whole
genome and transcriptome analysis for detecting target-
able eventsmTNBC. For example, the observationof high-
level BRAF amplification and overexpression inmTNBC2
raises the question of how best to therapeutically target
this alteration. In the context of wild-type BRAF, RAF
inhibitors can enhance tumor growth in a RAS-dependent
manner,whereas this is not observedwithMEK inhibitors
(55). As mTNBC2 had wild-type BRAF amplification, a
PI3K/AKT inhibitor in combinationwith aMEK inhibitor
might be more a rational therapeutic strategy than a
combination including a RAF inhibitor. Furthermore,
mTNBC2 also had significant underexpression of
INPP4B, a negative regulator of PI3K (56).

Here, we applied whole genome and transcriptome
sequencing to the problem of mTNBC. One limitation of
our study is that of sensitivity of 30� genome coverage in
identifying low-levelmutations in tumors.Deep exomeor
panel-based sequencing approaches have higher sensitiv-
ity, thus are likely to have lower false-negative rates for
coding mutation detection. These approaches can also
identify low-levelmutations associatedwithminor tumor
cell clones (34). However, these approaches have the
limitation of missing important structural events, as cod-
ing mutations and small indels are not the only mechan-
isms of biologically and clinically relevant somatic
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change. The use of long insert whole-genome sequencing
offers a greater power for detecting breakpoints and
structural events that might encompass important can-
cer-related genes. For instance, some events such as inver-
sions and moderately sized copy number changes in
important cancer-related genes might be missed if using
an exome or panel approach. Of note, we detected 2 copy
neutral tandem overlapping inversion events within the
INPP5F locus in mTNBC3. As both inversions span
multiple exons of the INPP5F locus, it is likely that this
structural alteration would lead to significant gene dis-
ruption in this tumor. INPP5F encodes inositol polypho-
sphate 5-phosphatase F, which modulates AKT/GSK3B
signaling by decreasing AKT and GSK3B phosphoryla-
tion (57). A number of genes were involved in translo-
cation events that might also be relevant in cancer
(Supplementary Table S9). These types of events are
likely to be missed by exome or panel-sequencing
approaches. Thus, future approaches might take advan-
tage of deep (>100�) exome sequencing for high sensi-
tivity detection of low-level point mutations, in conjunc-
tion with low coverage (>8�) long insert genome
sequencing to capture relevant structural changes in
tumors.

Through the analysis of mTNBC, these results add to
our nascent understanding of these generally irremedia-

ble tumors. This study is integrative and comprehensive
in nature through the generation and analysis of multiple
dimensions of genomic data in conjunction with prospec-
tive clinical outcomes. These observationsmust be further
explored in independent cohorts of molecularly and clin-
ically characterizedmTNBCs to evaluate the translational
impact of these findings.
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