Skip to main content
  • AACR Journals
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Radiation Oncology
      • Novel Combinations
      • Reviews
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Journals
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Cancer Therapeutics
Molecular Cancer Therapeutics
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Radiation Oncology
      • Novel Combinations
      • Reviews
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Article

Mutations in α- and β-Tubulin That Stabilize Microtubules and Confer Resistance to Colcemid and Vinblastine1

Malathi Hari, Yaqing Wang, Sudha Veeraraghavan and Fernando Cabral
Malathi Hari
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yaqing Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sudha Veeraraghavan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fernando Cabral
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published July 2003
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Single-step selections were used to obtain Chinese hamster ovary cell lines resistant to Colcemid and vinblastine. Verapamil was included in the selections to circumvent the isolation of cells with P-glycoprotein-mediated multidrug resistance and thereby enrich for cells with tubulin alterations. The isolated cell lines were 2-fold resistant to the selecting drug, exhibited cross-resistance to other drugs that inhibit microtubule assembly, and had enhanced sensitivity to the microtubule-stabilizing drug paclitaxel. The concomitant resistance to microtubule-destabilizing drugs and enhanced sensitivity to paclitaxel suggested that these cell lines have changes in microtubule assembly. Consistent with this interpretation, drug-resistant cell lines exhibited altered α- or β-tubulin mobility on two-dimensional gels and higher levels (47–54%) of assembled tubulin compared with wild-type (39%) or paclitaxel-resistant cells (25%). Some drug-resistant cells also had bundled microtubules as judged by immunofluorescence. Genomic sequencing of 11 drug-resistant cell lines predicted five different alterations (D45Y, C211F, D224N, S234N, and K350N) in β-tubulin and four different alterations (H283Y, E55K, A383V, and R390C) in α-tubulin. The amino acid substitutions are dispersed on the primary and tertiary structures of tubulin and, together with the other mutant properties, argue against a mechanism involving changes in drug binding. Rather, we propose that the alterations in α- and β-tubulin increase microtubule stability by promoting longitudinal interdimer and intradimer interactions and/or lateral interactions between protofilaments. This enhanced stability of microtubules increases their resistance to drugs that inhibit assembly.

Footnotes

  • ↵1 Supported by NIH Grant CA85935.

  • ↵2 Present address: Oncology Research Laboratories, Wyeth Research, Pearl River, NY 10965.

  • ↵4 The abbreviations used are: mdr, multidrug resistance; GST, glutathione S-transferase; CHO, Chinese hamster ovary; HA, hemagglutinin; pI, isoelectric point.

  • ↵5 F. Cabral, unpublished observations.

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

    • Accepted May 19, 2003.
    • Received March 14, 2003.
    • Revision received April 28, 2003.
  • Molecular Cancer Therapeutics
View Full Text
PreviousNext
Back to top
Molecular Cancer Therapeutics: 2 (7)
July 2003
Volume 2, Issue 7
  • Table of Contents
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Cancer Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mutations in α- and β-Tubulin That Stabilize Microtubules and Confer Resistance to Colcemid and Vinblastine1
(Your Name) has forwarded a page to you from Molecular Cancer Therapeutics
(Your Name) thought you would be interested in this article in Molecular Cancer Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Mutations in α- and β-Tubulin That Stabilize Microtubules and Confer Resistance to Colcemid and Vinblastine1
Malathi Hari, Yaqing Wang, Sudha Veeraraghavan and Fernando Cabral
Mol Cancer Ther July 1 2003 (2) (7) 597-605;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Mutations in α- and β-Tubulin That Stabilize Microtubules and Confer Resistance to Colcemid and Vinblastine1
Malathi Hari, Yaqing Wang, Sudha Veeraraghavan and Fernando Cabral
Mol Cancer Ther July 1 2003 (2) (7) 597-605;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Prediction of individual response to platinum/paclitaxel combination using novel marker genes in ovarian cancers
  • Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non–small cell lung cancer cells (H1299)
  • Identification of a small topoisomerase I–binding peptide that has synergistic antitumor activity with 9-aminocamptothecin
Show more Article
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About MCT

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Molecular Cancer Therapeutics
eISSN: 1538-8514
ISSN: 1535-7163

Advertisement