Skip to main content
  • AACR Journals
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Radiation Oncology
      • Novel Combinations
      • Reviews
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Journals
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Cancer Therapeutics
Molecular Cancer Therapeutics
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Radiation Oncology
      • Novel Combinations
      • Reviews
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Article

Induction of Thymidine Phosphorylase in Both Irradiated and Shielded, Contralateral Human U87MG Glioma Xenografts: Implications for a Dual Modality Treatment Using Capecitabine and Irradiation 1 Supported by NIH Grant CA85381. 1

Carmelo Blanquicett, G. Yancey Gillespie, L. Burt Nabors, C. Ryan Miller, Sumen Bharara, Donald J. Buchsbaum, Robert. B. Diasio and Martin R. Johnson
Carmelo Blanquicett
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Yancey Gillespie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Burt Nabors
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Ryan Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sumen Bharara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donald J. Buchsbaum
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert. B. Diasio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martin R. Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published October 2002
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

In the United States, tumors of the central nervous system remain the third leading cancer-related cause of death in young adults with a median survival time of <1 year. A recent case study suggested that Capecitabine (a novel, fluoropyrimidine prodrug) may be effective in the treatment of brain metastases. Pharmacogenomic studies have correlated the antitumor response to Capecitabine with the expression of the drug metabolizing enzymes thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD). In the current study, we examined TP and DPD expression in normal human brain tissues and in glioblastoma multiforme, the most common and malignant type of brain tumor. Because previous reports suggest a tumor necrosis factor (TNF)-α-mediated increase in TP expression after irradiation (a current standard of care for glioblastoma multiforme), we also examined the effect of irradiation on the expression of TP, DPD, and TNF-α in both irradiated and lead-shielded contralateral U87MG glioma xenografts within the same animal. Expression levels were determined using real-time quantitative PCR as described previously. Results demonstrate an ∼70-fold increase in TP mRNA levels 4 days after irradiation, relative to initial control levels. Interestingly, TP mRNA in the lead-shielded tumors (contralateral to irradiated tumors) increased ∼60-fold by day 10 relative to initial control levels. Elevated TP levels were sustained for 20 days in irradiated xenografts but began to decrease after 15 days in the shielded/contralateral tumors, returning to baseline by 20 days. TP mRNA levels in normal mouse liver were unaltered, suggesting a tumor-associated effect. TNF-α mRNA levels did not increase after irradiation; therefore, mRNA expression of 11 additional cytokines [interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-5, IL-8, IL-10, IL-12p35, IL-12p40, IL-15, and IFN-γ] in both the irradiated and shielded xenografts was quantitated. Results demonstrated increased levels of IFN-γ, IL-10, and IL-1α by 6.3-, 3.7-, and 1.6-fold, respectively, in irradiated tumors only. DPD mRNA levels did not change after irradiation. The tumor-associated induction of TP in irradiated and lead-shielded tumors within the same animal may have significant implications for the combined modality treatment of cancer patients with Capecitabine in conjunction with radiotherapy and may apply to the treatment of distant tumors and or metastatic disease.

Footnotes

  • ↵1 Supported by NIH Grant CA85381.

  • ↵2 To whom requests for reprints should be addressed, at Department of Clinical Pharmacology, 1824 6th Avenue South, Wallace Tumor Institute, Room 620, University of Alabama at Birmingham, Birmingham, AL 35294-3300. Phone: (205) 975-8435; Fax: (205) 975-5650; E-mail: Martin.Johnson{at}ccc.uab.edu

  • ↵3 The abbreviations used are: GBM, glioblastoma multiforme; 5-FU, 5fluorouracil; IL, interleukin; TNF, tumor necrosis factor; TP, thymidine phosphorylase; DPD, dihydropyrimidine dehydrogenase.

    • Accepted August 27, 2002.
    • Received June 6, 2002.
    • Revision received August 19, 2002.
  • Molecular Cancer Therapeutics
View Full Text
PreviousNext
Back to top
Molecular Cancer Therapeutics: 1 (12)
October 2002
Volume 1, Issue 12
  • Table of Contents
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Cancer Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Induction of Thymidine Phosphorylase in Both Irradiated and Shielded, Contralateral Human U87MG Glioma Xenografts: Implications for a Dual Modality Treatment Using Capecitabine and Irradiation 1 Supported by NIH Grant CA85381. 1
(Your Name) has forwarded a page to you from Molecular Cancer Therapeutics
(Your Name) thought you would be interested in this article in Molecular Cancer Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Induction of Thymidine Phosphorylase in Both Irradiated and Shielded, Contralateral Human U87MG Glioma Xenografts: Implications for a Dual Modality Treatment Using Capecitabine and Irradiation 1 Supported by NIH Grant CA85381. 1
Carmelo Blanquicett, G. Yancey Gillespie, L. Burt Nabors, C. Ryan Miller, Sumen Bharara, Donald J. Buchsbaum, Robert. B. Diasio and Martin R. Johnson
Mol Cancer Ther October 1 2002 (1) (12) 1139-1145;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Induction of Thymidine Phosphorylase in Both Irradiated and Shielded, Contralateral Human U87MG Glioma Xenografts: Implications for a Dual Modality Treatment Using Capecitabine and Irradiation 1 Supported by NIH Grant CA85381. 1
Carmelo Blanquicett, G. Yancey Gillespie, L. Burt Nabors, C. Ryan Miller, Sumen Bharara, Donald J. Buchsbaum, Robert. B. Diasio and Martin R. Johnson
Mol Cancer Ther October 1 2002 (1) (12) 1139-1145;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Prediction of individual response to platinum/paclitaxel combination using novel marker genes in ovarian cancers
  • Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non–small cell lung cancer cells (H1299)
  • Semisynthetic homoharringtonine induces apoptosis via inhibition of protein synthesis and triggers rapid myeloid cell leukemia-1 down-regulation in myeloid leukemia cells
Show more Article
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About MCT

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Molecular Cancer Therapeutics
eISSN: 1538-8514
ISSN: 1535-7163

Advertisement