This article requires a subscription to view the full text. You may purchase access to this article or login to access your subscription using the links below.
Abstract
Leukemia inhibitory factor receptor (LIFR) and its ligand LIF play a critical role in cancer progression, metastasis, stem cell maintenance, and therapy resistance. Here, we describe a rationally designed first-in-class inhibitor of LIFR, EC359, which directly interacts with LIFR to effectively block LIF/LIFR interactions. EC359 treatment exhibits antiproliferative effects, reduces invasiveness and stemness, and promotes apoptosis in triple-negative breast cancer (TNBC) cell lines. The activity of EC359 is dependent on LIF and LIFR expression, and treatment with EC359 attenuated the activation of LIF/LIFR-driven pathways, including STAT3, mTOR, and AKT. Concomitantly, EC359 was also effective in blocking signaling by other LIFR ligands (CTF1, CNTF, and OSM) that interact at LIF/LIFR interface. EC359 significantly reduced tumor progression in TNBC xenografts and patient-derived xenografts (PDX), and reduced proliferation in patient-derived primary TNBC explants. EC359 exhibits distinct pharmacologic advantages, including oral bioavailability, and in vivo stability. Collectively, these data support EC359 as a novel targeted therapeutic that inhibits LIFR oncogenic signaling.
See related commentary by Shi et al., p. 1337
This article is featured in Highlights of This Issue, p. 1335
Footnotes
Note: Supplementary data for this article are available at Molecular Cancer Therapeutics Online (http://mct.aacrjournals.org/).
Mol Cancer Ther 2019;18:1341–54
- Received November 6, 2018.
- Revision received March 12, 2019.
- Accepted May 16, 2019.
- Published first May 29, 2019.
- ©2019 American Association for Cancer Research.