Abstract
Increasing evidence indicates that adhesion signaling plays an important role in the tumor microenvironment, contributing to cancer progression, invasion, and metastasis. Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase that regulates adhesion-dependent cell signaling and has been implicated in mediating steps in cancer progression and metastasis in many human cancers, including prostate. We have investigated the role of FAK in the appearance of adenocarcinoma (atypical epithelial hyperplasia of T antigen) and neuroendocrine carcinomas in the transgenic adenocarcinoma of mouse prostate (TRAMP) model using either Cre-mediated recombination to genetically ablate FAK expression or pharmacologic inhibition of FAK activity with the small-molecule inhibitor, PF-562,271. We provide evidence that loss of FAK or its inhibition with PF-562,271 does not alter the progression to adenocarcinoma. However, continued FAK expression (and activity) is essential for the androgen-independent formation of neuroendocrine carcinoma. These data indicate that integrin signaling through FAK is an important component of cancer progression in the TRAMP model and suggest that treatment modalities targeting FAK may be an appropriate strategy for patients with castrate-resistant cancer. [Mol Cancer Ther 2009;8(8):2470–77]
- kinase
- adhesion
- prostate cancer
- mouse models
- inhibitors
Footnotes
Grant support: CA 40042 (J.T. Parsons), CA 104106 (D. Theodorescu), and the Mellon Prostate Cancer Research Institute of the University of Virginia.
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
- Received March 20, 2009.
- Revision received May 6, 2009.
- Accepted May 26, 2009.
- © 2009 American Association for Cancer Research.