Skip to main content
  • AACR Journals
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Radiation Oncology
      • Novel Combinations
      • Reviews
      • Editors' Picks
      • "Best of" Collection
  • First Disclosures
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Journals
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Cancer Therapeutics
Molecular Cancer Therapeutics
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Radiation Oncology
      • Novel Combinations
      • Reviews
      • Editors' Picks
      • "Best of" Collection
  • First Disclosures
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Cancer Biology and Signal Transduction

Dual PI3K/mTOR Inhibitors Induce Rapid Overactivation of the MEK/ERK Pathway in Human Pancreatic Cancer Cells through Suppression of mTORC2

Heloisa P. Soares, Ming Ming, Michelle Mellon, Steven H. Young, Liang Han, James Sinnet-Smith and Enrique Rozengurt
Heloisa P. Soares
1Division of Hematology-Oncology, David Geffen School of Medicine, Los Angeles, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ming Ming
2Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michelle Mellon
2Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steven H. Young
2Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.
3CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Liang Han
2Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James Sinnet-Smith
2Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.
3CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Enrique Rozengurt
2Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.
3CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, California.
4Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: erozengurt@mednet.ucla.edu
DOI: 10.1158/1535-7163.MCT-14-0669 Published April 2015
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

The PI3K/AKT/mTOR pathway, which is aberrantly stimulated in many cancer cells, has emerged as a target for therapy. However, mTORC1/S6K also mediates negative feedback loops that attenuate upstream signaling. Suppression of these feedback loops opposes the growth-suppressive effects of mTOR inhibitors and leads to drug resistance. Here, we demonstrate that treatment of PANC-1 or MiaPaCa-2 pancreatic ductal adenocarcinoma (PDAC) cells with the dual PI3K/mTOR kinase inhibitor (PI3K/TOR-KI) BEZ235 blocked mTORC1/S6K activation (scored by S6 phosphorylation at Ser240/244), mTORC1/4E-BP1 (assayed by 4E-BP1 phosphorylation at Thr37/46), and mTORC2-mediated AKT phosphorylation at Ser473, in a concentration-dependent manner. Strikingly, BEZ235 markedly enhanced the MEK/ERK pathway in a dose-dependent manner. Maximal ERK overactivation coincided with complete inhibition of phosphorylation of AKT and 4E-BP1. ERK overactivation was induced by other PI3K/TOR-KIs, including PKI-587 and GDC-0980. The MEK inhibitors U126 or PD0325901 prevented ERK overactivation induced by PI3K/TOR-KIs. The combination of BEZ235 and PD0325901 caused a more pronounced inhibition of cell growth than that produced by each inhibitor individually. Mechanistic studies assessing PI3K activity in single PDAC cells indicate that PI3K/TOR-KIs act through a PI3K-independent pathway. Doses of PI3K/TOR-KIs that enhanced MEK/ERK activation coincided with those that inhibited mTORC2-mediated AKT phosphorylation on Ser473, suggesting a role of mTORC2. Knockdown of RICTOR via transfection of siRNA markedly attenuated the enhancing effect of BEZ235 on ERK phosphorylation. We propose that dual PI3K/mTOR inhibitors suppress a novel negative feedback loop mediated by mTORC2, thereby leading to enhanced MEK/ERK pathway activity in pancreatic cancer cells. Mol Cancer Ther; 14(4); 1014–23. ©2015 AACR.

Footnotes

  • Note: Supplementary data for this article are available at Molecular Cancer Therapeutics Online (http://mct.aacrjournals.org/).

  • Received August 7, 2014.
  • Revision received December 22, 2014.
  • Accepted January 30, 2015.
  • ©2015 American Association for Cancer Research.
View Full Text
PreviousNext
Back to top
Molecular Cancer Therapeutics: 14 (4)
April 2015
Volume 14, Issue 4
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Cancer Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Dual PI3K/mTOR Inhibitors Induce Rapid Overactivation of the MEK/ERK Pathway in Human Pancreatic Cancer Cells through Suppression of mTORC2
(Your Name) has forwarded a page to you from Molecular Cancer Therapeutics
(Your Name) thought you would be interested in this article in Molecular Cancer Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Dual PI3K/mTOR Inhibitors Induce Rapid Overactivation of the MEK/ERK Pathway in Human Pancreatic Cancer Cells through Suppression of mTORC2
Heloisa P. Soares, Ming Ming, Michelle Mellon, Steven H. Young, Liang Han, James Sinnet-Smith and Enrique Rozengurt
Mol Cancer Ther April 1 2015 (14) (4) 1014-1023; DOI: 10.1158/1535-7163.MCT-14-0669

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Dual PI3K/mTOR Inhibitors Induce Rapid Overactivation of the MEK/ERK Pathway in Human Pancreatic Cancer Cells through Suppression of mTORC2
Heloisa P. Soares, Ming Ming, Michelle Mellon, Steven H. Young, Liang Han, James Sinnet-Smith and Enrique Rozengurt
Mol Cancer Ther April 1 2015 (14) (4) 1014-1023; DOI: 10.1158/1535-7163.MCT-14-0669
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Disclosure of Potential Conflicts of Interest
    • Authors' Contributions
    • Grant Support
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • ABCB1 Confers Cross-Resistance to Cabazitaxel and Docetaxel
  • Proinflammatory Cytokines and Drug Resistance
  • IGF2 Overexpression Predicts IGF1R/INSR Inhibitor Response
Show more Cancer Biology and Signal Transduction
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About MCT

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Molecular Cancer Therapeutics
eISSN: 1538-8514
ISSN: 1535-7163

Advertisement