Notch inhibitor PF-03084014 inhibits hepatocellular carcinoma growth and metastasis via suppression of cancer stemness due to reduced activation of Notch1-Stat3

Authors:
Chuan Xing Wu¹, Aimin Xu², Cathy C Zhang³, Peter Olson³, Lin Chen¹, Terence K Lee⁴, Tan To Cheung¹, Chung Mau Lo¹, Xiao Qi Wang¹, ⁵*

Affiliations:
¹Department of Surgery, The University of Hong Kong, Hong Kong
²Department of Medicine, The University of Hong Kong, Hong Kong
³Oncology Research Unit, Pfizer Global Research and Development, USA
⁴Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University
⁵State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong

*Correspondence:
Xiao Qi Wang, D.Phil., Dept. of Surgery, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Telephone: 852-39179653, Fax: 852-39179634, Email: xqwang@hku.hk

Running title:
Antitumor and antimetastasis efficacy of PF-03084014 in HCC

Keywords:
Notch inhibitor, PF-03084014, antitumor, antimetastasis, HCC

Abbreviations
HCC, hepatocellular carcinoma; CSCs, cancer stem cells; EMT, epithelial-mesenchymal transition; Stat3, signal transducer and activator of transcription; PDX, patient-derived xenograft

Financial support
This study was supported by Healthy and Medical Research Fund, Research Council of Hong Kong (03143396 to X.Q Wang).

Notes: Word count: 4866; Number of figures: 6
Abstract

Aberrant activation of the Notch signaling pathway is implicated in many solid
tumors, including hepatocellular carcinoma (HCC), indicating a potential use of
Notch inhibitors for treatment. In this study, we investigated the antitumor and
antimetastasis efficacy of the novel Notch inhibitor (γ-secretase inhibitor) PF-
03084014 in HCC. HCC spherical cells (stem-like cancer cells), a sphere-derived
orthotopic tumor model and one patient-derived xenograft (PDX) model were used in
our experiment. We demonstrated that PF-03084014 inhibited the self-renewal and
proliferation of cancer stem cells. PF-03084014 reduced the HCC sphere-derived
orthotopic tumor and blocked the HCC tumor liver to lung metastasis. We further
tested the PF-03084014 in PDX models and confirmed the inhibition tumor growth
effect. In addition, a low dose of PF-03084014 induced HCC sphere differentiation,
resulting in chemosensitization. Antitumor activity was associated with PF-03084014-
induced suppression of Notch1 activity, decreased Stat3 activation and
phosphorylation of the Akt signaling pathway, and reduced epithelial-mesenchymal
transition. These are the key contributors to the maintenance of cancer stemness and
the promotion of cancer metastasis. Moreover, the Notch-Stat3 association was
implicated in the clinical HCC prognosis. Collectively, PF-03084014 revealed
antitumor and antimetastatic effects in hepatocellular carcinoma, providing evidence
for the potential use of GSIs as a therapeutic option for the treatment of HCC.
Introduction

The Notch pathway is evolutionarily conserved and plays fundamental roles in diverse developmental processes, from the self-reorganization of cell diversity to the differentiation and proliferation of stem/progenitor cells (1). Notch signaling regulates cell fate, behavior, proliferation, and morphology. Dysfunction of the Notch pathway contributes to multi-systemic developmental defects. Alterations in the Notch pathway also contribute to a large number of hematopoietic and solid tumors. Aberrant regulation in cancers includes activating and inactivating mutations, receptor/ligand overexpression, epigenetic regulation, and effects of posttranslational modifications (1-3). Based on intense research of the Notch pathway in cancer, the Notch pathway has been developed as a potential molecular target for treatment of tumors. Various Notch targeting agents are in clinical trials including a Notch-specific antibody, DLL4-specific antibody, pan-Notch inhibitor, and gamma-secretase inhibitor (GSI) for the treatment of T-cell acute lymphoblastic leukemia (T-ALL), lymphoid malignancy, and advanced and metastatic solid tumors (2, 4). However, currently there is no FDA-approved Notch-targeting therapy (3). This is because 1. off-target Notch-associated effects of gastrointestinal toxicity, 2. potential side effects affecting adult differentiation and regeneration of tissue, 3. distinct roles of Notch on tumorigenesis during different tumor stages, which might reduce the specificity and effects of Notch inhibitors (3).

Hypermalignant cancer cells, termed cancer stem cells (CSCs) or stem-like cancer cells represent a distinct population that can be isolated from tumor tissues and exhibit long-term clonal repopulation and self-renewal capacity (5-7). They are highly active in generating new tumors upon implantation in animal models (8). Cancer cells are equipped with apoptotic blocks, high expression of drug transporters, efficient DNA repair, quiescence, and metastasis-forming potential, which are the mechanisms of therapy resistance. Interestingly, these mechanisms are also active in CSCs (9, 10). Drug resistance allows CSCs to survive conventional and even targeted therapies and is ultimately responsible for relapse (11). Thus, CSCs have become a therapeutic target of prime interest in drug discovery (12). A large number of signaling pathways have been demonstrated to be involved in the induction and maintenance of CSCs, which are highly conserved pathways involved in development and tissue homeostasis, including Notch, Hedgehog (HH), and Wnt pathways (4). Therefore,
these developmental pathways may be important therapeutic targets for the suppression of CSC self-renewal, proliferation and tumor progression (4). Over the past few years, new investigational agents have been developed to target CSCs by inhibiting the Notch pathway, although robust antitumor activity has not yet been observed in clinical trials (4).

PF-03084014 (PF-4014) is a GSI developed by Pfizer, which shows antitumor efficacy in hematological, breast, colorectal, and pancreatic cancer models (13-18), and suppresses hepatic metastases of neuroblastoma and breast cancer cells (19). Currently PF-03084014 is in phase I or phase II trials for the treatment of T-ALL, lymphoma, desmoid tumors, and fibromatosis (4, 20, 21). Although abnormal expression of the Notch pathway has been demonstrated in hepatocellular carcinoma (HCC) (22), there is no reported study on the anticancer potential of Notch inhibitors on HCC from the cellular level to animal models in vivo. In this study, we demonstrated that PF-03084014 suppressed proliferation of HCC spherical cells (cancer stem-like cells) in vitro, HCC sphere-derived orthotopic tumor and PDX tumor growth in vivo. PF-03084014 also significantly blocked HCC tumor metastasis in HCC sphere-derived orthotopic tumor. Antitumor activity was associated with PF-03084014-induced suppression of the Notch1-Stat3 signaling, decreased phosphorylation of the Akt signaling pathway, and reversed epithelial-mesenchymal transition. Moreover, the Notch1-Stat3 association was significantly related with clinical HCC prognosis.
Materials and Methods

Cell culture, transfection and hepatic cancer sphere assay

The HCC cell lines Huh7, PLC, Hep3B, and normal hepatocyte cell line MIHA from the American Type Culture Collection were cultured in DMEM supplemented with 10% FBS (Life Technologies) at 37°C and 5% CO₂. The MHCC97H (97H) and MHCC97L (97L) cells from the cell bank of Shang Hai, Chinese academy of sciences were isolated from a male metastatic HCC patient (23) and stably transfect with luciferase. The cell lines were obtained in the year of 2015. The vector-based siRNA-Notch1 stable transfection method was described in our previous paper (22). Liver cancer spheres were generated in DMEM:F12 (Life Technologies) supplemented with 2% B-27 (Life Technologies), EGF, bFGF (PeproTech), 100 IU/ml penicillin, and 100 μg/ml streptomycin on ultra-low attachment or polyHEMA-coated plates for 10-14 days. The Notch inhibitor PF-03084014 (Pfizer Global Research and Development) (0.5-1 μM), Stat3 inhibitor JSI-124 (Merck) (1 μM), and chemotherapy drug doxorubicin (dox, Main Luck Pharmaceuticals, China) (0.2 μg/ml), cisplatin (cis, MaynePharma, Melbourne, Australia) (0.5μg/ml) were administered 1-2 times at the indicated doses.

Tumor model and drug administration

The 97L and 97H HCC monolayer cells (1 x 10⁶) or 97H-derived spherical cancer cells (5 x 10⁵) were subcutaneously injected into 4-week-old nude or severe combined immunodeficiency (SCID)-beige mice. The 1-2 mm³ subcutaneously formed tumor cubes were then implanted into the left liver lobes of nude mice as described previously (22). Fresh tumor was obtained from Queen Mary Hospital. The PDX models were built and the procedure have been described in previous article (24). The mice were randomized to the respective treatment groups. Either vehicle or PF-03084014 (dissolved in 0.05% methyl cellulose) was administered orally twice daily at 100 mg/kg for 6-day/week in weeks 1, 2, 4, and 6. The size of the tumor and lung metastasis were monitored based on its luciferin (150 mg/kg, I.P. injection) (Gold Biotechnology, MO) signal in an IVIS Spectrum in vivo imaging system (PerkinElmer, MA). At the end point (8 weeks), the size and weight of the tumor were measured. Tumor size was calculated using the formula: tumor volume V = (L × W × W)/2. All mouse experiments were approved by the Committee on the Use of Live
Animals of the University of Hong Kong (CULATR 3091-13).

Western blot and co-immunoprecipitation (co-IP)

PVDF membranes containing electrophoretically separated proteins from HCC tumor tissue and whole cell lysates were probed with antibodies against cleaved Notch1, phospho-Stat3 (T705, S727), phospho-Akt (T308, S473), phospho-GSK3β (S9), phospho-Erk1/2 (T202/T204), Nanog, Oct4, Sox2 (all from Cell Signaling Technology), E-cadherin and Snail1 (Santa Cruz Biotechnology), and β-actin (Sigma-Aldrich, MO). The resultant immune complexes were visualized using enhanced chemiluminescence detection reagents (Bio-Rad, CA). The band density was analyzed by Image J software that has been described in our previous article (22). In vitro protein interaction was assessed based on co-IP using cleaved Notch1 and total Stat3 antibodies. Briefly, 100-200 µg of total lysates from tumor tissue treated with vehicle or PF-03084014 was incubated with cleaved Notch1 antibody overnight. The immune-complexes were analyzed by immunoblotting with anti-Stat3 antibody.

Flow cytometry

To identify the liver CSC population, the cells were labeled with antibodies against CD90-APC, EpCAM-PE-Cy7 (eBioscience), and the corresponding isotype antibody as a control to exclude nonspecific background staining. The stained cells were then subjected to flow cytometry analysis using FACSCalibur (Becton Dickinson, San Jos, CA).

qRT-PCR

Total RNA was extracted using an RNeasy kit (Qiagen), treated with DNase I, and then reverse-transcribed with the Transcriptor First Strand cDNA Synthesis Kit (Roche). Quantitative PCR was performed using the Selected SYBR Green master mix (Life Technologies) on an ABI 7900HT Detection System. Primers used in this study were listed in Supplementary Table S1.

Clinical HCC specimens

HCC tumor tissue specimens were collected from 39 HCC patients diagnosed with stage I-IV pathologic tumor-node-metastasis (TNM) disease. The samples were provided by the Tissue Bank at the Department of Surgery at Queen Mary Hospital.
The collection and storage of clinical specimens for the Tissue Bank has been approved by the Institutional Review Board of the University of Hong Kong/Hospital Authority of Hong Kong (UW05-3597/I022).

Statistical analysis

The results for variables are presented as the means ± SD. Treatment groups were compared with controls using a paired or independent Student’s t test. The association between cleaved Notch1 and pStat3 (T705) or pStat3 (S727) expression in HCC tumors was analyzed using a linear regression. Differences in HCC patient survival were assessed using a Kaplan-Meier analysis. The risk factors associated with the survival were assessed by univariate and multivariate analysis using the Cox proportional hazard regression model. All analyses were performed using SPSS 21 (IBM Corp. NY). A P value < 0.05 was considered statistically significant.
Results

PF-03084014 inhibits HCC spherical CSC self-renewal and proliferation

Molecular mechanisms that regulate stem cell fate are well conserved in stem cell niches of various developmental processes (4), implying that such mechanisms could be of therapeutic relevance. Notch signaling is one of the highly conserved pathways in developmental processes and stem cell fate regulation, which implies that it would be active in CSC regulation. A large number of Notch inhibitors have been developed for potential cancer treatments, although their roles in the suppression of CSCs have not been well defined. We investigated the anticancer efficacy of a GSI (PF-03084014) on a liver cancer anchorage-independent spherical cell model because CSCs can be enriched in spherical cells (25). We generated liver cancer spherical cells from 97H and Huh7 cells. The second and third generation of spheres from the dissected single spherical cells were used for all experiments. PF-03084014 suppressed sphere formation in a dose-dependent manner, leading to significantly reduced 97H-sphere viability (Fig. 1A). PF-03084014 moderately inhibited another HCC cells, including Huh7-derived sphere viability (Fig. 1A). Single sphere formation capacity of 97H spherical cell was reduced even with lower doses of PF-03084014 (Fig. 1B), indicating significant suppression of sphere proliferation (Fig. 1A-1C). PF-03084014 decreased the populations of CD90+ and EpCAM+ cells, which are liver CSC markers (Fig. 1D) (26). Similarly, expression of stemness-associated genes and proteins NANOG, OCT4, and SOX2 were also decreased (Fig. 1E and 1F). A high rate of glycolysis is a metabolic signature of CSCs (Warburg effect version 2.0) (27). PF-03084014 significantly reduced glycolytic gene expression (Fig. 1G) and the glycolytic rate consequently, as measured by lactate production in CSC sphere medium (Fig. 1H). These results suggest that inhibition of HCC spherogenesis by PF-03084014 resulted from inhibition of CSC self-renewal capacity. Interestingly, inhibition effects of PF-03084014 were shown in HCC cells with high Notch1 expression (97L and 97H) (22) but not on low or no Notch expression Hep3B and PLC cells. Moreover, PF-03084014 did not suppress normal hepatocyte MIHA proliferation (Supplementary Fig. S1A-S1C).

PF-03084014 inhibits HCC-sphere derived orthotopic tumor and PDX tumor growth

To investigate whether the in vitro impact of PF-03084014 on HCC spherical CSCs can be extended to in vivo models, an orthotopic HCC model was generated from 97H spherical CSCs (Fig. 2A) to determine the efficacy of PF-03084014 in vivo.
Orthotopic tumor models are considered more clinically relevant and a better predictive model of drug efficacy. HCC is known as an aggressive and highly resistant cancer, we therefore modified administration by 100 mg/kg of PF-03084014 for 6 days/week, and total administration occurred over 4 weeks (Fig. 2A). Under this relatively higher dose of PF-03084014 administration, the mouse body weight of the treatment group decreased by 23%-20% at week 2 and 3, 12%-10% at week 4 and 5, 6%-4% at week 6 and 7, and 0% at week 8 compared to the vehicle group, indicating a trend of GSI tolerance (Supplementary Fig. S2).

Using bioluminescence to trace the tumor growth, we found that tumor growth was reduced by 75%, 87%, 67%, and 68.5% at week 2, 4, 6, and 8, respectively, in the PF-03084014 group compared to the vehicle group (Fig. 2B and C). Similarly, PF-03084014 decreased tumor volume at the endpoint by 69% (Fig. 2D, left panel) and decreased tumor weight by 68% (Fig. 2D, right panel). Consistent with the in vitro result that PF-03084014 targets the HCC CSC population (Fig. 1D), the liver cancer CSC CD90+ population in the remaining tumor tissue was 2.76%, which was a 8.4 fold dramatic decrease compared to control with 23.15% high CSCs population (Fig. 2E). The results indicate that PF-03084014 is able to inhibit the CSC population in the tumor mass to suppress tumor growth. Application of PDX model is a novel method to predict antitumor efficacy, next we confirmed the inhibition effect of PF-03084014 on tumor growth which is consistent with spherical cell derived orthotopic tumor models (Fig. 2F and G). In the 97H HCC monolayer cell-generated orthotopic model and 97L HCC monolayer cell-derived xenograft model, PF-03084014 also displayed anti-tumor effects with tumor volumes decreasing by 60% in the orthotopic model (Supplementary Fig. S3A-S3D), and by 48.3% in the xenograft model (Supplementary Fig. S3E). The data also indicated that administration of PF-03084014 for 4 weeks (Supplementary Fig. S3D) was more effective in inhibition of tumor growth than administration of PF-03084014 for 2 weeks (Supplementary Fig. S3E).

Notable effects of PF-03084014 in blocking HCC metastasis in vivo

Tumor metastasis is a major contributor to the death of cancer patients. Intrahepatic and extrahepatic metastasis occurs in more than half of HCC patients even after surgical resection, leading to poor prognosis (28, 29). Our previous study
demonstrated that knockdown of Notch1 reduced HCC metastasis in vivo (22). Here we administered PF-03084014 in the same HCC orthotopic tumor model derived from 97H sphere and monolayer cells, where 97H cells are isolated from the primary HCC metastatic tumor tissue with a high metastatic rate from the liver to the lung in the mouse (23). At the 8-week endpoint, the mouse lung was dissected to detect the luciferin signal under an IVIS Spectrum. PF-03084014 treatment dramatically decreased HCC liver to lung metastasis with only 3 out of 16 (18.8%) animals showing lung metastasis, whereas metastasis rate remained high (87.5%) in the vehicle treatment group (Fig. 3A and 3B). HCC tumor tissue in the lung was further confirmed by the lung section observation (Fig. 3C). These results not only further supported our previous results that abnormal Notch1 is a contributor to liver cancer metastasis (22), but they also demonstrated a possibility that a Notch inhibitor can be used for the treatment of metastatic cancer. To further understand the mechanisms, we found that a high level of mesenchymal markers, such as Snail1 and Snail2, were significantly reduced in 97H cells and abolished in the 97H tumor by PF-03084014, while the epithelial marker E-cadherin was enhanced (Fig. 3D-F). Thus, suppressed metastasis by PF-03084014 might occur through inhibition of Notch1 to reverse EMT phenotypes.

Low doses of PF-03084014 induce HCC sphere differentiation and chemosensitization

PF-03084014 induced dose-dependent inhibition of HCC sphere proliferation, where the inhibition by low doses of PF-03084014 was moderate with 50% of the spheres surviving (Fig. 1A). However, more than 40% of these surviving spheres were in differentiated states (Fig. 4A), leading to an expectation that these cells may become sensitized to chemotherapy. We then determined the effect of PF-03084014 on the responsiveness to the conventional therapy drugs cisplatin (cis) and doxorubicin (dox). For 97H spheres, the survival rate with cisplatin and doxorubicin were similar to DMSO-treated control cells; however, in combination with 0.5 μM PF-03084014, responsiveness to chemotherapy drugs was significantly enhanced by 39% or 51% at levels of cisplatin 0.5 μg/ml or doxorubicin 0.4 μg/ml, respectively, and by 48% or 68% at levels of cisplatin 1 μg/ml or doxorubicin 0.8 μg/ml, respectively (Fig. 4B). These data suggest that low doses of PF-03084014 are able to
induce CSC differentiation, which could be a critical state in turning highly resistant CSCs into therapy-sensitive cells.

Notch inhibition reduces CSC self-renewal in vitro and tumorigenicity in vivo

Next, we assessed the in vivo tumorigenicity of cells pretreated with Notch inhibitor. Prior to injection, 97H spheres were exposed to DMSO or a low dose of PF-03084014 in vitro. All surviving cells were subjected to single cell sphere formation or subcutaneously injected into immunodeficient mice (SCID mice) for xenograft tumor formation (Fig. 4C). No further in vivo treatment was administered. The single cell sphere formation rate was 84% in the DMSO-pre-treated group versus 46% and 38% in the 0.25 μM or 0.5 μM PF-03084014-pre-treated groups, respectively (Fig. 4D). In addition, the self-renewal ability of 97H spheres, were continuously verified and confirmed by the spherical formation and the expression of stemness markers (CD90 and EpCAM) after repeated dispersion and passage. Xenograft tumorigenicity was determined at 6 weeks. In vitro PF-03084014 pre-treatment significantly decreased tumorigenicity in vivo by reducing the tumor incidence, which was 100% in the DMSO group and 37.5% in the PF-03084014 group; Notch inhibitor pre-treatment also significantly reduced tumor weight (Fig. 4E-4G; Supplementary Fig. S4). Therefore, PF-03084014 can drive HCC CSCs into a more differentiated state that is sensitive to chemotherapy at the cellular level and, more importantly, minimizes tumorigenicity at the in vivo xenograft tumor level.

PF-03084014 impairs the Notch pathway and modulates Stat3

As PF-03084014 targets γ-secretase, we examined Notch activation, including the expression of cleaved Notch 1 intracellular domain (NICD), Notch ligand Delta-like-ligand 1 (DLL1) and Notch target gene HEY1 in sphere cells and sphere-derived tumor tissues. PF-03084014 suppressed activated Notch1 expression (Fig. 5A). PF-03084014 also decreased mRNA expression of Notch1, DLL1, and HEY1 (Supplementary Fig. S5).

The Notch pathway cross regulates with many other signaling pathways. Accordingly, we detected the related proteins in the pathways that interact with Notch signaling. PF-03084014 treatment significantly decreased phosphorylation of signal transducer and activator of transcription 3 (Stat3) at Tyr 705 and Ser 727 in both 97H spheres (Fig. 5A, left panel) and 97H sphere-derived tumor tissue (Fig. 5A, right
panel) compared with DMSO or vehicle treatment groups. To confirm the inhibition of PF-03084014 on Stat3, we compared the phosphorylation states of Stat3 under treatment with the Stat3 inhibitor (JSI-124) (30) and PF-03084014. PF-03084014 treatment alone inhibited activation of Notch1, where phosphorylation of Stat3 at T705 and S727 was also reduced, which is similar to the decreased pStat3 induced by JSI-124 (Fig. 5B). The result indicates a Notch1-Stat3 axis, where decreased pStat3 by PF-03084014 occurs via the reduction in Notch1. Given that cleaved Notch1 is localized to the nucleus and Stat3 maintains a prominent nuclear presence (31), we performed a coimmunoprecipitation. As shown in Fig. 5C, Notch1 clearly interacts with Stat3. Next we further verified Notch1-Stat3 association by transfection knockdown Notch1, which revealed that downregulation activated Notch1 was associated with reduced pStat3 at T705 and S727 (Fig. 5D). When Notch1 protein expression was inhibited by PF-03084014, it brought down with almost no pStat3. The result is further verification that GSI can inhibit the activation of Stat3. PF-03084014 also impaired Erk phosphorylation (Fig. 5E). Moreover, phosphorylation of the PI3K/Akt signaling pathway was inhibited, as shown by a decrease in pAkt (T308), pAkt (S473), and an increase in pGSK3β at Ser9 (an inactivated form of GSK3β) (Fig. 5E), which in some degrees is consistent with our previous finding in human embryonic stem cells demonstrated that these signaling are essential in stem cell self-renewal capacity, proliferation and differentiation (32). Hence, PF-03084014 may also inhibit cancer stem cell self-renewal capacity, proliferation as well as inducing differentiation through these signaling.

Stat3 is a transcriptional factor that is constitutively active in many human cancers (33-35). Recently, it was demonstrated that Stat3 is an important factor for maintaining cancer stemness (7). We next determined the effect of the Stat3 inhibitor on HCC spherical CSCs. Application of the Stat3 inhibitor JSI-124 significantly suppressed the overall and, more importantly, single spherical colony formation in two cell lines (Fig. 5F and 5G). Surviving spheres were mostly in differentiated states (Fig. 5H). Moreover, JSI-124 treatment decreased the proportion of CD90+ and EpCAM+ cells compared with DMSO-treated cells (Fig. 5J). JSI-124 also reversed EMT by enhancing E-cadherin and decreasing Snail1 expression (Fig. 5I). The data suggest that inhibition of Stat3 impairs self-renewal and proliferation of HCC cancer spherical cells. The Notch pathway cross regulates multiple signaling pathways,
where GSI inhibition of CSC self-renewal might occur via targeting of Stat3, one of the critical molecules in maintaining CSC stemness (7). Together, Notch inhibition by PF-03084014 impairs self-renewal and proliferation of HCC spherical CSCs, resulting in suppression of tumor growth and metastasis, which possibly occurs through suppression of Stat3, Akt and reversal of EMT (Fig. 5K).

Association between Notch1 and Stat3 in HCC patients

Based on the possibility that suppression of HCC spherical cancer cells or cancer sphere-derived tumor growth by PF-03084014 might be through direct or indirect inhibition of Stat3, and the knowledge that Stat3 is consistently expressed in many types of cancers, we next assessed the association of Notch1 and Stat3 in HCC primary tumor tissues. We measured the protein levels of cleaved Notch1 and the phosphorylation of Stat3 (T705, S727) in 39 HCC tumor tissues. As shown in Fig. 6A, many HCC patients expressed high levels of the three tested proteins; 62% of HCC patients displayed significant Notch1-dependent pStat3 (T705) expression ($p = 0.000$; Fig. 6B, left panel), and 59% of patients exhibited Notch1-dependent pStat3 (S727) expression ($p = 0.000$; Fig. 6B, right panel), which support the interaction between Notch1 and Stat3 (Fig. 5C). Clinically, activated Notch1 levels were significantly associated with late-stage HCC, tumor size, venous infiltration, and 1-year or 5-year recurrence, which is consistent with our previous study detected by mRNA expression of Notch1 in HCC (22). More importantly, HCC patients with aberrantly high Notch1 expression had a predicted disease progression and worse overall and disease-free survival ($p = 0.027-0.000$; Fig. 6C). Univariate analysis showed that in late stages of HCC, venous infiltration and high expression of activated Notch1 are the factors relating to patient survival. Among these significant factors, only aberrant expression of Notch1 is a significant independent factor relating to disease-free survival according to the multivariate analysis (Supplementary Table S2).

The next question we asked is whether the correlation between Notch1 and Stat3 can predict HCC progression. We defined Notch1/pStat3-related HCC cases as cases where the ratio of the two proteins (Notch1 vs. pStat3) was 0.5-1 and HCC cases of unrelated Notch1/pStat3 as cases where the ratio was less than 0.5 or larger than 1. Kaplan-Meier analysis illustrated that patients with Notch1/pSTAT3 (T705) related expression was remarkably associated with poor disease-free survival (log-
rank=7.236, p=0.007; Fig. 6D), but wasn’t significantly associated with poor overall survival (log-rank=3.197, p=0.074). Patients with Notch1/pSTAT3 (S727) related expression had a strong association with poor overall survival (log-rank=9.885, p=0.002) and poor disease-free survival (log-rank=13.425, p=0.000; Fig. 6E). These clinical results indicated an aberrant Notch1-depedent activation of Stat3 in HCC patients, which not only predicted a poor prognosis but also provided an option for using a Notch inhibitor such as PF-03084014 for treatment.
Discussion

In this study, we demonstrated that using a GSI to target Notch signaling has both anti-tumor and anti-metastasis effects on HCC. In HCC spherical cancer cells in vitro and cancer stem-like cell-derived orthotopic tumor and PDX tumor models in vivo, we further demonstrated that GSI-mediated antitumor activity was associated with the inhibition of cancer CSC self-renewal and proliferation and the reversal of EMT phenotypes. PF-03084014 also induced spherical CSC differentiation leading to chemosensitization and reduced tumorigenicity. Moreover, the GSI suppressed multiple CSC promoting pathways. In particular, PF-03084014 inhibited the phosphorylation of Stat3, and the Notch1-Stat3 association was significantly related to HCC disease progression. These results provide (i) the first evidence of inhibition of Notch signaling by PF-03084014, which may have therapeutic potential for the treatment of HCC as well as metastatic HCC, and (ii) evidence that the GSI PF-03084014 is capable of targeting CSC self-renewal and proliferation directly or indirectly by targeting CSC-promoting genes.

There is increasing evidence that aberrant Notch pathway activation occurs in solid tumors, including liver cancers (36). In clinical HCC tumor tissues, upregulation of Notch components has been observed, which is significantly associated with disease progression such as tumor metastasis (22). Consistently, our current results demonstrated for the first time that using a GSI for pharmacologic inhibition of the Notch signaling pathway could have antitumor and antimetastasis effects in HCC in vivo models. GSIs are known to be toxic, as they are not cell-selective or system-specific (37). We observed that liver cancer cells with higher Notch expression (22) are more sensitive to GSI inhibition than liver cancer cells with lower Notch expression. Importantly, proliferation of the normal hepatocyte cell line MIHA was completely unaffected. Moreover, based on mice body weights, the PF-03084014 toxicity was generally limited and tolerable given that in our experimental setting, the total GSI administration was intermittent but relatively high in dose. Taken together, PF-03084014 seems to selectively target high Notch1-expressing cancer cells and is not associated with any signs of adverse effects on normal hepatocytes.

Constitutive activity of Notch1 in mouse embryonic hepatoblasts results in HCC development with 100% penetrance and a Notch gene signature of these tumors is also found in human HCC (38). These studies also suggest that persistent activation of
the Notch signaling might play roles both in reprograming hepatic progenitor cells (HPCs) into CSCs and in maintaining CSC features during HCC development (36). In our study design, the experiment was performed on liver cancer spheres, which enrich the HCC CSC population (25), and the in vivo orthotopic tumor model was also generated from HCC cancer spheres. Thus, it is basically an examination of GSI-mediated inhibition of CSC proliferation in a liver cancer model. The observation that PF-03084014 is able to inhibit HCC CSC sphere proliferation and orthotopic tumor growth is likely a result of PF-03084014 being able to impair CSC self-renewal. In addition, it seems that tumor growth reduction by PF-03084014 is more significant in HCC sphere-generated tumors than in HCC monolayer-generated tumors. Thus, impairing the self-renewal and stemness of CSCs is more effective for inhibition of tumor growth, as cancer stemness is the root of the tumor-forming capacity.

The treatment of HCC by conventional chemotherapy remains a therapeutic challenge, as HCC is a highly chemoresistant cancer and a subgroup of HCC is even resistant to molecular targeting agents such as sorafenib (39). Our observation that a low dose of PF-03084014 in combination with treatment with cisplatin or doxorubicin can reach an inhibition rate of 80%-90% in liver cancer spheres, indicating that targeting Notch can enhance chemosensitization of HCC. One potential mechanism could be that targeting Notch induces liver CSC differentiation, a critical cellular state for chemosensitization. More importantly, CSC differentiation by PF-03084014 deteriorates tumorigenicity by 62.5%. Thus, PF-03084014 inhibits Notch activity leading to chemosensitization through suppression of CSC stemness and induction of CSC differentiation.

Tumor metastasis is a major contributor to HCC cancer relapse and patient death. The previous evidence from primary HCC patients and in vivo HCC metastasis models (22) that Notch signaling is involved in HCC metastasis are further supported by the observation that PF-03084014 could effectively block lung metastasis in an HCC orthotopic model. One obvious mechanism which PF-03084014 suppressed in vivo metastasis was through reduction of Notch-mediated EMT by decreasing the level of the mesenchymal-associated molecules Snail1 and Snail2 and increasing the level of epithelia-associated molecules E-cadherin. The notable ability of PF-
03084014 to block in vivo HCC metastasis provides strong evidence for the potential use of GSIs for the treatment of advanced HCC.

Under PF-03084014 treatment, phosphorylation of Stat3 at S705 and T727 were clearly inhibited and the interaction between Notch1 and Stat3 was abolished. Therefore, among multiple pathways regulated by Notch signaling, we demonstrated the Notch1-Stat3 association in HCC cells and primary tumors. It has been shown that Notch signaling induces activation of Stat3 and Akt to promote normal stem cell expansion (40), whereas Stat3 is a key driver of cancer stemness (31). Thus, Notch regulation of CSCs might be through Stat3 and the Notch1-Stat3 axis and may contribute to liver CSC self-renewal and proliferation that further drives tumor growth. Importantly, the Notch1-Stat3 association was demonstrated in HCC primary tumors and was a significant indicator of poor prognosis, suggesting that the Notch1-Stat3 axis might play a role in maintaining the CSC population in the tumor mass to support HCC growth. The evidence that PF-03084014 inhibited both Notch1 and Stat3 and blocked HCC metastasis in vivo indicates that GSIs have potential for the treatment of advanced HCC.

In summary, this research identified that the inhibition of Notch signaling using PF-03084014 had an antitumor and antimetastatic effect in the HCC sphere-derived orthotopic model. The antitumor effect of PF-03084014 was confirmed by our PDX models. Furthermore, PF-03084014 inhibited HCC CSC self-renewal and proliferation via inhibition of the Notch1-Stat3 axis, where the Notch1-Stat3 association was significantly implicated in a poor HCC prognosis. PF-03084014 also induced CSC differentiation leading to chemosensitization. These findings suggest that PF-03084014 might have the potential for the treatment of advanced HCC.

Acknowledgments

We thank Dr Yu (HBP, Queen Mary Hospital) for providing clinical tumor tissue support. We thank Jeason and Sally Li for outstanding technical support and Jana Wo for animal relevant information and technical support.
References

Figure Legends

Figure 1.
PF-03084014 inhibits HCC sphere self-renewal and proliferation in vitro. (A) HCC 97H- and Huh7-derived sphere cells were treated with DMSO or PF-03084014 (0.5, 1, and 2 μM/L). Sphere numbers were counted at 7-14 days. Relative viability was counted as PF-03084014 versus DMSO groups. The data were presented as the mean ± SD, n = 2, from two independent experiments, each in triplicate. An independent t-test was used for statistical comparison. *, p < 0.05; **, p < 0.01; ***, p < 0.001. (B) The 97H spheres were serially diluted into single cells followed by PF-03084014 (0.25, 0.5 μM/L) treatment. Single cell formation was counted by single sphere seeding number vs. sphere formation number. (C) Phase contrast images of sphere colonies after DMSO or PF-03084014 treatment. (D) Flow cytometry analysis of the CD90+ and EpCAM+ population in 97H spheres treated with DMSO or PF-03084014. (E) Western blot analysis of protein levels of Noang and Sox2 at 24h, 48h and 72h in vehicle- and PF-03084014-treated 97H spheres. (F) mRNA levels of the stemness genes NANOG and OCT4 in 97H spheres treated with PF-03084014 versus DMSO. qRT-PCR data are represented as the mean ± SD, n = 2, each in duplicate. (G) qRT-PCR of glycolytic genes, GLUT1, PFK1, HK2, and LDHA. (H) The 97H spheres were treated with PF-03084014 or DMSO, and the lactate concentration in the medium was quantified on day 3.

Figure 2.
Anticancer effects of PF-03084014 in the HCC sphere-derived orthotopic models. (A) Schematic of the experimental setup. The 97H sphere-generated subcutaneous tumor cubes were implanted in the left liver lobes of nude mice. One week after tumor implantation, the mice with a positive luciferin signal were randomized and treated with vehicle and PF-03084014, as shown in the schematic setup of the drug administration. (B) Tumor growth kinetics and statistical comparison based on the luciferin bioluminescence signal at 3, 4, 6, and 8 weeks. Data are the mean ± SD, n = 10. *, p < 0.05; **, p < 0.01. (C) Representative tumor images based on the luciferin bioluminescence of B. (D) Statistical comparison of the tumor volume (left panel) and tumor weight (right panel) at the endpoint (8 weeks). ***, p < 0.001. (E) The tumor tissue was digested at the end of study to detect the CD90+ population by flow...
cytometry. (F) PDX tumor Image of HCC mice were subjected to 4 weeks of vehicle or PF-03084014 (100 mg/kg for 6-day/per week) treatment. (G) PDX tumor weights were statistically compared at the endpoint (4 weeks).

Figure 3.
PF-03084014 blocks HCC orthotopic tumor metastasis from the liver to the lung. (A) Subcutaneously formed tumors from 97H spheres (n = 8) or 97H monolayer cells (n = 8) were implanted into the left liver lobes in nude mice followed by vehicle or PF-03084014 treatment. At the end of the study, mouse lung was isolated after I.P. injection of luciferin (25 mg/kg) and the liver tumor luciferin signal was detected under an IVIS Spectrum. Liver tumor luciferase signals in a total of 16 mice from the vehicle (up panel) and PF-03084014 (lower panel) groups are shown. (B) Based on A, the percentage of liver to lung metastasis was calculated. (C) H&E staining of representative lung tissue sections. Arrows indicate liver tumor lesions and surrounded infiltrating cells. (D) Western blots of the EMT markers E-cadherin and Snail1 in 97H spheres and in tumor tissue treated with vehicle and PF-03084014. (E) mRNA levels of SNAIL1 and SNAIL2 in 97H spheres treated with vehicle and PF-03084014. (F) IHC detected E-cadherin in vehicle- and PF-03084014-treated 97H sphere-derived tumor tissues.

Figure 4.
PF-03084014 induces HCC sphere differentiation. (A) Differentiation is the formation of other non-cancer stem cells from the undifferentiated precursor cancer stem cells. 97H spheres and Huh7 spheres were treated with DMSO or a low dose of PF-03084014 (0.25-0.5 μM). The percentage of differentiated spheres were counted and statistically compared. (B) The sphere number of 97H spherical cells treated with PF-03084014 (0.5 μM), cisplatin (0.5 μg/ml or 1 μg/ml) or doxorubicin (0.4 μg/ml or 0.8 μg/ml) alone and cells treated with PF-03084014 (0.5 μM) in combination with cisplatin (0.5 μg/ml or 1 μg/ml) or doxorubicin (0.4 μg/ml or 0.8 μg/ml) are shown. (C) Pretreatment with PF-03084014 in vitro decreased the tumorigenicity of HCC spheres in vivo. Schematic of the experimental setup of pretreatment. The 97H spheres were pretreated with PF-03084014 (0.25-0.5 μM) or DMSO, followed by single sphere formation and in vivo tumorigenicity assays without further treatment. (D) Statistical comparison of single sphere formation after pretreatment. (E)
Xenograft tumor incidence (%) at 6 weeks after the injection of pretreated cells (n = 8). (F) Representative tumor size based on bioluminescence imaging. DMSO or PF-03084014 pretreated cells were injected into the same mouse for comparison. (G) Statistical comparison of tumor volume at the endpoint. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Figure 5.
PF-03084014 modulates Stat3 to suppress HCC CSCs. (A) Western blot analysis of protein levels of cleaved Notch1, pStat3 (T705), and pStat3 (S727) in vehicle- and PF-03084014-treated 97H spheres and endpoint 97H sphere-derived tumor tissues. (B) The 97H spheres were treated with DMSO, PF-03084014, or JSI-124 (Stat3 inhibitor), followed by measurement of the protein levels of cleaved Notch1 and pStat3. (C) Endpoint tumor tissue lysates were immunoprecipitated with cleaved Notch1 antibody; the bound proteins were analyzed using a Stat3 antibody. IgG was used as an internal loading control. (D) Vector-based siNotch1 and siControl were stably transfected into HCC cells and the protein levels of cleaved Notch1, pStat3(T705) and pStat3 (S727) were analyzed by western blot. (E) Western blot analysis of protein levels of pAkt at T308 and S473, pGSK3β, and pErk1/2 in vehicle- and PF-03084014-treated 97H spheres and endpoint tumor tissues. (F) Single sphere formation capacity in 97H and Huh7 spheres treated with JSI-124 versus DMSO. The single sphere formation in DMSO was defined as 1; the fold decrease in the JSI-124 group was calculated as the inverse of the fold change. (G) Relative sphere viability of 97H spheres treated with the Stat3 inhibitor JSI-124 (1 μM) versus DMSO. (H) Percentage of differentiated spherical colonies after JSI-124 treatment. ***, p < 0.001. (I) Western blot analysis of protein levels of E-cadherin and Snail1 in vehicle- and PF-03084014-treated 97H spheres. (J) Flow cytometry analysis of the CD90− and EpCAM− population in 97H spheres after treatment with DMSO or JSI-124. (K) Model of inhibition of Notch1 by PF-03084014 impairs CSC self-renewal, proliferation, and metastasis via suppression of Stat3, Akt signaling, and reversion of EMT, respectively.

Figure 6.
Clinical association of Notch1 and pStat3 in HCC. (A) Representative western blots of cleaved Notch1, pStat3 (T705), pStat3 (S727), and β-actin from 39 HCC primary
tumor tissues. (B) Linear regression analysis of the Notch1-dependent expression of pStat3 (T705; left panel) and pStat3 (S727; right panel) using quantification of data from A. (C) Kaplan-Meier analysis of the overall survival (left panel) and disease-free survival (right panel) of HCC patients in comparison with high and low Notch1 expression. (D) Based on quantification of protein levels, HCC cases were defined as Notch1/pStat3-related when the ratio (Notch1 versus pStat3) was 0.5-1, whereas HCC cases were considered Notch1/pStat3-unrelated when the ratio was <0.5 or >1. Kaplan-Meier analysis of the overall (left panel) and disease-free (right panel) survival of HCC patients with related versus unrelated Notch1/pStat3 (T705). (E) Kaplan-Meier analysis of the overall and disease-free survival of HCC patients with related versus unrelated Notch1/pStat3 (S727).
Figure 1

A. **Relative viability of DMSO (%)**

```
<table>
<thead>
<tr>
<th></th>
<th>97H</th>
<th>Huh7</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td><strong>100</strong></td>
<td><strong>100</strong></td>
</tr>
<tr>
<td>PF 0.5μM</td>
<td><strong>95</strong></td>
<td><strong>88</strong></td>
</tr>
<tr>
<td>PF 1μM</td>
<td><strong>90</strong></td>
<td><strong>83</strong></td>
</tr>
<tr>
<td>PF 2μM</td>
<td><strong>85</strong></td>
<td><strong>78</strong></td>
</tr>
<tr>
<td>DMSO</td>
<td><strong>100</strong></td>
<td><strong>100</strong></td>
</tr>
<tr>
<td>PF 0.5μM</td>
<td><strong>95</strong></td>
<td><strong>88</strong></td>
</tr>
<tr>
<td>PF 1μM</td>
<td><strong>90</strong></td>
<td><strong>83</strong></td>
</tr>
</tbody>
</table>
```

B. **Single sphere formation (%)**

```
<table>
<thead>
<tr>
<th></th>
<th>DMSO</th>
<th>PF 0.25μM</th>
<th>PF 0.5μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td><strong>70</strong></td>
<td><strong>65</strong></td>
<td><strong>60</strong></td>
</tr>
<tr>
<td>PF 0.25μM</td>
<td><strong>65</strong></td>
<td><strong>60</strong></td>
<td><strong>55</strong></td>
</tr>
<tr>
<td>PF 0.5μM</td>
<td><strong>60</strong></td>
<td><strong>55</strong></td>
<td><strong>50</strong></td>
</tr>
</tbody>
</table>
```

C. **Images of cell cultures**

```
<table>
<thead>
<tr>
<th></th>
<th>DMSO</th>
<th>PF-4014 0.5μM</th>
<th>PF-4014 1μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td><img src="image" alt="40X" /></td>
<td><img src="image" alt="40X" /></td>
<td><img src="image" alt="40X" /></td>
</tr>
<tr>
<td>PF-4014 0.5μM</td>
<td><img src="image" alt="40X" /></td>
<td><img src="image" alt="40X" /></td>
<td><img src="image" alt="40X" /></td>
</tr>
<tr>
<td>PF-4014 1μM</td>
<td><img src="image" alt="40X" /></td>
<td><img src="image" alt="40X" /></td>
<td><img src="image" alt="40X" /></td>
</tr>
</tbody>
</table>
```

D. **Flow cytometry analysis**

```
<table>
<thead>
<tr>
<th></th>
<th>DMSO</th>
<th>PF-4014</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSC</td>
<td><img src="image" alt="26%" /></td>
<td><img src="image" alt="0.5%" /></td>
</tr>
<tr>
<td>CD90-PE</td>
<td><img src="image" alt="14.8%" /></td>
<td><img src="image" alt="2.0%" /></td>
</tr>
</tbody>
</table>
```

E. **Western blot analysis**

```
<table>
<thead>
<tr>
<th></th>
<th>DMSO</th>
<th>PF-4014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notch1 (cleaved)</td>
<td><img src="image" alt="GAPDH" /></td>
<td><img src="image" alt="GAPDH" /></td>
</tr>
<tr>
<td>Nanog</td>
<td><img src="image" alt="GAPDH" /></td>
<td><img src="image" alt="GAPDH" /></td>
</tr>
<tr>
<td>Sox2</td>
<td><img src="image" alt="GAPDH" /></td>
<td><img src="image" alt="GAPDH" /></td>
</tr>
<tr>
<td>GAPDH</td>
<td><img src="image" alt="GAPDH" /></td>
<td><img src="image" alt="GAPDH" /></td>
</tr>
</tbody>
</table>
```

F. **Relative mRNA expression**

```
<table>
<thead>
<tr>
<th></th>
<th>DMSO</th>
<th>PF-4014</th>
</tr>
</thead>
<tbody>
<tr>
<td>NANOG</td>
<td><img src="image" alt="0.8" /></td>
<td><img src="image" alt="0.4" /></td>
</tr>
<tr>
<td>OCT4</td>
<td><img src="image" alt="0.4" /></td>
<td><img src="image" alt="0.2" /></td>
</tr>
</tbody>
</table>
```

G. **Relative mRNA expression**

```
<table>
<thead>
<tr>
<th></th>
<th>DMSO</th>
<th>PF-4014</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLUT1</td>
<td><img src="image" alt="1.2" /></td>
<td><img src="image" alt="0.8" /></td>
</tr>
<tr>
<td>PFK1</td>
<td><img src="image" alt="0.8" /></td>
<td><img src="image" alt="0.4" /></td>
</tr>
<tr>
<td>HK2</td>
<td><img src="image" alt="1.2" /></td>
<td><img src="image" alt="0.8" /></td>
</tr>
<tr>
<td>LDHA</td>
<td><img src="image" alt="0.8" /></td>
<td><img src="image" alt="0.4" /></td>
</tr>
</tbody>
</table>
```

H. **Lactate production (%)**

```
<table>
<thead>
<tr>
<th></th>
<th>DMSO</th>
<th>PF-4014</th>
</tr>
</thead>
<tbody>
<tr>
<td>24h</td>
<td><img src="image" alt="100" /></td>
<td><img src="image" alt="50" /></td>
</tr>
<tr>
<td>48h</td>
<td><img src="image" alt="75" /></td>
<td><img src="image" alt="50" /></td>
</tr>
<tr>
<td>72h</td>
<td><img src="image" alt="50" /></td>
<td><img src="image" alt="50" /></td>
</tr>
</tbody>
</table>
```
Figure 2

A

spheres
inject
xenograft
implant
orthotopic

Week 1 2 3 4 5 6 7 8
PF-4014 PF-4014 PF-4014 PF-4014 End point

B

n = 10

Vehicle
PF-4014

**

Bioluminescence x 10^7 (p/s)

2w 4w 6w 8w

C

Vehicle

2 w 4 w 6 w 8 w

PF-4014

D

Tumor volume (mm^3)

Vehicle
PF-4014

E

Vehicle

PF-4014

23.15%

2.76%

F

Vehicle

PF-4014

G

Tumor weight (g)

Vehicle
PF-4014

*
Figure 3

A

B

C

D

E

F

n = 16

Liver to lung metastasis (%)

Vehicle PF-4014

DMSO PF-4014 Vel PF-4014

E-cadherin Snail1 β-actin

Cell Tumor tissue

Relative mRNA

Vehicle PF-4014

SNAIL1 SNAIL2

Downloaded from mct.aacrjournals.org on October 19, 2017. © 2017 American Association for Cancer Research.
Figure 4

A

B

C

D

E

F

G

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

Downloaded from mct.aacrjournals.org on October 19, 2017. © 2017 American Association for Cancer Research.
Figure 6

A

Cleaved Notch1
pStat3 (T705)
pStat3 (S727)
β-actin

B

\(p = 0.00 \)

\(p = 0.00 \)

\(p = 0.027 \)

\(p = 0.000 \)

D

\(p = 0.074 \)

\(p = 0.007 \)

E

\(p = 0.002 \)

\(p = 0.000 \)
Notch inhibitor PF-03084014 inhibits hepatocellular carcinoma growth and metastasis via suppression of cancer stemness due to reduced activation of Notch1-Stat3

Chuan Xing Wu, Aimin Xu, Cathy C. Zhang, et al.

Mol Cancer Ther Published OnlineFirst May 18, 2017.