
(MAPK) signal transduction pathways and play crucial
roles in cancer progression (4, 18–24). As expected these
targets also show altered expression/activation levels in
MUC13 overexpressing and knockdown pancreatic can-
cer cells (Fig. 5A). Total and phosphorylated PAK1 and
ERK were upregulated with MUC13-overexpression and
downregulated with MUC13 knockdown (Fig. 5A).
Even though total Akt levels remained the same, phos-
phorylated Akt was upregulated with MUC13-overex-
pression and was downregulated with MUC13 knock-
down (Fig. 5A).
Given the importance of aberrant p53 in cancer devel-

opment, we also examined the effect of MUC13 on p53
expression. Our data suggest downregulation of p53 at
both RNA (data not shown) and protein levels in high
MUC13-overexpressing cells compared with control cells
(Fig. 5A). Conversely, p53 expression was upregulated
upon knocking down MUC13 in HPAFII cells compared
with control cells (Fig. 5A). These results imply a novel
regulatory mechanism of p53 by MUC13 overexpression.
To investigate howMUC13 expression influences inva-

sion of pancreatic cancer cells, we determined the expres-
sion of S100A4 in MUC13-overexpressing and MUC13-

knockdown cells. A member of the S100 calcium-binding
proteins, S100A4 is linked to cancer invasion and metas-
tasis (25, 26). MUC13-overexpressing cells had higher
RNA (data not shown) and protein levels of S100A4
compared with control cells (Fig. 5A). However,
MUC13-knockdown cells (shMUC13D) showed lower
RNA (data not shown) and protein levels of S100A4
compared with control cells (Fig. 5A).

MUC13 expression inßuences in vivo tumorigenicity
To determine the tumorigenic potential of MUC13 in

vivo, we examined the tumor growth pattern of MUC13-
expressing cells in a pancreatic cancer xenograft mouse
model. MiaPaca cells expressing high MUC13 (MP4)
formed significantly larger (P < 0.05) tumors and had
reduced survival compared with MUC13 null (MPPC)
cells (Fig. 6A). To confirm the association of MUC13
expression with tumor growth, we used MUC13 knock-
down HPAFII cells for in vivo tumorigenesis and survival
studies. Tumors from the MUC13 knockdown cells grew
slower, were significantly smaller (P < 0.01), andmice had
significantly improved survival compared with the mice
injected with control cells (Fig. 6B). Analysis of xenograft
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Figure 3. MUC13expression increases cellularmigration and invasion. A, cellularmotility assay.MiaPaca-derived clonesweremixed into agarose solution and
dropped onto fibronectin/bovine serum albumin (BSA)-coated plates. MUC13-expressing cells showed an increase in cell migration (b, c and e, f) compared
with MUC13-null cells (a, d) at 24 and 48 hours. Black arrows indicate representative areas with migratory cells. AB, agarose bead; MC, migratory cells.
Original magnification, �100. B, quantitative Boyden's chamber cell migration assays. Migratory cells were counted following 48 hours incubation
in the presence of a serum gradient. Mean number of cells in 10 fields of view. Mean � SE; n ¼ 3; �, P < 0.05. C, Matrigel cell invasion assay. Invasive cells
were counted following 48 hours incubation in BDBiocoatMatrigel invasion chambers.Mean number of cells in 10 fields of view.Mean�SE; n¼ 3; �,P <0.05.
D, extracellularmatrix cell adhesion assays. The number of adhesive cells was determined after 1 hour incubation inwells coatedwith fibronectin, laminin, and
BMC. BSA was used as a negative control. Mean � SE; n ¼ 6; �, P < 0.05.
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tumors by immunohistochemistry showed a change in
HER2 and p53 expression in cells overexpressingMUC13
(MP4) or in cells with suppressed MUC13 expression
(shMUC13D; Supplementary Fig. S5A and B). Similar to
the in vitro analysis, in xenograft tumors, MUC13 over-
expressing cells have increased HER2 and decreased p53,
whileMUC13knockdown cells havedecreasedHER2 and
increased p53.

Discussion

The high mortality rate from pancreatic cancer is pri-
marily attributed to the inability to detect pancreatic
cancer at an early stage, limited knowledge regarding the
etiology of the aggressiveness of thedisease, and lack of an
effective treatment modality (2). These facts accentuate
the need to identify novel molecular markers for early
diagnosis of pancreatic cancer and to reveal underlying
molecular mechanisms of the aggressiveness of the dis-
ease. In this study, for the first time, we have investigated
the expression profile of a newly identified transmem-
branemucin,MUC13, and its functional role in pancreatic

cancer progression. Our data show that MUC13 is highly
overexpressed in pancreatic tumors comparedwith unde-
tectable or faint expression in normal pancreas. MUC13
expression correlatedwith the differentiation status of the
tumor and was highest in well-differentiated tumor sam-
ples and lowest in poorly differentiated tumor samples
(Supplementary Fig. S1). Our findings suggest that
MUC13 is a pancreatic tumor-associated molecule and
may be useful for pancreatic cancer diagnosis. Given that
biochemical analysis suggests that MUC13 is cleaved
within the SEA domain (5, 6), our extracellular luminal
staining results suggest that MUC13 may be shed from
pancreatic cancer cells and released into the blood. In
addition, we have seen a progressive increase in expres-
sion and aberrant localization of MUC13 in pancreatic
intraepithelial (PanIN) lesions (data not shown). For these
reasons, there is a strong possibility that a MUC13-based
serum immunoassay can be developed as a screening
method for pancreatic cancer. Moreover, the intense
membrane staining (Supplementary Fig. S1) also indicates
that MUC13 may be an excellent target for antibody-
guided therapy of pancreatic cancer.
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Figure 4. Inhibition of MUC13 suppresses invasive phenotype of HPAFII cells. A, Boyden's chamber cell migration assays. Migratory cells were counted
following 48 hours incubation in the presence of a serum gradient. Mean number of cells in 10 fields of view. Mean � SE; n ¼ 3; �, P < 0.05. B, Matrigel cell
invasion assay. Invasive cells were counted following 48 hours incubation in BD Biocoat Matrigel invasion chambers. Mean number of cells in 10 fields
of view.Mean�SE;n¼3; �,P<0.05.C, extracellularmatrix cell adhesion assays. The number of adhesive cellswasdetermined after 1 hour incubation inwells
coated with collagen, fibronectin, laminin, and BMC. BSA was used as a negative control. Mean � SE; n ¼ 6; �, P < 0.05. D, aggregation
assays. Representative phase contrast images of aggregation assays after overnight incubation. Original magnification, �200.

Chauhan et al.

Mol Cancer Ther; 11(1) January 2012 Molecular Cancer Therapeutics30

on September 30, 2020. © 2012 American Association for Cancer Research. mct.aacrjournals.org Downloaded from 

Published OnlineFirst October 25, 2011; DOI: 10.1158/1535-7163.MCT-11-0598 

http://mct.aacrjournals.org/


To elucidate the functional roles and signaling path-
ways influenced by MUC13 in pancreatic cancer, we
exogenously expressed MUC13 in MiaPaca and Panc1
cells which resulted in increased cell proliferation and
colony forming efficiency of these cells. Conversely,
MUC13 knockdown in HPAFII caused a decrease in cell
proliferation and colony forming efficiency. The cellular
response to altered MUC13 expression was more pro-
nounced in cells showing higher expression or greater
knockdownofMUC13, indicatingavariable effectdepend-
ing upon the level of MUC13 expression. In our xenograft
mouse studies, MUC13 expression significantly augment-
ed pancreatic tumor growth and reduced mice survival
(Fig. 6A). In contrast, suppression of MUC13 expression
markedly reduced tumor growth and improved animal
survival (Fig. 6B). Because of its 3 EGF domains, MUC13
may influence expression, stabilization, recycling, and acti-
vation of EGF receptors, such as HER2, which in turn may
modulate the EGF receptor cascade and its downstream
signaling. Our data show that MUC13 modulates HER2
expression and its phosphorylation at tyrosine 1248, which
in turn, induces oncogenic downstream targets of HER2,
Akt and ERK (Fig. 5). Activation of PI3K/Akt and MAPK
signaling pathways by HER2 have been implicated in the
regulation of tumorigenesis (24, 27, 28).
Mutations in p53 have been well documented in a

variety of cancers, including pancreatic cancer, and such
mutations often create an oncogenic environment favor-
ing tumorigenesis. Currently, our data suggest that
MUC13 expression decreases the expression of p53. At
this time, it is unknown ifMUC13 regulates the expression

of wild-type and/or mutant p53 as both forms can be
detected by the immunologic methods (IHC and WB)
used in our study (the cell lines used have mutated
p53; refs. 29, 30). It has been reported that suppression
of mutant p53 can lead to a decrease in MiaPaca cell
proliferation through enhanced Id2 expression (31). Our
results may seem contradictory to the previous study as
MUC13 overexpression was associated with decreased
p53 and increased cell proliferation. However, our data
also show that MUC13 expression activates growth sig-
naling pathways (HER2, PAK1, ERK, andAkt). Therefore,
upon MUC13 overexpression, any inhibition in cell
growth due to the reduction of mutant p53 would be
countered by increased signaling through potent growth
signaling pathways. The link between MUC13 and p53
expression may be mediated by intermediates (e.g.,
through activation ofHER2) or could bemediateddirectly
by the cytoplasmic tail of MUC13 (MUC13-CT). Another
member of the transmembrane mucin family, MUC1, has
been shown to inhibit transcription of p53 through bind-
ing of the MUC1 cytoplasmic tail (MUC1-CT) with Krup-
pel-like factor 4 (KLF4)which enhances binding to PE21 (a
p53 repressor; ref. 32). A similar interaction is possible
with the cytoplasmic tail of MUC13 although future
experiments are needed to resolve this issue.

MUC13-overexpresion in MiaPaca cells increased
motility and invasion, while suppression of MUC13
decreased cellular motility and invasion in HPAFII cells.
Overexpression of PAK1 enhances migration of breast,
hepatocellular, and colorectal cancer cells and regulates
the actin cytoskeleton during cell motility (33, 34). In

Figure 5. MUC13 affects
tumorigenic signaling pathways.
A, immunoblot assay. Whole cell
lysates from MiaPaca MUC13
overexpressing andHPAFIIMUC13
knockdown cells were
immunoblotted with the indicated
antibodies. b-Actin was used as an
internal control. Each experiment
was repeated a minimum of 3 times
and a representative blot is shown.
B, confocal microscopy. Confocal
images of MUC13 overexpressing
MiaPaca (MP2 and MP4) and
MUC13 knockdown HPAFII
(shMUC13A and shMUC13D)
derived cells after immuno-
fluorescence for HER2. Original
magnification, �600 for MiaPaca
and �400 for HPAFII cells. HER2
expression is increased upon
overexpression of MUC13 in
MiaPaca cells and decreased upon
knockdown of MUC13 in HPAFII
cells.
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addition, S100A4 is associated with metastasis and inva-
sion (25, 26). Cancers expressing high levels of S100A4
have a worse prognosis compared with S100A4 negative
cancers (35). Interestingly, PAK1 and S100A4 increased
with MUC13 expression and decreased with MUC13
suppression (Fig. 5). In this study, we provide evidence
to suggest that MUC13 plays a role in the invasiveness of
human pancreatic cancer through the expression and/or
activation of PAK1 and S100A4.

MUC13 has a heavily glycosylated extracellular tandem
repeat domain (5) which may contribute to the antiadhe-
siveness of cells (16). Herein, we provide functional evi-
dence that the overexpression of MUC13 in MiaPaca cells
resulted in reduced cell–cell and cell-matrix adhesion. On
the contrary, MUC13 knockdown in HPAFII cells resulted
in increased cell–cell and cell-matrix adhesion (Figs. 3
and4).Reducedcell–cell adhesionduetoalteredexpression

or function of cadherins may allow cancer cells to dissem-
inate from sites of localized cancer and invade surrounding
tissues (36, 37). Therefore, MUC13 induced changes in cell
adhesion characteristics may potentiate invasion, metasta-
sis, and aggressiveness of pancreatic cancer.

In conclusion, our data provide novel evidence for the
aberrant expression of MUC13 in pancreatic tumors and
indicates the role of MUC13 in pancreatic tumorigenesis
and progression. We propose that MUC13 is overex-
pressed in pancreatic cancer and induces cellularmotility,
proliferation, and invasion through modulation of HER2,
PAK1, Akt, S100A4, and p53 expression/activation. Fur-
ther investigations are needed to understand the compre-
hensive molecular mechanisms of MUC13 and HER2
interplay in pancreatic cancer. This work is the first
demonstration of the direct association of MUC13 with
pancreatic cancer.
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