This article requires a subscription to view the full text. You may purchase access to this article or login to access your subscription using the links below.
Abstract
We report the discovery, via a unique high-throughput screening strategy, of a novel bioactive anticancer compound: Thiol Alkylating Compound Inducing Massive Apoptosis (TACIMA)-218. We demonstrate that this molecule engenders apoptotic cell death in genetically diverse murine and human cancer cell lines, irrespective of their p53 status, while sparing normal cells. TACIMA-218 causes oxidative stress in the absence of protective antioxidants normally induced by Nuclear factor erythroid 2–related factor 2 activation. As such, TACIMA-218 represses RNA translation and triggers cell signaling cascade alterations in AKT, p38, and JNK pathways. In addition, TACIMA-218 manifests thiol-alkylating properties resulting in the disruption of redox homeostasis along with key metabolic pathways. When administered to immunocompetent animals as a monotherapy, TACIMA-218 has no apparent toxicity and induces complete regression of pre-established lymphoma and melanoma tumors. In sum, TACIMA-218 is a potent oxidative stress inducer capable of selective cancer cell targeting.
Footnotes
Note: Supplementary data for this article are available at Molecular Cancer Therapeutics Online (http://mct.aacrjournals.org/).
Mol Cancer Ther 2021;20:37–49
- Received April 27, 2020.
- Revision received July 28, 2020.
- Accepted October 8, 2020.
- Published first October 21, 2020.
- ©2020 American Association for Cancer Research.