This article requires a subscription to view the full text. You may purchase access to this article or login to access your subscription using the links below.
Abstract
We previously identified ZNF217 as an oncogenic driver of a subset of osteosarcomas using the Sleeping Beauty (SB) transposon system. Here, we followed up by investigating the genetic role of ZNF217 in osteosarcoma initiation and progression through the establishment of a novel genetically engineered mouse model, in vitro assays, orthotopic mouse studies, and paired these findings with preclinical studies using a small-molecule inhibitor. Throughout, we demonstrate that ZNF217 is coupled to numerous facets of osteosarcoma transformation, including proliferation, cell motility, and anchorage independent growth, and ultimately promoting osteosarcoma growth, progression, and metastasis in part through positive modulation of PI3K–AKT survival signaling. Pharmacologic blockade of AKT signaling with nucleoside analogue triciribine in ZNF217+ orthotopically injected osteosarcoma cell lines reduced tumor growth and metastasis. Our data demonstrate that triciribine treatment may be a relevant and efficacious therapeutic strategy for patients with osteosarcoma with ZNF217+ and p-AKT rich tumors. With the recent revitalization of triciribine for clinical studies in other solid cancers, our study provides a rationale for further evaluation preclinically with the purpose of clinical evaluation in patients with incurable, ZNF217+ osteosarcoma.
Footnotes
Note: Supplementary data for this article are available at Molecular Cancer Therapeutics Online (http://mct.aacrjournals.org/).
Mol Cancer Ther 2020;19:2528–41
- Received May 5, 2020.
- Revision received July 15, 2020.
- Accepted September 22, 2020.
- Published first September 30, 2020.
- ©2020 American Association for Cancer Research.