Skip to main content
  • AACR Journals
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Radiation Oncology
      • Novel Combinations
      • Reviews
      • Editors' Picks
      • "Best of" Collection
  • First Disclosures
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Journals
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Cancer Therapeutics
Molecular Cancer Therapeutics
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Radiation Oncology
      • Novel Combinations
      • Reviews
      • Editors' Picks
      • "Best of" Collection
  • First Disclosures
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Research Articles

Angiotensin-(1-7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduction in vascular endothelial growth factor

David R. Soto-Pantoja, Jyotsana Menon, Patricia E. Gallagher and E. Ann Tallant
David R. Soto-Pantoja
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jyotsana Menon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patricia E. Gallagher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Ann Tallant
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1535-7163.MCT-09-0161 Published June 2009
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Angiotensin-(1-7) [Ang-(1-7)] is an endogenous seven-amino acid peptide hormone with antiproliferative properties. Our previous studies showed that Ang-(1-7) inhibits the growth of human lung cancer cells in vitro and reduces the size of human lung tumor xenografts in vivo. In the current study, s.c. injection of Ang-(1-7) not only caused a significant reduction in human A549 lung tumor growth but also markedly decreased vessel density, suggesting that the heptapeptide inhibits angiogenesis to reduce tumor size. A decrease in human endothelial cell tubule formation in Matrigel was observed following a 16 h incubation with Ang-(1-7), with a maximal reduction at a 10 nmol/L concentration. Ang-(1-7) had similar antiangiogenic effects in the chick chorioallantoic membrane, causing a >50% decrease in neovascularization. The Ang-(1-7)-induced reduction in both endothelial cell tubule formation and vessel formation in the chick was completely blocked by the specific Ang-(1-7) receptor antagonist [d-proline7]-Ang-(1-7), suggesting that these biological actions are mediated by an AT(1-7) receptor. Ang-(1-7) significantly reduced vascular endothelial growth factor-A protein and mRNA in tumors from mice treated with the heptapeptide compared with saline controls as well as in the parent A549 human lung cancer cells in culture. These results suggest that Ang-(1-7) may attenuate tumor angiogenesis by reducing vascular endothelial growth factor-A, a primary proangiogenic protein. Taken together, this study shows that Ang-(1-7) exhibits significant antiangiogenic activity and may be a novel therapeutic agent for lung cancer treatment targeting a specific AT(1-7) receptor. [Mol Cancer Ther 2009;8(6):1676–83]

  • angiotensin
  • angiotensin-(1-7)
  • angiogenesis
  • vascular endothelial growth factor
  • lung cancer
  • lung tumor
  • human xenograft

Footnotes

  • Grant support: Susan G. Komen Breast Cancer Research Foundation; Department of Defense Breast Cancer Research predoctoral fellowship (D.R. Soto-Pantoja); NIH grants HL-051952 and HL-079498 (P.E. Gallagher and E.A. Tallant); and Unifi, Farley-Hudson Foundation, and Golfer's Against Cancer of the Triad.

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

    • Received September 5, 2008.
    • Revision received February 23, 2009.
    • Accepted March 21, 2009.
  • © 2009 American Association for Cancer Research.
View Full Text
PreviousNext
Back to top
Molecular Cancer Therapeutics: 8 (6)
June 2009
Volume 8, Issue 6
  • Table of Contents
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Cancer Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Angiotensin-(1-7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduction in vascular endothelial growth factor
(Your Name) has forwarded a page to you from Molecular Cancer Therapeutics
(Your Name) thought you would be interested in this article in Molecular Cancer Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Angiotensin-(1-7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduction in vascular endothelial growth factor
David R. Soto-Pantoja, Jyotsana Menon, Patricia E. Gallagher and E. Ann Tallant
Mol Cancer Ther June 1 2009 (8) (6) 1676-1683; DOI: 10.1158/1535-7163.MCT-09-0161

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Angiotensin-(1-7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduction in vascular endothelial growth factor
David R. Soto-Pantoja, Jyotsana Menon, Patricia E. Gallagher and E. Ann Tallant
Mol Cancer Ther June 1 2009 (8) (6) 1676-1683; DOI: 10.1158/1535-7163.MCT-09-0161
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Disclosure of Potential Conflicts of Interest
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • HPV-16 and Transcriptional Gene Silencing
  • E1A Nanoparticles Enhance Cervical Cancer Radiosensitivity
  • Internalizing Antibodies Targeting Tumor Sphere Cells
Show more Research Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About MCT

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Molecular Cancer Therapeutics
eISSN: 1538-8514
ISSN: 1535-7163

Advertisement