Skip to main content
  • AACR Journals
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Radiation Oncology
      • Novel Combinations
      • Reviews
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Journals
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Cancer Therapeutics
Molecular Cancer Therapeutics
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Radiation Oncology
      • Novel Combinations
      • Reviews
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Article

H-RAS V12–induced radioresistance in HCT116 colon carcinoma cells is heregulin dependent

Rubén W. Carón, Adly Yacoub, Xiaoyu Zhu, Clint Mitchell, Song Iy Han, Takehiko Sasazuki, Senji Shirasawa, Michael P. Hagan, Steven Grant and Paul Dent
Rubén W. Carón
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adly Yacoub
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaoyu Zhu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Clint Mitchell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Song Iy Han
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takehiko Sasazuki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Senji Shirasawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael P. Hagan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steven Grant
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul Dent
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published February 2005
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

The abilities of mutated active K-RAS and H-RAS proteins, in an isogenic human carcinoma cell system, to modulate the activity of signaling pathways following exposure to ionizing radiation is unknown. Loss of K-RAS D13 expression in HCT116 colorectal carcinoma cells blunted basal extracellular signal-regulated kinase 1/2 (ERK1/2), AKT, and c-Jun NH2-terminal kinase 1/2 activity. Deletion of the allele to express K-RAS D13 also enhanced expression of ERBB1, ERBB3, and heregulin but nearly abolished radiation-induced activation of all signaling pathways. Expression of H-RAS V12 in HCT116 cells lacking an activated RAS molecule (H-RAS V12 cells) restored basal ERK1/2 and AKT activity to that observed in parental cells but did not restore or alter basal c-jun NH2-terminal kinase 1/2 activity. In parental cells, radiation caused stronger ERK1/2 pathway activation compared with that of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which correlated with constitutive translocation of Raf-1 into the plasma membrane of parental cells. Inhibition of mitogen-activated protein kinase/ERK1/2, but not PI3K, radiosensitized parental cells. In H-RAS V12 cells, radiation caused stronger PI3K/AKT pathway activation compared with that of the ERK1/2 pathway, which correlated with H-RAS V12–dependent translocation of PI3K into the plasma membrane. Inhibition of PI3K, but not mitogen-activated protein kinase/ERK1/2, radiosensitized H-RAS V12 cells. Radiation-induced activation of the PI3K/AKT pathway in H-RAS V12 cells 2 to 24 hours after exposure was dependent on heregulin-stimulated ERBB3 association with membrane-localized PI3K. Neutralization of heregulin function abolished radiation-induced AKT activation and reverted the radiosensitivity of H-RAS V12 cells to those levels found in cells lacking expression of any active RAS protein. These findings show that H-RAS V12 and K-RAS D13 differentially regulate radiation-induced signaling pathway function. In HCT116 cells expressing H-RAS V12, PI3K-dependent radioresistance is mediated by both H-RAS-dependent translocation of PI3K into the plasma membrane and heregulin-induced activation of membrane-localized PI3K via ERBB3.

Keywords:
  • radiation
  • RAS
  • receptor
  • signaling
  • paracrine

Footnotes

  • Grant support: USPHS grants R01-CA88906 and R01-DK52825 (P. Dent) and P01-CA72955, R01-CA63753, and R01-CA77141 (S. Grant); Department of Defense awards BC980148 and BC020338 (P. Dent); Leukemia Society of America grant 6405-97 (S. Grant); Department of Radiation Oncology, Virginia Commonwealth University (A. Yacoub); Universal, Inc., Professorship in Signal Transduction Research (P. Dent); and NIH grant P30 CA16059 (Massey Cancer Center Flow Cytometry Core Laboratory).

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

    • Accepted November 30, 2004.
    • Received September 22, 2004.
    • Revision received November 17, 2004.
  • American Association for Cancer Research
View Full Text
PreviousNext
Back to top
Molecular Cancer Therapeutics: 4 (2)
February 2005
Volume 4, Issue 2
  • Table of Contents
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Cancer Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
H-RAS V12–induced radioresistance in HCT116 colon carcinoma cells is heregulin dependent
(Your Name) has forwarded a page to you from Molecular Cancer Therapeutics
(Your Name) thought you would be interested in this article in Molecular Cancer Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
H-RAS V12–induced radioresistance in HCT116 colon carcinoma cells is heregulin dependent
Rubén W. Carón, Adly Yacoub, Xiaoyu Zhu, Clint Mitchell, Song Iy Han, Takehiko Sasazuki, Senji Shirasawa, Michael P. Hagan, Steven Grant and Paul Dent
Mol Cancer Ther February 1 2005 (4) (2) 243-255;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
H-RAS V12–induced radioresistance in HCT116 colon carcinoma cells is heregulin dependent
Rubén W. Carón, Adly Yacoub, Xiaoyu Zhu, Clint Mitchell, Song Iy Han, Takehiko Sasazuki, Senji Shirasawa, Michael P. Hagan, Steven Grant and Paul Dent
Mol Cancer Ther February 1 2005 (4) (2) 243-255;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Prediction of individual response to platinum/paclitaxel combination using novel marker genes in ovarian cancers
  • Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non–small cell lung cancer cells (H1299)
  • Identification of a small topoisomerase I–binding peptide that has synergistic antitumor activity with 9-aminocamptothecin
Show more Article
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About MCT

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Molecular Cancer Therapeutics
eISSN: 1538-8514
ISSN: 1535-7163

Advertisement